浅谈几何概型及其应用
《高二数学几何概型》课件
![《高二数学几何概型》课件](https://img.taocdn.com/s3/m/0f658aafb9f67c1cfad6195f312b3169a451ea87.png)
进阶习题
进阶习题1
一个半径为10cm的圆,随机选择一个面积 为4π cm²的扇形,求扇形弧长大于圆周长 1/4的概率。
进阶习题2
一个边长为10cm的正六边形,随机选择一 个面积为30cm²的子多边形,求子多边形完 全位于正六边形的内部的概率。
答案解析
在此添加您的文本17字
基础习题答案解析
在此添加您的文本16字
04
常见题型解析
长度型几何概型题型解析
总结词
涉及线段的长度比较,通过比例关系求解概率。
详细描述
这类题目通常给定两个线段或点的长度,要求比较它们的长度或计算某线段长度所占的 比例,从而得出概率。解题时需要仔细分析长度之间的关系,利用比例关系进行计算。
面积型几何概型题型解析
总结词
涉及面积的比较,通过面积比例关系 求解概率。
几何概型
每个基本事件的发生都具有等可 能性,但试验的所有可能结果通 常是无限多个,且对应于一个可 度量的几何区域。
02
几何概型的概率计算公式
公式推导
几何概型的概率计算公式是基于面积和体积的等可能性和对 称性推导出来的。
通过将试验的全部结果所构成的区域长度、面积或体积分别 除以满足条件的结果构成的区域长度、面积或体积,得到概 率的长度型公式、面积型公式和体积型公式。
详细描述
这类题目通常给定两个图形的面积, 要求比较它们的面积或计算某面积所 占的比例,从而得出概率。解题时需 要利用几何图形的面积公式和性质, 进行面积的计算和比较。
体积型几何概型题型解析
总结词
涉及三维空间的体积比较,通过体积比 例关系求解概率。
VS
详细描述
这类题目通常给定两个三维空间的体积, 要求比较它们的体积或计算某体积所占的 比例,从而得出概率。解题时需要利用几 何体的体积公式和性质,进行体积的计算 和比较。
几何概型的计算与应用
![几何概型的计算与应用](https://img.taocdn.com/s3/m/7e39bd93185f312b3169a45177232f60ddcce73b.png)
几何概型的计算与应用几何学是一门研究空间形状、大小、相对位置等性质的学科,而几何概型是指在几何学中常见的基本形状。
本文将围绕几何概型的计算方法和应用展开讨论。
一、点与线的计算在几何学中,点和线是最基本的几何概念。
计算点与线的位置、距离和方向是几何学的基础。
1.1 点的计算在二维平面中,点可以由坐标表示。
坐标系中的点通常用(x,y)表示,其中x表示横坐标,y表示纵坐标。
通过计算两点之间的距离和方向,我们可以确定点在空间中的位置和特性。
1.2 线的计算线可以通过两个点来确定。
线的长度和方向可以通过计算两个点之间的距离和角度来得到。
此外,通过线的方程,我们可以计算线的斜率、截距和方向等信息。
二、多边形的计算多边形是由多个线段组成的几何图形。
计算多边形的周长和面积是几何学中常见的问题。
2.1 多边形的周长计算多边形的周长可以通过计算多个线段的长度之和来实现。
根据多边形的形状,可以将多边形分解为若干个三角形或梯形,然后计算各个三角形或梯形的周长,最后将其相加即可得到多边形的周长。
2.2 多边形的面积计算多边形的面积可以通过计算多个三角形的面积之和来实现。
类似于计算周长的方法,我们可以将多边形分解为若干个三角形,然后计算各个三角形的面积,最后将其相加即可得到多边形的面积。
三、圆的计算圆是几何学中的一种特殊几何概念,计算圆的周长和面积是常见的几何计算问题。
3.1 圆的周长圆的周长也被称为圆的周线,可以通过圆的直径或半径来计算。
圆的周长公式为C=2πr,其中C表示周长,r表示半径。
3.2 圆的面积圆的面积可以通过圆的半径或直径来计算。
圆的面积公式为A=πr^2,其中A表示面积,r表示半径。
四、几何概型的应用几何概型不仅存在于数学理论中,还广泛应用于现实生活中的各个领域。
4.1 建筑设计几何概型是建筑设计中不可或缺的一部分。
建筑师需要运用几何学的知识,计算和谋划建筑物的各个部分,确保其结构的稳定性和美观性。
4.2 机械工程几何概型在机械工程中也有着重要的应用。
几何概型的应用
![几何概型的应用](https://img.taocdn.com/s3/m/1c2eb83731126edb6f1a102e.png)
练习2 练习2
分钟发一班车,随机到达车站, 假设车站每隔 10 分钟发一班车,随机到达车站, 问等车时间不超过 3 分钟的概率 ?
解. 以两班车出发间隔 ( 0,10 ) 区间作为样本空间 S, , , 乘客随机地到达, 乘客随机地到达,即在这个长度是 10 的区间里任何 一个点都是等可能地发生,因此是几何概率问题。 一个点都是等可能地发生,因此是几何概率问题。 要使得等车的时间不超过 3 分钟,即到达的时刻应该是 分钟, 包含的样本点, 图中 A 包含的样本点, 0← S →10
3 A 的长度 p (A) = ————— = —— = 0.3 。 10 S 的长度
时在公园见面, 两人相约于 7 时到 8 时在公园见面,先到者等 分钟就可离去,求两人能够见面的概率。 候 20 分钟就可离去,求两人能够见面的概率。
解. 点为坐标原点, 以 7 点为坐标原点,
y
60
小时为单位。 , 小时为单位。x,y 分别表示 两人到达的时间, x, 两人到达的时间,( x,y ) 的正方形S, 构成边长为 60的正方形 , 的正方形 显然这是一个几何概率问题。 显然这是一个几何概20
x
因此, 他们能见面应满足 | x – y | ≤ 20 ,因此,
P(A)=
6 0 2- 4 0 2 60 2
=
5 9
小
结
1.几何概型是不同于古典概型的又一个最基 几何概型是不同于古典概型的又一个最基 最常见的概率模型, 本、最常见的概率模型,其概率计算原理 通俗、简单, 通俗、简单,对应随机事件及试验结果的 几何量可以是长度、面积或体积. 几何量可以是长度、面积或体积
古典概型的特点: 古典概型的特点 a)试验中所有可能 试验中所有可能 出现的基本事件只 有限个. 有有限个 b)每个基本事件出 每个基本事件出 现的可能性相等 可能性相等. 现的可能性相等
几何概型-简单-讲义
![几何概型-简单-讲义](https://img.taocdn.com/s3/m/fb43728efad6195f302ba642.png)
几何概型知识讲解一、几何概型定义:事件A理解为区域的某一子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,满足此条件的试验称为几何概型.二、几何概型具备以下两个特征:1.无限性:即每次试验的结果(基本事件)有无限多个,且全体结果可用一个有度量的几何区域来表示;2.等可能性:即每次试验的各种结果(基本事件)发生的概率都相等.三、几何概型的计算公式及步骤P A,其中表示区域的几何度量,A表1.几何概型中,事件A的概率定义为()A示区域A的几何度量.2.几何概型的计算步骤1)把样本空间和所求概率的事件用关系式表示出来,可分两类①样本空间具有明显的几何意义,样本点所在的几何区域题目中已给出;②样本空间所求事件所对应的几何区域没直接给出,课根据题设引入适当变量,把题设的条件转换成变量所满足的代数条件;2)在坐标系中把相应的几何图形画出来;P A,其中3)把样本空间和所求事件的概率所在的几何图形度量,然后代入公式()A表示区域的几何度量,A表示区域A的几何度量.四、几何概率中概率0和1的理解理解:如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它的概率为0,但它不是不可能事件,即概率为0的事件不一定是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它的概率为1,但它不是必然事件,即概率为1的事件不一定为必然事件.