等分威尔金森功分器的设计

合集下载

等分威尔金森功分器的设计与仿真

等分威尔金森功分器的设计与仿真

摘要摘要本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端口的回波损耗:C11>20dB,频带内的插入损耗:C21<3.1dB,C31<3.1dB,两个输出端口间的隔离度:C23>25dB为设计指标的等分威尔金森功分器。

先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。

优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。

关键词:仿真,威尔金森功分器,ADS,优化ABSTRACTABSTRACTIn this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required.Key words:Simulation Wilkinson Power dividers ADS optimization目录目录第1章引言 (1)1.1 功分器的发展概述 (1)1.2本次设计的主要工作 (3)第2章功分器的技术基础 (4)2.1基本工作原理 (4)2.2 功分器的技术指标 (6)第3章 ADS介绍 (8)3.1 ADS发展概述 (8)3.2 ADS 的仿真设计方法 (9)3.3 ADS的辅助设计功能 (10)3.4 ADS与其他EDA软件和测试设备间的连接 (15)3.5 ADS应用结论 (15)第4章功分器的原理图设计、仿真与优化 (16)4.1等分威尔金森功分器的设计指标 (16)4.2建立工程与设计原理图 (16)4.3基本参数设置 (16)4.4功分器原理图仿真 (19)4.5功分器的电路参数的优化 (26)第5章功分器版图的生成与仿真 (28)5.1功分器版图的生成 (28)5.2功分器版图的仿真 (34)第6章结论 (37)参考文献 (38)致谢 (35)外文资料原文 (36)译文 (44)主要符号表1P ...................................................1端口的输入功率 2P ...................................................2端口的输出功率 3P ...................................................3端口的输出功率 0Z ..................................................输入端口特性阻抗 02Z ..........................................4λ分支微带线的特性阻抗 03Z ..........................................4λ分支微带线的特性阻抗 2R .................................................2端口接的负载电阻 3R .................................................3端口接的负载电阻 2U .....................................................2端口输入电压 3U .....................................................3端口输入电压 2in Z ....................................................2端口输入阻抗 3in Z ....................................................3端口输入阻抗 r P ..........................................................反射功率 i P ..........................................................入射功率 11S .....................................端口2匹配时,端口1的反射系数 21S .........................端口2匹配时,端口1到端口2的正向传输系数 31S .........................端口3匹配时,端口1到端口3的正向传输系数 11C ..........................................................回波损耗 21C ..........................................................插入损耗 31C ..........................................................插入损耗 23C ...........................................................隔离度第1章引言1.1 功分器的发展概述功率分配器是将输入信号功率分成相等或不相等的几路输出的一种多端口的微波网络,广泛应用于雷达、多路中继通信机等大功率器件等微波射频电路中。

威尔金森是怎么设计出威尔金森功分器的?

威尔金森是怎么设计出威尔金森功分器的?

威尔金森是怎么设计出威尔金森功分器的?威尔金森功分器是个好东西,在射频领域里面应用很广泛。

第一次认识它是在教科书上,书上介绍了他的原理,自己也琢磨了很久,也理解了奇偶模分析的方法和隔离电阻的作用。

但是一直想知道威尔金森是怎么设计出来的?我们是否也可以按照一定的思路设计功分器呢?下面就去找这个思路,最终找到的这个思路可以方便的设计各种各样的功分器,俺的同事已经实践了哈,大家看完也可以试验一把。

首先明确一下这个功分器的要求:1.在微波射频领域,能量是非常宝贵的,所以设计的功分器不能够额外损失能量,如果分为两路的话就是每一路损耗3dB,即︱S21︱=︱S31︱=0.7072.各端口均50欧姆匹配,且两个输出口的完全隔离,即︱S11︱=︱S22︱=︱S33︱=︱S32︱=︱S23︱= 0图2根据以上的要求,我们设计一个对称的功分器,这样就可以只考虑一个端口,上面条件的一半就可以了,即︱S21︱=0.707,︱S11︱=︱S22︱=︱S32︱=0。

