福州市华伦中学数学一元一次方程(基础篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)
1.某手机经销商购进甲,乙两种品牌手机共 100 部.
(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?
(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.
从 A,B 两种中任选一题作答:
A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.
B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.
【答案】(1)解:设购进甲种手机部,乙种手机部,
根据题意,得
解得:
元.
答:销商共获利元.
(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,
根据题意,得
解得:
答:求甲,乙两种手机每部的进价分别为:3000元,2000元.
B:乙种手机:部,甲种手机部,
设每部甲种手机的进价为元,每部乙种手机的进价元,
根据题意,得
解得:
答:求甲,乙两种手机每部的进价分别为:2000元,3000元.
【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。

(2)A 根据进价加利润等于甲和乙的售价,列出方程B 先求出甲乙的部数,表示出甲乙的标价,列出关系式,50部甲×甲的标价+10部甲×甲标价的八折+40部乙×乙的标价=利润率乘以成本,即可解出结果。

2.综合题
(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______
A.点处
B.线段之间
C.线段的中点
D.线段之间
(2)当整数 ________时,关于的方程的解是正整数.
【答案】(1)A
(2)或
【解析】【解答】(1)故答案为:A;(2)或
【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.
3.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。

已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?
【答案】(1)解:设原计划租用x辆45座客年
根据题意,得45x+15=60(x-1)
解得x=5
则45x+15=45×5+15=240.
答:这批游客共240人,原计划租5辆45座客车。

(2)解:租45座客车:240÷45≈5.3(辆),
所以需租6辆,租金为220×6=1320(元).
租60座客车:240÷60=4(辆),租念为300×4=1200(元).
答:租用4辆60座客车更合算。

【解析】【分析】(1)设原计划租用x辆45座客车,根据等量关系,列出方程,求出x 的值,进而求出游客的人数,即可;
(2)分别求出租45座的车和60座的车的费用,进行比较,即可.
4.先阅读下列解题过程,然后解答问题⑴、⑵,解方程:。

解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是;
②当3x≤0时,原方程可化为一元一次方程-3x=1,它的解是。