典型例题一.选择题(共5小题)1.(2018?西宁一模)如图,M是半径R的圆周上一个定点,在圆周上等可能的任取一点N,连接MN,则弦MN的长度超过R的概率是()A.B.C.D.【解答】解:本题利用几何概型求解.测度是弧长.根据题意可得,满足条件:“弦MN的长度超过R”对应的弧,其构成的区域是半圆,则弦MN的长度超过R的概率是P=.故选:D.2.(2018?新华区校级模拟)欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”.卖油翁的技艺让人叹为观止.设铜钱是直径为4cm的圆,它中间有边长为1cm的正方形孔.若随机向铜钱上滴一滴油,则油滴(不计油滴的大小)正好落入孔中的概率为()A.B.C. D.【解答】解:由题意可得直径为4cm的圆的面积为π×22=4π,而边长为1cm的正方形面积为1×1=1,故所求概率P=,故选:A.3.(2018?安宁区校级模拟)在区间[﹣,]上随机取一个数x,则事件“0≤sinx ≤1”发生的概率为()A.B.C.D.【解答】解:在区间[﹣,]上,由0≤sinx≤1得0≤x≤,=,故选:C.4.(2018?乐山三模)2002年国际数学家大会在北京召开,大会的会徽是我国古代数学家赵爽画的“弦图”,体现了数学研究中的继承和发展,如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若θ=.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()A.B.C.D.【解答】解:由已知,可得小正方形的边长为,故小正方形的面积,大正方形的面积S=4,故飞镖落在小正方形内得概率P=.故选:A.5.(2018?凌源市模拟)已知x,y∈[0,2],则事件“x+y≤1”发生的概率为()A.B.C.D.【解答】解:由题意x,y∈[0,2],在平面直角坐标系中做出对应的区域,及事件“x+y≤1”对应的区域,如下图所示:所以事件“x+y≤1”发生的概率为;故选:B.二.填空题(共5小题)6.(2018?江苏二模)某公共汽车站每隔15分钟有一辆汽车到站,在出发前在车站停靠3分钟,假设乘客到达站台的时刻是随机的,则乘客候车时间不超过10分钟的概率为.【解答】解:根据题意知这是一个几何概型,公共汽车站每隔15分钟有一辆汽车到达,∴基本事件总数包含的时间长度是15,又乘客到达车站的时刻是任意的,且出发前在车站停靠3分钟,∴满足一个乘客候车时间大于10分钟的事件包含的时间长度是15﹣13=2,满足一个乘客候车时间不超过10分钟的事件包含的时间长度是13,由几何概型公式得所求的概率为P=.故答案为:.7.(2018?江苏二模)在长为12cm的线段AB上任取一点C,以线段AC、BC为邻边作矩形,则该矩形的面积大于32cm2的概率为.【解答】解:设AC=x,则CB=12﹣x,则矩形的面积S=x(12﹣x),由x(12﹣x)>32得x2﹣12x+32<0,解得4<x<8,根据几何概型的概率公式可得所求的概率P==,故答案为:.8.(2018春?启东市校级期中)人民路华石路口一红绿灯东西方向的红灯时间为37s,黄灯时间为3s,绿灯时间为60s.从西向东行驶的一辆公交车通过该路口,遇到绿灯的概率为.【解答】解:∵民路华石路口一红绿灯东西方向的红灯时间为37s,黄灯时间为3s,绿灯时间为60s.∴从西向东行驶的一辆公交车通过该路口,遇到绿灯的概率为:p==.故答案为:.9.(2017?如皋市二模)在△ABC的边AB上随机取一点P,记△CAP和△CBP的面积分别为S1和S2,则S1>2S2的概率是.【解答】解:由题意,设AB边上的高为h,则S1=,S2=,∵S1>2S2,∴AP>2BP,∴S1>2S2的概率是.故答案为:.10.(2017?扬州模拟)在区间(0,5)内任取一个实数m,则满足3<m<4的概率为.【解答】解:区间(0,5)的区间长度为5.满足3<m<4的区间长度为1.由测度比为长度比可得满足3<m<4的概率P=.故答案为:.三.解答题(共2小题)11.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求X=60时的概率.【解答】解:设指针落在A,B,C区域分别记为事件A,B,C.则P(A)=,P(B)=,P(C)=.(Ⅰ)若返券金额不低于30元,则指针落在A或B区域.∴P=P(A)+P(B)=,即消费128元的顾客,返券金额不低于30元的概率.(Ⅱ)由题意得,该顾客可转动转盘2次.P(X=60)==12.节日前夕,小明的妈妈给小明买了两只可以装电池的发光玩具狗.这两只玩具狗在装满电池后,都会在打开电开关后的4秒内任一时刻等可能发光,然后每只发光玩具狗以4秒为间隔闪亮.那么,当这两只发光玩具狗同时打开电开关后,求它们第一次闪亮的时刻相差不超过2秒的概率.【解答】解:设这两只玩具狗第一次闪亮的时刻分别为x,y由已知:由第一次闪亮时刻相差不超过两秒可得|x﹣y|≤2…(6分)现记“这两只玩具狗第一次闪亮的时刻不超过2秒”为事件A.则…(11分)答:这两只玩具狗第一次闪亮的时刻不超过2秒的概率为.…(12分)。
《高一数学几何概型》课件
![《高一数学几何概型》课件](https://img.taocdn.com/s3/m/ac47505054270722192e453610661ed9ad5155d8.png)
几何概型的现代发展
在现代概率论中,几何概型的应用更加广泛,涉及 到各种不同的领域,如统计学、物理、工程等。几 何概型的理论也在不断完善和发展。
几何概型与其他数学知识的联系
02
在日常生活中,几何概型的应用可以帮助我们更好地理解和预测事物发生的可能 性,从而做出更明智的决策。
在概率统计中的应用
01
几何概型是概率统计中的重要概 念,它可以用来计算一些复杂事 件的概率,例如计算几何形状内 随机点的数量等。
02
在概率统计中,几何概型的应用 可以帮助我们更好地理解和分析 数据,从而得出更准确的结论。
示例
在一条直线上随机取一段长度,观察该长度是否大于等于1。所取长度大于等于 1的概率即为长度型的几何概型。
体积型的几何概型的概率计算
总结词
通过比较基本事件所对应的体积与试 验全部结果所对应的体积来计算概率 。
示例
在一个立方体中随机取一个点,观察 该点是否位于立方体的内部。该点位 于立方体内部的概率即为体积型的几 何概型。
几何概型的特点在于其概率计算依赖于几何量的大小和 比例,而不是具体的数量值。
几何概型的特点
几何概型具有无限性
几何概型具有直接性
由于基本事件是无限的,因此无法通 过列举所有基本事件来计算概率。
在某些情况下,可以通过直接测量或 计算几何量的大小来得到概率。
几何概型具有等可能性
每个基本事件的发生概率是相等的, 这使得概率的计算依赖于几何量的大 小和比例。
《高一数学几何概型》ppt课件
目录
• 几何概型的定义 • 几何概型的概率计算 • 几何概型的应用 • 几何概型的扩展知识 • 练习与巩固
几何概念在日常生活中的实际应用案例有哪些
![几何概念在日常生活中的实际应用案例有哪些](https://img.taocdn.com/s3/m/36f3889f2dc58bd63186bceb19e8b8f67c1cefa4.png)
几何概念在日常生活中的实际应用案例有哪些在我们的日常生活中,几何概念无处不在,从简单的家居布置到复杂的建筑设计,从日常的交通出行到各种工业制造,几何知识都发挥着重要的作用。
接下来,让我们一起来看看几何概念在生活中的一些实际应用案例。
首先,在建筑领域,几何概念是至关重要的。
无论是古老的金字塔还是现代的摩天大楼,其设计和建造都离不开几何原理。