如图2所示,从中间把这个我们要设计的功分器分开,两边的的电压都是一模一样的,处处都是开路点。

1.由于端口1匹配,所以输入阻抗为50欧姆。

从1端口输入的能量分为对称的两路,那么每一路的阻抗都是100欧姆。

这个功分器第一个任务的就要用开路线左边的部分把端口2的50欧姆变换到100欧姆,且无损耗。

2.根据微波网络的理论,如果我们使用的都是电容,电感,传输线,电阻这些互易原件,那么整个功分器也就是互易的(关于对这个理论的理解后面文章会给出解释)。

即︱S2 1︱=︱S12︱=0.707。

也就是从端口2到端口1的能量为一半,那另外一半呢?又不能反射回去,又不能泄漏到端口3。

所以这个功分器的第二个任务就是要有一个电阻来吸收端口2入射过来的一半能量。

这个需求太抽象了,还要细化分解,下面利用奇偶模的方法来分析一下。

如下图所示,从端口2输入一个电压幅度为1的波,分解为奇偶模式,偶模式就是1端口输入情况下功率分配的逆过程,端口2、3均无反射波,有一半的能量从端口1输出,那么奇模的能量必须都要消耗到电阻上,不能有反射波回来。

威尔金森功分器和t型功分器

威尔金森功分器和t型功分器

Wilkinson(威尔金森))功分器和T型功分器都是常用的功率分配器件,它们的设计目的都是将输入信号等分到两个输出端口,但是它们的结构和工作原理有所不同。

Wilkinson功分器是一种基于差分放大器的功率分配器件,它的输出端口之间有一定的隔离度,并且可以实现任意功率分配。

Wilkinson功分器由一个差分放大器和一个隔离电阻组成,其中隔离电阻用于将差分放大器的两个端口隔离开来,从而避免了信号的相互干扰。

Wilkinson功分器的设计要求差分放大器的带宽足够宽,以保证输出信号的频率响应良好。

T型功分器是一种简单的功率分配器件,它由三个电阻组成,其中两个电阻连接在一起作为输入端口,另一个电阻连接到输出端口。

T型功分器的输出端口之间没有隔离度,因此需要通过其他方式来实现隔离。

T型功分器的设计相对简单,但其带宽较窄,因此适用于低频信号的分配。

总的来说,Wilkinson功分器和T型功分器都有其适用的场景和优缺点。

在选择功率分配器件时,需要根据具体的应用场景和需求来选择最合适的器件。

功分器设计--基本理论

功分器设计--基本理论
Z 2Z0 70.7
并联电阻为 R = 2Z0 = 100
在频率f0传输线长为/4。采用微波电路分析中的机辅设计程序,可算出S参量幅度, 并且绘在图5-40上。
图5-40 等分微带功分器的频响
微带功分器(Wilkinson功分器)设计 9
2.功率不等分
微带型功分器亦可做成功率不等分的,微带图形如图5-41所示,如端口3和2
பைடு நூலகம்
这两种模式。
图5-37 归一化、对称形式的Wilkinson功分器
微带功分器(Wilkinson功分器)设计 5
(1)偶模 对偶模激励,Vg2 = Vg3 = 1V,所以V2 = V3,没有电流流过r/2电阻 或端口1两根传输线入口之间连接处。因此,我们可将图5-37的网络对分,在 这些点具有开路终端,以得出图5-38(a)的电路(/4线的接地边没有示 出)。这时,从端口2看入得到的阻抗为:
而S11=0。注意:当功分器在端口1激励,且负载匹配时,电阻上没有功率损 耗。因此,当输出匹配时,功分器是无损耗的;只有从端口2和3来的反射功 率消耗在那电阻上。
图5-39 用于导出S11的微带功分器分析
微带功分器(Wilkinson功分器)设计 8
设计一个频率为f0、用于50系统阻抗的等分微带功分器,并且绘出回波损耗S11、插 入损耗(S21 = S31)和隔离度(S23 = S32)与频率(从0.5f0到1.5f0)的关系曲线。 解:由图5-36和上述的推导,功分器中的/4传输线应具有的特性阻抗为
图5-41 用微带形式的功率不等分功分器
微带功分器(Wilkinson功分器)设计 10
3. N路功分器或功率合成器 如下图5-42所示,这电路可使所有端口匹配,且使所有端口隔离。 但是,缺点是当N3时,功分器要求电阻交迭。这导致较难以用 平面形式制作。功分器亦可用多级阶梯阻抗变换形式制作,以 拓宽带宽。四节功分器的实际结构表示在图5-43上。