(1)请你根据以上理解,解方程:;
(2)探究:当b为何值时,方程,①无解;②只有一个解;③有两个解。

【答案】(1)解:当x−3≥0时,
原方程可化为一元一次方程为2(x−3)+5=13,
方程的解是x=7;
②当x−3<0时,
原方程可化为一元一次方程为2(3−x)+5=13,
方程的解是x=−1
(2)解:∵|x−2|≥0,
∴当b+1<0,即b<−1时,方程无解;
当b+1=0,即b=−1时,方程只有一个解;
当b+1>0,即b>−1时,方程有两个解
【解析】【分析】(1)当x−3≥0时,得出方程为2(x−3)+5=13,求出方程的解即可;当x−3<0时,得出方程为2(3−x)+5=13,求出方程的解即可;(2)根据绝对值具有非负性得出|x−2|≥0,分别求出b+1<0,b+1=0,b+1>0的值,即可求出答案.
5.已知数轴上A.B两点对应的数分别为−4和2,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A.点B的距离相等,写出点P对应的数;
(2)数轴上是否存在点P,使点P到点A.点B的距离之和为10?若存在,求出x的值;若
不存在,请说明理由;
(3)若点A点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A点B的距离相等?(直接写出结果)
【答案】(1)解:∵A、B两点对应的数分别为−4和2,
∴AB=6,
∵点P到点A. 点B的距离相等,
∴P到点A. 点B的距离为3,
∴点P对应的数是−1
(2)解:存在;
设P表示的数为x,
①当P在AB左侧,PA+PB=10,
−4−x+2−x=10,
解得x=−6,
②当P在AB右侧时,
x−2+x−(−4)=10,
解得:x=4
(3)解:∵点B和点P的速度分别为1、1个长度单位/分,
∴无论运动多少秒,PB始终距离为2,
设运动t分钟后P点到点A. 点B的距离相等,
|−4+2t|+t=2,
解得:t=2
【解析】【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)根据题意可得无论运动多少秒,PB始终距离为2,且P在B的左侧,因此A也必须在A的左侧,才有P点到点A、点B的距离相等,设运动t分钟后P点到点A、点B 的距离相等,表示出AP的长,然后列出方程即可.
6.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.
(1)问甲乙各购书多少本?
(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?
【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,
根据题意得:[20x+25(15﹣x)]×0.95=323,
解得:x=7,
∴15﹣x=8.
答:甲购书7本,乙购书8本
(2)解:(20×7+25×8)×0.85+20=309(元),
323﹣309=14(元).
答:办会员卡比不办会员卡购书共节省14元钱
【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.
7.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:稿费不高于800元的不纳税;稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的
的税;稿费为4000元或高于4000元的应缴纳全部稿费的的税.
试根据上述纳税的计算方法作答:
(1)若王老师获得的稿费为2000元,则应纳税________元,若王老师获得的稿费为5000元,则应纳税________元
(2)若王老师获稿费后纳税280元,求这笔稿费是多少元?
【答案】(1)168
;550
(2)解:因为当稿费为4000元时,纳税=4000×11%=440(元),且280<440,
所以王老师的这笔稿税高于800元,且低于4000元.
设王老师的这笔稿税为x元,根据题意,
14%(x-800)=280
x=2800,
答:王老师的这笔稿税为2800元.
【解析】【解答】解:(1)①∵800<2400<4000,
∴当王老师获得稿费为2000元时,应纳税:(2000-800)×14%=168(元);
②当王老师获得稿费为5000元时,应纳税:5000×11%=550(元);
【分析】(1)根据条件②计算即可;根据条件③计算即可;
(2)设王老师所获得的这笔稿费为元,根据纳税金额,可判断稿费800<x<4000,属于第二种,利用稿费420元,列出方程,求出x值即可.
8.已知a是最大的负整数,b、c满足(b-3)2+|c+4|=0,且a、b、c分别是点A、B、C在数轴上对应的数.
(1)点A表示的数为________,点B表示的数为________,点C表示的数为________;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到点B为5个单位长度?
(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于13,请写出所有点M 对应的数,并写出求解过程.
【答案】(1)-1;3;-4
(2)解:设点P运动t秒时到点B为5个单位长度,分以下两种情况:
①点P在点B左边距离点B5个单位,则有:
2t+5=3-(-4)解得t=1
②点P在点B右边距离点B5个单位,则有:
2t-5=3-(-4)解得t=6
故当点P运动1秒或6秒后,点P到点B为5个单位长度
(3)解:点B与点C之间的任何一点时到A、B、C三点的距离之和都小于13,
因此点M的位置只有以下两种情况,设点M所表示的数为m,则:
①点M在点C左边时,可得:
-4-m-1-m+3-m=13 解得m=-5
②点M在点B右边时,可得:
m+4+m+1+m-3=13,解得m=
故点M对应的数为-5或.
【解析】【解答】解:(1)∵a是最大的负整数∴a=-1
∵(b-3)2≥0,|c+4|≥0,而(b-3)2+|c+4|=0
∴b=3,c=-4
故答案为:-1;3;-4.
【分析】(1)由题目中的条件可直接得出点A对应的数,根据平方与绝对值的非负性可得出B与C对应的数;(2)由点P到点B为5个单位长度,可两种情况,点P在点B左边及点P在点B右边,分别列方程即可求得;(3)分情况讨论,当点M在点C左边及当点M在点B右边,分别列方程可求得;而当点M在点C及点B之间时错误.
9.点A、B在数轴上分别表示数a,b,A、B两点之间的距离表示为。

数轴上A、B 两点之间的距离。

回答下列问题:
(1)数轴上表示-1和-4的两点之间的距离是________;
(2)数轴上表示x和-1的两点A之和B之间的距离是 ________ ,如果=2,那么x 的值是________ ;
(3)若x表示一个有理数,且﹣1<x<3,则|x﹣3|+|x+1|=________ ;
(4)若x表示一个有理数,且|x﹣1|+|x+2|>3,则有理数x的取值范围是________.
【答案】(1)3
(2)2;或
(3)4
(4)x<−2或x>1
【解析】【解答】解:(1) 数轴上表示-1和-4的两点之间的距离是:
( 2 ) 数轴上表示x和-1的两点A之和B之间的距离是:|x−(−1)|=|x+1|;
如果=2,