比如,金字塔的形状是一个稳定的四面体,这种几何结构使得金字塔能够历经千年而不倒。
而现代的高楼大厦,在设计时需要考虑到几何形状的稳定性和力学原理,以确保建筑能够承受自身的重量和外部的风力等因素。
以常见的桥梁为例,几何形状的选择直接影响到桥梁的承载能力和稳定性。
拱形桥就是一个很好的例子,其拱形结构可以将桥面上的压力转化为对桥两侧的推力,从而大大增强了桥梁的承载能力。
而斜拉桥则利用了三角形的稳定性,通过钢索将桥面的重量分散到桥塔上,使得桥梁能够跨越更长的距离。
在室内设计中,几何概念也被广泛应用。
房间的布局和家具的摆放都需要考虑到几何形状和比例。
例如,客厅中的沙发、茶几和电视之间的位置关系,可以通过几何线条和角度的规划,营造出舒适和美观的空间效果。
在家具设计中,几何形状更是发挥了重要作用。
圆形的餐桌适合多人围坐,交流更加方便;方形的书桌更利于摆放书籍和办公用品,提高工作效率。
而一些具有独特几何形状的灯具和装饰品,能够为室内空间增添艺术感和个性。
在交通领域,几何概念同样不可或缺。
道路的设计需要考虑到弯道的曲率、坡度和直线段的长度等几何参数,以确保车辆行驶的安全和顺畅。
高速公路上的弯道通常采用较大的曲率半径,这样可以减少车辆在转弯时的离心力,提高行驶的稳定性。
而在城市道路中,十字路口的设计也运用了几何原理,通过合理规划车道的宽度和角度,以及设置交通信号灯的位置和时间,来疏导交通流量,减少交通事故的发生。
在汽车制造中,几何形状对于车辆的性能和外观也有着重要的影响。
汽车的车身流线型设计,不仅能够减少空气阻力,提高燃油效率,还能给人带来美观和时尚的感觉。
几何概型的类型及解法教案
![几何概型的类型及解法教案](https://img.taocdn.com/s3/m/86f0bc765b8102d276a20029bd64783e09127d8a.png)
几何概型的类型及解法教案几何概型是几何学中的一种问题类型,通常通过已知条件来确定未知几何量的值。
根据问题的类型,几何概型可以分为以下几类:相似三角形、直角三角形、圆、多边形和平面几何等。
下面将对几何概型的类型和解法进行详细介绍。
一、相似三角形概型相似三角形概型是几何概型中最常见的一类。
相似三角形指的是具有相同形状但大小不同的三角形。
相似三角形的概型通常包括已知条件,例如角度和边长,通过这些已知条件求解未知条件。
解决相似三角形概型的方法主要有以下几种:1.根据已知条件的比例关系求解:根据相似三角形的性质,可以得到两个相似三角形的任意两边之比等于另一个两边之比。
通过已知条件的比例关系,可以求解未知条件。
2.利用相似三角形的角度关系求解:通过已知条件的角度关系,可以确定一个相似三角形中的角度,进而求解未知条件。
二、直角三角形概型直角三角形概型是另一类常见的几何概型。
直角三角形是一个角度为90度的三角形,其中直角就是一个90度的角。
解决直角三角形概型的方法主要有以下几种:1.利用勾股定理求解:勾股定理是解决直角三角形问题的重要定理,根据勾股定理可得:直角三角形斜边的长度的平方等于两个直角边长度的平方和。
通过已知条件的边长关系,可以求解未知条件。
2.利用特殊三角函数求解:在直角三角形中,正弦、余弦和正切是常用的三角函数。
通过已知条件的三角函数关系,可以求解未知条件。
三、圆概型圆概型是几何概型中的一类,主要涉及与圆有关的问题。
解决圆概型的方法主要有以下几种:1.利用圆的面积和周长的计算公式求解:根据圆的半径或直径,可以计算圆的面积和周长。
2.利用与圆有关的角度关系求解:在圆上的角可分为弧度角和圆心角。
通过已知条件的角度关系,可以求解未知条件。
四、多边形概型多边形概型主要涉及与多边形有关的问题。
解决多边形概型的方法主要有以下几种:1.利用多边形的内角和定理求解:对于n边形,其内角和等于180度乘以n-2、通过已知条件的内角和关系,可以求解未知条件。
几何概型及其概率计算课件
![几何概型及其概率计算课件](https://img.taocdn.com/s3/m/ecd1ce596d175f0e7cd184254b35eefdc8d315f5.png)
04
几何概型与其他概率模型的比 较
与古典概型的比 较
01
02
03
古典概型
每个基本事件发生的可能 性相同,且所有基本事件 是等可能的。
几何概型
基本事件的发生与某个几 何量(如长度、面积、体 积等)有关,其概率与该 几何量的大小成正比。
比较
古典概型适用于离散随机 试验,而几何概型适用于 连续随机试验。
几何概型及其概率计算课件
contents
目录
• 几何概型的定义与特点 • 几何概型的概率计算方法 • 几何概型的应用实例 • 几何概型与其他概率模型的比较 • 几何概型在实际生活中的应用 • 几何概型的扩展与展望
01
几何概型的定义与特点
定义
01
几何概型是一种特殊的概率模型, 其中随机事件A的发生与否依赖于 一个或多个变量的取值范围。
拟合等。
几何概型的展望
几何概型的深入研究 随着概率论和数学的发展,几何概型的研究也在不断深入, 如对几何概型中的概率测度、概率空间的构造等方面的研 究。
几何概型的应用拓展 随着科技的发展,几何概型的应用范围也在不断拓展,如 计算机科学、信息论、通信网络等领域中的应用。
几何概型的交叉学科研究 几何概型可以与其他学科进行交叉研究,如物理学、生物 学、经济学等,形成新的研究领域和方向。
THANKS
感谢观看
AI行为模拟
在角色扮演类游戏中,通过几何概型 可以设计出更符合实际概率的角色属 性,提高游戏的平衡性和趣味性。
利用几何概型,游戏开发者可以模拟 AI角色的行为概率,使游戏中的AI行 为更加自然和真实。
随机事件
在游戏中,几何概型可以用于描述各 种随机事件的发生概率,如掉落物品、 触发技能等。
几何概型课件
![几何概型课件](https://img.taocdn.com/s3/m/68bb6ba1b9f67c1cfad6195f312b3169a451eacb.png)
角度型的几何概型的概率计算
总结词:基于角度
详细描述:角度型的几何概型是以角度作为概率测度的概率 模型。例如,在等可能的角度分布情况下,某事件发生的角 度越大,其发生的概率就越大。
03
几何概型的应用
在日常生活中的应用
交通信号灯
天气预报
几何概型可以用于计算不同方向的车 流等待时间。
几何概型可以用于预测降雨、降雪等 天气事件。
随机过程
几何概型可以用于研究随 机过程的变化和趋势。
统计学
几何概型可以用于统计分 析,如回归分析和方差分 析等。
04
几何概型的实际案例
掷骰子问题
总结词
等可能性和有限性
详细描述
掷一颗骰子,观察出现的点数,因为骰子有六个面,每个面上的点数都是等可 能的,所以这是一个几何概型问题。
转盘游戏问题
总结词
详细描述
数形结合思想在几何概型中主要体现在将概 率问题转化为几何图形问题,通过图形的性 质和变化来研究概率的变化规律。例如,在 几何概型中,等可能事件可以通过几何图形 来表示,概率的大小可以通过图形的面积或
体积来度量。
等可能性的思想方法
总结词
等可能性是几何概型中的一个基本思想,它认为在相 同的条件下,各个事件发生的可能性是相等的。
总结词:基于Байду номын сангаас积
详细描述:面积型的几何概型是以面积作为概率测度的概率模型。例如,在等可能的点分布情况下,某事件发生的区域面积 越大,其发生的概率就越大。
体积型的几何概型的概率计算
总结词:基于体积
详细描述:体积型的几何概型是以空间体积作为概率测度的概率模型。例如,在等可能的点分布情况 下,某事件发生的空间体积越大,其发生的概率就越大。
浅谈几何概型之_几何_
![浅谈几何概型之_几何_](https://img.taocdn.com/s3/m/707222d733d4b14e84246805.png)
8 3 与线段 9 : 有公共点的概率是多少?
图,
$" )*’ * / ( 机性 ! 所以 ; &
. ) * " * !! 0
而针与平行线相交的充要条件是’ * GB 所 5 6" ( "
G / )*’ * B 5 6" ( " 以 8&
. ) * " * !! 0
* " # # $ 年第 % #期 ! !! !!!!
图! )!!!! 图 ! !!!!!! 图 ! ( 分析 ! 如果先在圆周上固定弦的一个端点 :"
26’
作与此方向垂直的圆的 !! 如果先固定弦 的 方 向 " 直径 8 " 设 " 分别是半径 由弦长 9 =? 4 8" 4 9 的中点 " 所求概率是线段 = 与弦心 距 的 关 系 可 得 " ? 与直径 为 !# 如图 ! $ 8 9 的长之比 " ! ! ( ! 为半径作圆 " 如果以 4 为圆心 " 则当且仅当弦 ( 的中点在该 小 圆内 时 " 弦长 大 于+ 此 时所 求概 率 为 -" 为 !# 如图 ! $ 两圆的面积之比 " ( ! " 上述 每 种 解 法 都 是 合 情 合 理 的 " 和几何概型的 本质也都不冲 突 " 但怎么会产生了三种不同的结果 呢? 实际上 " ’ 任 取 一 条 弦 (这 个 说 法 不 够 精 确 ! 对它 可以有不 同 的理 解方 法 & 解法 一 是任 取两 点 # 弦的端 解法二是任取一 点和 一 个方 向来 决 定 点 $来决定弦 " 弦" 解法三 是 任取 弦的 中 点来 决定 弦 " 因此它们是三 个不同的随机试验 ! 巩 固 练 习 则B !! 5 6 A B # 为任意角 " #"C # ( !的概率为 !! ! (!一只小蚂蚁在边长分别 为 -" "" * 的 三 角形 的 边上爬行 " 那么任意时刻该小蚂蚁距离三角形三个 顶点的距离都大于 ! 的概率是多少? 如图! -! -" 3 为半圆圆 弧上的任一 点 " I 为3 在直 径8 分别求在 9 上 的 射 影" 下列条件下 8 的长度不超 3 过半径 4 8 的概率 ! 图! # $ 在线段 上的每一点处的可能性相等 ) ! I 8 9 # $ ( 3 在半圆圆弧上的每一点处的可能性相等 ! " 参考答案见第 " #页#
浅谈古典概型与几何概型
![浅谈古典概型与几何概型](https://img.taocdn.com/s3/m/4c21b344dd88d0d232d46a9e.png)
浅谈古典概型与几何概型在一种概率模型下,如果随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。
例如:掷一次硬币的实验,只可能出现正面或反面,由于硬币的对称性,总认为出现正面或反面的可能性是相同的。
又如对有限件外形相同的产品进行抽样检验,也属于这个模型。
这种模型称之为古典概型,它是概率论中最直观和最简单的模型。
因此一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型。
相应地,如果每个事件发生的概率只与构成该事件区域的长(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability),简称为几何概型。
几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关。
具有这种性质的随机试验(掷点),称为几何概型。
关于几何概型的随机事件“ 向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G 的度量之比,即P=g的测度/G的测度。
古典概型讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。
若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。
然而当随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。
浅谈几何概型在高考中的应用
![浅谈几何概型在高考中的应用](https://img.taocdn.com/s3/m/a7a53d036f1aff00bfd51e8a.png)
浅谈几何概型在高考中的应用作者:来源:《高中生学习·高二版》2017年第01期几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.古典概型与几何概型在某种意义上说又是相同的,因为它们的数学本质是一样的,属于同样的数学模型. 我们可以化无限为有限,化抽象为具体,从而化几何概型为古典概型加以解决. 几何概型在近几年的高考中出现的频率逐步加大,下面结合几个实例分析说明几何概型在高考中的应用.长度问题例1 在区间[-1,1]上随机取一个数[x],则[cosπx2]的值介于0到[12]之间的概率为()A. [13]B. [2π]C. [12]D. [23]分析本题要求 [cosπx2]的值介于0到[12]之间的概率,实质上是求[x]落在区间[-1,1]上的概率,利用区间长度比来求所求概率.解在区间[-1,1]上随机取一个数[x],即[x∈[-1,1]]时,要使[cosπx2]的值介于0到[12]之间,需使[-π2≤πx2≤-π3],或[π3≤πx2≤π2],即[-1≤x≤-23],或[23≤x≤1],其区间长度为[23].而总的区间长度为2.由几何概型知,[cosπx2]的值介于0到[12]之间的概率为[232=13].答案 A点评本题研究的基本事件构成的区域为长度.因此所求概率[P=构成事件A的区域长度试验的全部结果所构成的区域长度.]面积问题例2 由不等式组[x≤0,y≥0,y-x-2≤0]确定的平面区域记为[Ω1],由不等式组[x+y≤1,x+y≥-2]确定的平面区域记为[Ω2],在[Ω1]中随机取一点,则该点恰好在[Ω2]内的概率为()A. [18]B. [14]C. [34]D. [78]分析本题实质上也属于几何概型求概率问题,所求概率等于区域([四边形OBCD])的面积除以总([△ABO])的面积.解根据题意画出不等式组确定的区域如下图.故所求概率为[P=S四边形OBCDS三角形ABO=742=78].答案 D例3 甲、乙两人相约见面,并约定第一人到达后,等15分钟不见第二人来就可以离去. 假设他们都在10点至10点半的任一时间来到见面地点,则两人能见面的概率为 .A. 37.5%B. 50%C. 62.5%D. 75%分析本题先根据已知条件可以理解为两人约定是0~30分钟内见面,先来者只等15分钟就不等,实质上是几何概型,利用面积比来求所求概率.解設甲、乙两人在0~30分钟内到达的时刻分别记为[x,y],则有当[x-y≤15]时,两人可以见面,构造模型如下图.故所求概率为[P=S阴影部分S四边形OABC=675900=34=75%].答案 D点评用几何概型解题,主要运用转化、数形结合等重要的数学思想方法.本题研究的基本事件构成的区域为面积.因此所求概率[P=构成事件A的区域面积试验的全部结果所构成的区域面积].体积问题例4 已知正三棱锥[S-ABC]的底面边长为[a],高为[h],在正三棱锥内取点[M],则点[M]到底面的距离小于[h2]的概率为 .解析如图,分别取[SA,SB,SC]的中点[A1,B1,C1],分别连接[A1B1,B1C1,C1A1],则当点[M]位于平面[ABC]和平面[A1B1C1]之间时,点[M]到底面的距离小于[h2].设[△ABC]的面积为[S],由[△A1B1C1~△ABC]且相似比为[12]得,[△A1B1C1]的面积为[S4.]由题意易知,区域[D](三棱锥[S-ABC])的体积为[13Sh,]区域[d](三棱台[A1B1C1-ABC])的体积为[13Sh-13∙S4∙h2=][724Sh.]记“点[M]到底面的距离小于[h2]”为事件[A],根据几何概型的概率计算公式得,[PA=VdVD=78.]答案 [78]点评如果试验的全部结果所构成的区域可用体积来度量,那么就要结合问题的背景,选择好观察角度,准确找出构成事件[A]的区域体积及试验的全部结果构成的区域体积,再根据几何概型的概率计算公式计算即可.角度问题例5 在等腰[Rt△ABC]中,过直角顶点[C]在[∠ACB]的内部任意作一条射线[CM]交[AB]边于点[M],则[AM小于AC]的概率为__________.分析在[∠ACB]内的射线[CM]是均匀分布的,所以射线[CM]在[∠ACB]内的任何位置都是等可能的. 因为[AM]的大小与点[M]在[AB]上的位置有关,为了确保[AM解如图所示,在[AB]上截取[AC=AC],连接[CC],则[∠ACC=∠ACC].在[△CAC]中,[∠A=45°,][∴∠ACC=67.5°.]故所求的概率[P=∠ACC∠ACB=67.5°90°=34.]点评解答本题时,要特别注意“在[∠ACB]的内部任意作一条射线[CM交AB]边于点[M]”这句话,由此确定“测度”是角度. 如果把这句话改为“在线段[AB]上找一点[M]”,则问题的情境立刻发生改变,相应的“测度”变为线段的长度.。
浅述几何概型
![浅述几何概型](https://img.taocdn.com/s3/m/3306b5e3162ded630b1c59eef8c75fbfc77d949b.png)
课程篇一、几何概型的含义及计算公式如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称为几何概型。
在几何概型中,事件A 的概率计算公式为:P (A )=构成事件A 的区域长度(面积或体积)试验总区域长度(面积或体积)对几何概型的认识和理解要不同于古典概型。
因为在古典概型中,概率P =0的事件一定是不可能事件,而对几何概型而言,即使某事件的概率P =0,该事件仍有可能发生(在[0,1]中任选一数,该数为1的概率为0,显然,这并不是不可能事件。