( 3 )∵−1<x<3,
∴x−3<0,x+1>0,
∴|x−3|+|x+1|=3−x+x+1=4;
( 4 )∵|x−1|+|x+2|>3表示数轴上到−2和1的距离之和大于3的数,
∴x<−2或x>1.
故答案为:(1)3;(2)|x+1|,或;(3)4;(4)x<−2或x>1.
【分析】(1)根据两点间的距离公式即可直接算出答案;
(2)根据两点间的距离公式得出,又=2 ,从而列出方程,根据绝对值的意义去绝对值符号,再求解即可;
(3)根据有理数的加减法法则,当−1<x<3时,x−3<0,x+1>0,进而根据绝对值的意义去掉绝对值符号,再合并同类项即可;
(4)根据两点间的距离公式可知|x−1|+|x+2|>3表示数轴上到−2和1的距离之和大于3的数,根据数轴上所表示的数的特点即可直接得出答案。

10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数;当t=3时,OP=________
(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?
(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时PR相距2个单位长度?
【答案】(1)18
(2)解:设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,∵BC-OC=OB,∴8x-6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P
(3)解:设点R运动x秒时,PR=2.分两种情况:一种情况是当点R在点P的左侧时,
8x=4+6x-2即x=1;另一种情况是当点R在点P的右侧时,8x=4+6x+2即x=3.
【解析】【解答】(1)解:OB=AB-OA=10-6=4,所以数轴上点B表示的数是-4,OP=3×6=18
【分析】(1)先求出OB的长,即得点B表示的数;利用路程=速度×时间,可求出OP的长.
(2)设点R运动x秒时,可得OC=6x,BC=8x,由BC-OC=OB列出方程,求出x的值即可.
(3)设点R运动x秒时,PR=2.分两种情况:①当点R在点P的左侧时,②当点R在点P的右侧时,分别求出x的值即可.
11.已知|a+4|+(b﹣2)2=0,数轴上A、B两点所对应的数分别是a和b
(1)填空:a=________,b=________
(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由
(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ 的中点,当PQ=16时,求MN的长.
【答案】(1)﹣4;2
(2)解:设C点表示的数为x,根据题意得,
①当点C在A、B之间时,有
c+4=2(2﹣c),
解得,c=0;
②当点C在B的右侧时,有
c+4=2(c﹣2),
解得,c=8.
故点C表示的数为0或8
(3)解:设运动的时间为t秒,根据题意得,
2t+3t+AB=16,即2t+3t+6=16,
解得,t=2,
∴运动2秒后,各点表示的数分别为:
P:﹣4﹣2×2=﹣8,Q:2+3×2=8,M:0﹣4×2=﹣8,N:(-8+8)÷2=0,
∴MN=0﹣(﹣8)=8.
【解析】【解答】(1)解:由题意得,a+4=0,b﹣2=0,
解得,a=﹣4,b=2,
故答案为:﹣4;2
【分析】(1)根据“几个非负数和为0,则这几个数都为0”可列方程求解;
(2)由题意分两种情况:点C在A、B之间和点C在B的右侧.可列方程求解;
(3)设运动时间为t秒,根据PQ=16可列关于t的方程求得t,于是可求得运动后的
M、N点表示的数.
12.如图是一种数值转换机的运算程序.
(1)若输入的数x=1,y=-1,则输出的数为________;
若输入的数x=3,y=-5,则输出的数为________;
若输入的数x=n,y=-n,则输出的数为________;
(2)若输入的数x=2,输出的数为20,求输入的数y.
【答案】(1)1;17;n2
(2)解:由图可知:输出数为:,
∵x=2,输出的数为20,
∴=20,
解得:y=±6.
【解析】【解答】解:(1)由图可知:输出数为:,∵x=1,y=-1,
∴==1;
∵x=3,y=-5,
∴==17;
∵x=n,y=-n,
∴==n 2;
故答案为:1,,17,n2.
【分析】(1)由图可知输出数为:,分别将x、y的值代入,计算即可得出答案.(2)由图可知输出数为:,,分别将x、输出的数代入,计算即可求得y值.。

相关文档
最新文档