);同样的对几何概型而言,概率P=1的事件也不一定就是必然事件。
表面上看这是由于基本事件的个数与区域测度的计算方法不同所致,其实根本原因就是离散与连续的不同。
二、几何概型的常见类型1.“长度”化类型例1.若一根绳长为3米,在任意位置剪断,则剪得的两段绳长都不少于1米的概率是多少?解:记剪得两段绳子的长都不小于1米为事件为A ,如图1,把绳子三等分,于是当剪断位置处在第二段(中间一段)时,事件A 发生,由于中间一段的长度等于绳长的13,所以事件A 发生的概率为13。
P (A )=第二段长度1米总长度3米=131米1米1米第一段第二段第三段图12.“面积”化类型例2.两人相约在8∶00至9∶00之间会面,并且先到者必须等候另一人20分钟方可离去。
如果两人出发是各自独立的,在8∶00至9∶00各时刻见面的可能性相等,求两人在约定的时间内会面的概率。
解:设两人分别在8:00之后的x 分钟和y 分钟到达见面地点,记A 为两人能成功会面这一事件。
要使两人能在约定的时间范围内会面,当且仅当|x-y |≤20分钟。
如图2正方形区域ω={(x ,y )|0≤x ≤60,0≤y ≤60}表示两人到达会面地点的所有可能结果形成的区域。
阴影部分的范围表示两人能在约定的时间内会面的结果形成的区域,所以两人在约定的时间内相遇的概率是:P (A )=602-402602=59203.“体积”化类型例3.在棱长为3的正方体ABCD-A 1B 1C 1D 1内任取一点P ,则点P 到正方体各个面的距离都不小于1的概率为多少?解:如图3所示,所有基本事件组成的区域就是正方体ABCD-A 1B 1C 1D 1组成的封闭几何体,则以正方体的中心为中心,棱长为1的小正方体围成的区域符合题中的要求,从而其概率P =127。
第5讲 几何概型
![第5讲 几何概型](https://img.taocdn.com/s3/m/7ed1f07a770bf78a64295472.png)
第5讲 几何概型一、知识梳理 1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)常用结论在几何概型中,如果A 是确定事件,(1)若A 是不可能事件,则P (A )=0肯定成立;如果随机事件所在的区域是一个单点,由于单点的长度、面积和体积都是0,则它出现的概率为0,显然它不是不可能事件,因此由P (A )=0不能推出A 是不可能事件.(2)若A 是必然事件,则P (A )=1肯定成立;如果一个随机事件所在的区域是从全部区域中扣除一个单点,则它出现的概率是1,但它不是必然事件,因此由P (A )=1不能推出A 是必然事件.二、教材衍化1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A.因为P (A )=38,P (B )=14,P (C )=13,P (D )=13,所以P (A )>P (C )=P (D )>P (B ).2.在线段[0,3]上任投一点,则此点坐标小于1的概率为________.解析:坐标小于1的区间为[0,1),长度为1,[0,3]的区间长度为3,故所求概率为13.答案:133.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率为________.解析:如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4.答案:1-π4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)几何概型中,每一个基本事件都是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(2)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) (3)随机模拟方法是以事件发生的频率估计概率.( ) (4)与面积有关的几何概型的概率与几何图形的形状有关.( ) 答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K选用的几何测度不准确导致出错.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.解析:由|x |≤m ,得-m ≤x ≤m .当0<m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m -(-2)6=56,解得m =3.答案:3与长度(角度)有关的几何概型(师生共研)记函数f (x )=6+x -x 2的定义域为D ,在区间[-4,5]上随机取一个数x ,则x ∈D的概率是________.【解析】 由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率为3-(-2)5-(-4)=59. 【答案】 59与长度、角度有关的几何概型的求法解答关于长度、角度的几何概型问题,只要将所有基本事件及事件A 包含的基本事件转化为相应长度或角度,即可利用几何概型的概率计算公式求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).1.从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x +1+1有零点的概率是( )A.14 B .13C.12D .23解析:选A.令t =2x,函数有零点就等价于方程t 2-2at +1=0有正根,进而可得⎩⎨⎧Δ≥0t 1+t 2>0t 1t 2>0⇒a ≥1,又a ∈[-2,2],所以函数有零点的实数a 应满足a ∈[1,2],故P=14,选A.2.如图,扇形AOB 的圆心角为120°,点P 在弦AB 上,且AP =13AB ,延长OP 交弧AB 于点C ,现向扇形AOB 内投一点,则该点落在扇形AOC 内的概率为________.解析:设OA =3,则AB =33,所以AP =3,由余弦定理可求得OP =3,∠AOP =30°,所以扇形AOC 的面积为3π4,扇形AOB 的面积为3π,从而所求概率为3π43π=14.答案:14与面积有关的几何概型(多维探究) 角度一 与平面图形面积有关的几何概型(1)(2020·黑龙江齐齐哈尔一模)随着计算机的出现,图标被赋予了新的含义,有了新的用武之地.在计算机应用领域,图标成了具有明确指代含义的计算机图形.如图所示的图标是一种被称之为“黑白太阳”的图标,该图标共分为三部分.第一部分为外部的八个全等的矩形,每一个矩形的长为3,宽为1;第二部分为圆环部分,大圆半径为3,小圆半径为2;第三部分为圆环内部的白色区域.在整个“黑白太阳”图标中随机取一点,此点取自图标第三部分的概率为( )A.π24+9π B .4π24+9πC.π18+9πD .4π18+9π(2)(2020·辽宁五校联考)古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线x =2交抛物线y 2=4x 于A ,B 两点.点A ,B 在y 轴上的射影分别为D ,C .从长方形ABCD 中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为( )A.12 B .13C.23D .25【解析】 (1)图标第一部分的面积为8×3×1=24,图标第二部分的面积为π×(32-22)=5π,图标第三部分的面积为π×22=4π,故此点取自图标第三部分的概率为4π24+9π.故选B.(2)在抛物线y 2=4x 中,取x =2,可得y =±22,所以S 矩形ABCD =82,由阿基米德理论可得弓形面积为43×12×42×2=1623,则阴影部分的面积为82-1623=823.由概率比为面积比可得,点位于阴影部分的概率为82382=13.故选B.【答案】 (1)B (2)B角度二 与线性规划交汇命题的几何概型(2020·陕西咸阳模拟)已知集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,若在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的概率为( )A.π3 B .π12C.π24D .3π32【解析】 因为集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,2x -y -3≤0表示的平面区域为Ω,所以作出平面区域Ω为如图所示的△AOB .直线x +y =0与直线x -y =0垂直,故∠AOB =π2.联立⎩⎪⎨⎪⎧x +y =0,2x -y -3=0,得点A (1,-1),联立⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,得点B (3,3).OA =12+(-1)2=2,OB =32+32=32,在区域Ω内随机取一个点,则此点到坐标原点的距离不大于1的区域是如图所示的半径为1的14圆,即扇形OCD ,所以由几何概型得点到坐标原点的距离不大于1的概率P =S 扇形OCDS △AOB =14×π×1212×2×32=π12.故选B. 【答案】 B角度三 与定积分交汇命题的几何概型(2020·洛阳第一次联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2 B .4π3C.2π2 D .2π3【解析】 由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2⎠⎛0πsin x d x =-2cos x ⎪⎪⎪π0=4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3,故选B.【答案】 B角度四 与随机模拟相关的几何概型从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n m B .2n mC.4m nD .2m n【解析】 设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =π41=m n ,所以π=4mn,故选C.【答案】 C求与面积有关的几何概型的概率的方法(1)确定所求事件构成的区域图形,判断是否为几何概型;(2)分别求出Ω和所求事件对应的区域面积,用几何概型的概率计算公式求解.1.(2020·江西八校联考)小华爱好玩飞镖,现有如图所示的两个边长都为2的正方形ABCD 和OPQR 构成的标靶图形,如果O 点正好是正方形ABCD 的中心,而正方形OPQR 可以绕点O 旋转,则小华随机向标靶投飞镖射中阴影部分的概率是( )A.13 B .14C.19D .17解析:选D.如图,连接OB ,OA ,可得△OBM 与△OAN 全等,所以S 四边形MONB =S △AOB=12×2×1=1,即正方形ABCD 和OPQR 重叠的面积为1.又正方形ABCD 和OPQR 构成的标靶图形面积为4+4-1=7,故小华随机向标靶投飞镖射中阴影部分的概率是17,故选D.2.(一题多解)如图,线段MN 是半径为2的圆O 的一条弦,且MN 的长为2,在圆O 内,将线段MN 绕点N 按逆时针方向转动,使点M 移动到圆O 上的新位置,继续将新线段NM 绕新点M 按逆时针方向转动,使点N 移动到圆O 上的新位置,依此继续转动,…点M 的轨迹所围成的区域是图中阴影部分.若在圆O 内随机取一点,则该点取自阴影部分的概率为( )A .4π-6 3B .1-332πC .π-332D .332π解析:选B.法一:依题意,得阴影部分的面积S =6×[16(π×22)-12×2×2×32]=4π-63,所求概率P =4π-63π·22=1-332π,故选B.法二:依题意得阴影部分的面积S =π×22-6×12×2×2×32=4π-63,所求概率P=4π-63π·22=1-332π,故选B.与体积有关的几何概型(师生共研)已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC <12V S ABC 的概率是 ( )A.34 B .78C.12D .14【解析】 由题意知,当点P 在三棱锥的中截面以下时,满足V P ABC <12V S ABC ,故使得V P ABC <12V S ABC 的概率:P =大三棱锥的体积-小三棱锥的体积大三棱锥的体积=78.【答案】 B与体积有关的几何概型的求法对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.1.(2020·山西太原五中模拟)已知四棱锥P -ABCD 的所有顶点都在球O 的球面上,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB =2.现在球O 的内部任取一点,则该点取自四棱锥P -ABCD 内部的概率为________.解析:把四棱锥P -ABCD 扩展为正方体,则正方体的体对角线的长是外接球的直径R ,即23=2R ,R =3,则四棱锥的体积为13×2×2×2=83,球的体积为43×π(3)3=43π,则该点取自四棱锥P -ABCD内部的概率P =8343π=239π.答案:239π2.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为________.解析:因为V FAMCD=13×S四边形AMCD×DF=14a3,V ADFBCE=12a3,所以它飞入几何体F-AMCD内的概率为14a312a3=12.答案:12[基础题组练]1.(2020·江西九江模拟)星期一,小张下班后坐公交车回家,公交车有1,10两路.每路车都是间隔10分钟一趟,1路车到站后,过4分钟10路车到站.不计停车时间,则小张坐1路车回家的概率是()A.12B.13C.25D.35解析:选D.由题意可知小张下班后坐1路公交车回家的时间段是在10路车到站与1路车到站之间,共6分钟.设“小张坐1路车回家”为事件A,则P(A)=610=35.故选D.2.(2020·河南洛阳二模)在边长为2的正三角形内部随机取一个点,则该点到三角形3个顶点的距离都不小于1的概率为()A.1-36B.1-3π6C.1-33D.1-3π3解析:选B.若点P到三个顶点的距离都不小于1,则分别以A,B,C为圆心作半径为1的圆,则P的位置位于阴影部分,如图所示.在三角形内部的三个扇形的面积之和为12×3×π3×12=π2,△ABC的面积S=12×22×sin 60°=3,则阴影部分的面积S=3-π2,则对应的概率P=3-π23=1-3π6.故选B.3.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4B .π12C.π4D .1-π12解析:选A.鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π,所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.4.(2020·河北衡水联考)在如图所示的几何图形中,四边形ABCD 为菱形,C 为EF 的中点,EC =CF =3,BE =DF =4,BE ⊥EF ,DF ⊥EF .若在几何图形中任取一点,则该点取自Rt △BCE 的概率为( )A.19 B .18C.17D .16解析:选D.因为EC =3,BE =4,BE ⊥EC ,所以BC =5.又由题可知BD =EF =6,AC =2BE =8,所以S △BCE =S △DFC =12×3×4=6,S四边形ABCD =12AC ·BD =24.由几何概型概率公式可得,所求概率P =624+6+6=16,即该点取自Rt △BCE 的概率为16.故选D.5.(2020·湖南宁乡一中、攸县一中联考)将一线段AB 分为两线段AC ,CB ,使得其中较长的一段AC 是全长AB 与另一段CB 的比例中项,即满足AC AB =BCAC =5-12≈0.618,后人把这个数称为黄金分割,把点C 称为线段AB 的黄金分割点.图中在△ABC 中,若点P ,Q 为线段BC 的两个黄金分割点,在△ABC 内任取一点M ,则点M 落在△APQ 内的概率为( )A.5-12 B .5-2 C.5-14D .5-22解析:选B.所求概率为S △APQ S △ABC =PQ BC =BQ -BP BC =5-12BC -⎝⎛⎭⎪⎫1-5-12BC BC =5-2.故选B.6.如图所示,黑色部分和白色部分图形是由曲线y =1x ,y =-1x ,y =x ,y =-x 及圆构成的.在圆内随机取一点,则此点取自黑色部分的概率是________.解析:根据图象的对称性知,黑色部分图形的面积为圆面积的四分之一,在圆内随机取一点,则此点取自黑色部分的概率是14.答案:147.已知平面区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1},现向该区域内任意掷点,则该点落在曲线y =sin 2x 下方的概率是________.解析:y =sin 2x =12-12cos 2x ,所以⎠⎛0π⎝⎛⎭⎫12-12cos 2x d x =⎝⎛⎭⎫12x -14sin 2x ⎪⎪⎪π0=π2,区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1}的面积为π,所以向区域Ω内任意掷点,该点落在曲线y =sin 2x 下方的概率是π2π=12.答案:128.已知O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,则点P到点C的距离大于14的概率为________.解析:因为O(0,0),A(2,1),B(1,-2),C⎝⎛⎭⎫35,-15,动点P(x,y)满足0≤OP→·OA→≤2且0≤OP→·OB→≤2,所以⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2.如图,不等式组⎩⎪⎨⎪⎧0≤2x+y≤2,0≤x-2y≤2对应的平面区域为正方形OEFG及其内部,|CP|>14对应的平面区域为阴影部分.由⎩⎪⎨⎪⎧x-2y=0,2x+y=2解得⎩⎨⎧x=45,y=25,即E⎝⎛⎭⎫45,25,所以|OE|=⎝⎛⎭⎫452+⎝⎛⎭⎫252=255,所以正方形OEFG的面积为45,则阴影部分的面积为45-π16,所以根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.答案:1-5π649.如图所示,圆O的方程为x2+y2=4.(1)已知点A 的坐标为(2,0),B 为圆周上任意一点,求AB ︵的长度小于π的概率; (2)若N (x ,y )为圆O 内任意一点,求点N 到原点的距离大于2的概率. 解:(1)圆O 的周长为4π,所以AB ︵的长度小于π的概率为2π4π=12.(2)记事件M 为N 到原点的距离大于2,则Ω(M )={(x ,y )|x 2+y 2>2},Ω={(x ,y )|x 2+y 2≤4},所以P (M )=4π-2π4π=12.10.已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.解:(1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .所有基本事件为(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1),共12个基本事件.其中A ={(0,0),(2,1)},包含2个基本事件.则P (A )=212=16,即向量a ∥b 的概率为16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2y .基本事件为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1所表示的区域, B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎪⎨⎪⎧-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,如图,区域B 为图中的阴影部分去掉直线x -2y =0上的点, 所以,P (B )=12×⎝⎛⎭⎫12+32×23×2=13,即向量a ,b 的夹角是钝角的概率是13.[综合题组练]1.(2020·安徽合肥模拟)已知圆C :x 2+y 2=4与y 轴负半轴交于点M ,圆C 与直线l :x -y +1=0相交于A ,B 两点,那么在圆C 内随机取一点,则该点落在△ABM 内的概率为( )A.378π B .374πC.328πD .324π解析:选A.由图可知,由点到直线距离公式得|OC |=|1|2=22,则|AB |=222-⎝⎛⎭⎫222=14,同理可得|MD |=|0+2+1|2=322,所以S △MAB =12|AB |·|MD |=372,由几何概型知,该点落在△ABM 内的概率为S △MAB S 圆=372π×22=378π,故选A.2.已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( )A.14 B .13C.23D .12解析:选D.以PB ,PC 为邻边作平行四边形PBDC ,则PB →+PC →=PD →,因为PB →+PC →+2 P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12.3.两位同学约定下午5:30~6:00在图书馆见面, 且他们在5:30~6:00之间到达的时刻是等可能的,先到的同学须等待,若15分钟后还未见面便离开,则这两位同学能够见面的概率是________.解析:如图所示,以5:30作为原点O ,建立平面直角坐标系,设两位同学到达的时刻分别为x ,y ,设事件A 表示两位同学能够见面,所构成的区域为A ={(x ,y )||x -y |≤15},即图中阴影部分,根据几何概型概率计算公式得P (A )=30×30-2×12×15×1530×30=34.答案:344.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率为P =2S ′S =2π36π=118.答案:1185.某校举行运动会,其中三级跳远的成绩在8.0米(四舍五入,精确到0.1米)以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6个小组的频数是7.(1)求进入决赛的人数;(2)经过多次测试后发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.解:(1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,所以总人数为70.14=50.由图易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.(2)设甲、乙各跳一次的成绩分别为x ,y 米,则基本事件满足⎩⎪⎨⎪⎧8≤x ≤109.5≤y ≤10.5, 设事件A 为“甲比乙跳得远”,则x >y ,作出可行域如图中阴影部分所示.所以由几何概型得P (A )=12×12×121×2=116,即甲比乙跳得远的概率为116.6.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)因为函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-1; 若a =2,则b =-1,1; 若a =3,则b =-1,1.所以事件包含基本事件的个数是1+2+2=5,因为事件“分别从集合P 和Q 中随机取一个数作为a 和b ”的个数是15. 所以所求事件的概率为515=13.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎨⎧(a ,b )⎪⎪⎪⎩⎨⎧⎭⎬⎫a +b -8≤0,a >0,b >0,构成所求事件的区域为如图所示的三角形BOC 部分.由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标C ⎝⎛⎭⎫163,83, 故所求事件的概率P =S △BOC S △AOB =12×8×8312×8×8=13.。
浅谈几何概型的类型及其解法
![浅谈几何概型的类型及其解法](https://img.taocdn.com/s3/m/c374b37648d7c1c708a14525.png)
则 两 人 能 够 会 面 的 条 件 是
二、 与 角有 关 ቤተ መጻሕፍቲ ባይዱ几 何 概 型
若 一 次 试 验 中所 有 可 能结 果 和 某 个 事 件 A包 含 的结 果 ( 基 本事件 ) 都 对应一个角 , 那 么需 要 求 出各 自相 应 的 角 度 . 然 后 运
『 x _ y l ≤1 5 。在平 面上建立 直
角坐标系如图所示 : 由( x . y ) 的
所有可 能结果 是边长 为 6 0的
正 方 形 .而可 能会 面 的时 间 由
用 几 何 概 型 的计 算 公 式 即 可求 出事 件 A 发生 的概 率 例2 : 如 图 l所 示 . 在 直 角 坐 标 系 内 ,射 线 O T落 在 6 0 。 的 终 边
车站 的任 一 时 刻 是 等 可 能 的 乘客候车不超过 3 m i n的 概 率 。 解 : 设 A = “ 候车时间不超过 3 m i n ” 。
域 可 以 用 面积 表 示 , 然 后 利用 几 何 概 型 的 公 式 求解 。 定 先 到 者 应等 候 另 一 个 人 1 5分 钟 , 过 时 即可 离 去 。求 两 人 能会
时 间不 超 3 mi n. 必 有 卜3 ≤x ≤t , 所 以
P ( A ) : 盛皇 垒 匿堡 堕 全部 结果 构成 的 区域 长 度 一 一 ) : 0 . 6
会面的时间由 l —y l ≤1 5所对应 的图 中阴影部分表示。由于每
人到达会面地点的时刻都是随机的 . 所 正 方 形 内 每 个 点 都 是 等
可 能 被 取 到 的( 即 基本 事件 等 可 能 发 生) 。所 在 两 人 能 会 面 只 与 阴 影 部 分 的 面积 有 关 , 这就转化为面积型的几何概率问题。 解 :以 x和 Y轴 分 别 表 示
高中数学_几何概型
![高中数学_几何概型](https://img.taocdn.com/s3/m/4627f86aa517866fb84ae45c3b3567ec102ddc7b.png)
几何概型知识图谱几何概型知识精讲一.几何概型1.定义:如果每个事件发生的概率只与构成该事件的区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型几何概型,可以将每个基本事件看成从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会一样;这里区域可以是线段、平面图形、立体图形等.2.特点:(1)结果的无限性,即在一次试验中,所有可能出现的结果(基本事件)的个数可以是无限的,且全体结果可用一个有度量的几何区域来表示;(2)等可能性,每个基本事件的发生的可能性是均等的.二.几何概型的计算公式几何概型中,事件A的概率定义为:()AP A=构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三点剖析一.方法点拨1.几何概型与古典概型的联系与区别在古典概型及几何概型中,基本事件的发生都是等可能的;在古典概型中基本事件的个数是有限的,而在几何概型中基本事件的个数是无限的.2.几何概型求解的一般步骤(1)首先要判断几何概型,尤其是判断等可能性,这方面比古典概型可能更难于判断;(2)把基本事件转化为与之对应的区域;(3)计算基本事件空间与事件A所含的基本事件对应的区域的几何度量(长度、面积、体积等);(4)利用公式代入求解.3.几何概型的应用要把实际问题转化成几何概型,精读问题,注意适当选择观察角度,抓住关键词,把问题转化为数学问题,几何概型问题解决的关键是构造出事件对应的几何图形,利用几何图形的几何度量来求随机事件的概率.注意分辨清楚属于一维、二维或三维问题.尤其是二维问题一直是考试的重点.一维情形例题1、将一条5米长的绳子随机地切断成两条,事件T表示所切两段绳子都不短于1米的事件,则事件T发生的概率为()A.1 2B.15C.25D.35例题2、在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()A.1 6B.13C.23D.45例题3、在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为_________.例题4、如图,在三角形AOB中,已知∠AOB=60°,OA=2,OB=5,在线段OB上任取一点C,求△AOC为钝角三角形的概率.()A.0.6B.0.4C.0.2D.0.1随练1、某公交车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,那么一个乘客候车时间不超过6分钟的概率为____.随练2、平面上有一组平行线,且相邻平行线间的距离为3cm,把一枚半径为1cm的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是()A.1 4B.13C.12D.23随练3、在长为12cm的线段AB上任取一点C.现做一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积小于32cm2的概率为()A.1 6B.13C.23D.45二维情形例题1、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.1-2πB.12-1πC.2πD.1π例题2、二次函数f(x)=ax2+2bx+1(a≠0).(1)若a∈{-2,-1,2,3},b∈{0,1,2},求函数f(x)在(-1,0)内有且只有一个零点的概率;(2)若a∈(0,1),b∈(-1,1),求函数f(x)在(-∞,-1)上为减函数的概率.例题3、设有-4×4正方形网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上;假设每次投掷都落在最大的正方形内或与最大的正方形有公共点.求:(1)硬币落下后完全在最大的正方形内的概率;(2)硬币落下后与网格线没有公共点的概率.例题4、小钟和小薛相约周末去爬尖刀山,他们约定周日早上8点至9点之间(假定他们在这一时间段内任一时刻等可能的到达)在华岩寺正大门前集中前往,则他们中先到者等待的时间不超过15分钟的概率是____(用数字作答).随练1、分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.7 10B.310C.35D.25随练2、设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于1的概率为____.随练3、小明的爸爸下班驾车经过小明学校门口,时间是下午6:00到6:30,小明放学后到学校门口的候车点候车,能乘上公交车的时间为5:50到6:10,如果小明的爸爸到学校门口时,小明还没乘上车,就正好坐他爸爸的车回家,问小明能乘到他爸的车的概率.三维情形例题1、在500mL的水中有一个细菌,现从中随机取出2mL水样放到显微镜下观察,则发现这个细菌的概率是()A.0.004B.0.002C.0.04D.0.02例题2、在棱长为2的正方体ABCD-A 1B 1C 1D 1中,点O 在底面ABCD 中心,在正方体ABCD-A 1B 1C 1D 1内随机取一点P 则点P 与点O 距离大于1的概率为()A.12π B.1-12π C.6π D.1-6π随练1、1升水中有2只微生物,任取0.1升水化验,含有微生物的概率是()A.0.01 B.0.19 C.0.1 D.0.2随练2、一只小蜜蜂在一个棱长为30的正方体玻璃容器内随机飞行.若蜜蜂在飞行过程中与正方体玻璃容器6个表面中至少有一个的距离不大于10,则就有可能撞到玻璃上而不安全;若始终保持与正方体玻璃容器6个表面的距离均大于10,则飞行是安全的,假设蜜蜂在正方体玻璃容器内飞行到每一位置可能性相同,那么蜜蜂飞行是安全的概率是()A.18 B.116 C.127 D.38拓展1、在区间[﹣4,4]上随机地抽取一个实数x ,若x 满足x 2≤m 的概率为34,则实数m 的值为________2、一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.3、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S 的概率是()A.13 B.12 C.34 D.144、在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于362cm 与281cm 之间的概率为()A.56 B.12 C.13 D.165、已知圆O :x 2+y 2=4(O 为坐标原点),点P (1,0),现向圆O 内随机投一点A ,则点P 到直线OA 的距离小于12的概率为()A.23 B.12 C.13 D.166、在区间[0,1]上随机取两个数m ,n ,求关于x 的一元二次方程x 2n 有实根的概率.7、假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A.425 B.825 C.1625 D.24258、已知函数:f (x )=x 2+bx+c ,其中:0≤b≤4,0≤c≤4,记函数f (x )满足条件:(2)12(1)3f f ≤⎧⎨-≤⎩的事件为A ,则事件A 发生的概率为()A.58 B.516 C.38 D.129在棱长为a的正方体-A1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为()A.22B.22C.16D.16π。
几何概型 讲义
![几何概型 讲义](https://img.taocdn.com/s3/m/a62a5b0571fe910ef12df8cf.png)
几 何 概 型 的 常 见 题 型几何概型是高中新课改后增加的一种概率类型,也是高考的一个新增热点,但由于试题设计的背景不同,试题所呈现的方式也不同,此试卷通过对几何概型试题的归纳整理,以便更好地理解和掌握此类问题.一.几何概型的定义1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.特点:(1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个; (2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P =说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量.4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的.(2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的;②两种概型的概率计算公式的含义不同.二.常见题型1.与长度有关的几何概型例1.(2009山东卷·文理)在区间]1,1[-上随机取一个数x ,2cos xπ的值介于0到21之间的概率为( ).A.31 B.π2C.21D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件. 解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos2xπ的值介于0到21之间, 需使223xπππ-≤≤-或322xπππ≤≤∴213x -≤≤-或213x ≤≤,区间长度为32,由几何概型知使cos 2x π的值介于0到21之间的概率为31232===度所有结果构成的区间长符合条件的区间长度P . 故选A.练1. 取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是.A.21 B.31C.41D.不确定 3. 两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率是________.2. 在等腰Rt △ABC 中,在斜边AB 上任取一点M ,求AM 的长小于AC 的长的概率.4. 平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,硬币不与任一条平行线相碰的概率.5. 在半径为1的圆周上,有一定点A ,以A 为端点任连一弦,另一端点在圆周上等可能的选取,求弦长超过√3 的概率。
几何概型在生活中的应用实例论文
![几何概型在生活中的应用实例论文](https://img.taocdn.com/s3/m/10f0f6f080c758f5f61fb7360b4c2e3f57272511.png)
几何概型在生活中的应用实例论文一、前言近年来,数学模型和数学建模这两个术语使用的频率越来越高。
但是,到底什么是数学模型和数学建模呢?可能许多人还不是很清楚。
所谓数学建模就是利用数学方法解决实际问题的一种实践。
即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。
当一个数学结构作为某种形式语言(即包括常用符号、函数符号、谓词符号等符号集合)解释时,这个数学结构就称为数学模型。
换言之,数学模型可以描述为:对于现实世界的一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具得到的一个数学结构。
也就是说,数学模型是通过抽象简化的过程,用数学语言对实际现象的一个近似的刻画,从而便于人们更深刻地认识所研究的对象。
数学模型模仿了一个现实系统,是对现实对象的信息加以分析、提炼、归纳、翻译的结果。
它用精确的语言表达了对象的内在特性,是利用函数、方程等变量描述方法以及数学概念创立的模型。
但建立数学模型并非以模型为目标,而是为了解决实际问题。
当我们建立一个数学模型时,我们从现实世界进入了充满数学概念的抽象世界。
在数学世界内,我们用数学方法对数学模型进行推理、演绎、求解,并借助于计算机处理这个模型,得到数学上的解答。
最后,我们再回到现实世界,将模型的数学解“翻译”成现实问题的实际“解答”,如给出现实对象的分析、预报、决策、控制的结果。
这些结果还必须经实际的检验,即用现实对象的信息检验得到的解答,确认结果的正确性、我们始于现实世界又终结于现实世界,数学模型是一道理想的桥梁。
在实际应用中,数学模型可按不同方式分类。
若按建立模型的数学方法分类,则它可分为几何模型、微分方程模型、图论模型、规划论模型、马氏链模型等。
这些模型彼此之间并非绝对孤立,而是互相渗透,互为工具。
在可用数学建模的方法解决的问题中,有些比较简单,只使用其中的一种模型即可。