威尔金森是怎么设计出威尔金森功分器的

威尔金森是怎么设计出威尔金森功分器的

威尔金森是怎么设计出威尔金森功分器的威尔金森功分器是一种用于将输入信号分解为功率成分的电路。

它由英国工程师威尔金森于1947年设计,并在1950年的《电子工程师杂志》上发表。

这个电路设计的初衷是为了解决实际电路中功率测量的问题。

威尔金森功分器的设计是基于一种被称为“复制器”的元件。

复制器是一种有两个输入端和两个输出端的电路,其特点是在两个输出端上复制输入信号。

复制器的设计实现了信号的复制,这在威尔金森功分器的设计中起到了关键作用。

威尔金森功分器的电路结构如下:![Wilkinson Power Divider](该电路由一个电源和两个复制器组成。

电源可以是一个射频信号源,而复制器则是用于复制输入信号的元件。

复制器的两个输出端分别连接到两个输出端口,而电源的负极则通过一个阻抗等于输入端口阻抗的电阻连接到两个输出端口。

这个电阻起到了功率匹配的作用。

威尔金森功分器的工作原理如下:1. 当输入信号进入电路时,它会被复制器复制到两个输出端口上。

2. 复制器的输出端口连接到一个电阻,这个电阻起到了功率匹配的作用。

由于电阻的阻值等于输入端口的阻抗,所以输出功率会均匀地分配到两个输出端口上。

3. 由于电阻的存在,两个输出端口之间会形成一个等效的负载电阻。

这个负载电阻可以通过调整电阻的阻值来控制输出功率的分配比例。

4. 两个输出端口上的信号可以通过连接到其他电路或设备上,实现功率的不同处理或测量。

威尔金森功分器的设计思路是基于功率平衡原理。

通过复制器和电阻的组合,可以将输入功率均匀地分配到两个输出端口上,实现功率的分解和处理。

这种设计在实际应用中非常有用,可以用于功率测量、功率分配和功率控制等领域。

威尔金森功分器的设计不仅解决了功率测量的问题,而且具有简单、可靠和高效的特点。

它被广泛应用于射频和微波电路中,成为一种重要的功分器设计方案。

威尔金森功分器设计与仿真

威尔金森功分器设计与仿真

威尔金森功分器设计与仿真威尔金森功分器(Wilkinson Power Divider)是一种常用的微波功分器,广泛应用于无线通信和雷达系统中。

它能将输入信号均匀地分配到两个输出端口,并且具有较宽的工作频率范围和较低的插入损耗。

本文将介绍威尔金森功分器的设计原理和仿真方法。

1.威尔金森功分器的设计原理```┌─Z1─┐RF in ─┤ ├─ Z2 ─ RF out1├─Z0─┤└─Z3─┘RF out2```其中,RF in为输入端口,RF out1和RF out2为输出端口,Z0为特征阻抗,Z1和Z2为等效阻抗,Z3为耦合阻抗。

在设计过程中,首先需要确定特征阻抗Z0的数值,一般为50欧姆。

然后,根据所需的功分比例,计算等效阻抗Z1和Z2的数值。

最后,选择合适的耦合阻抗Z3,使得整个电路达到最佳的工作性能。

2.威尔金森功分器的仿真方法首先,打开ADS软件并创建一个新的工程。

然后,在工程中添加一个新的设计,选择“Schematic”类型。

在Schematic设计界面中,依次添加所需的元件,包括传输线、阻抗匹配器和耦合器。

其中,传输线用于连接输入端口和输出端口,阻抗匹配器用于实现输入和输出的阻抗匹配,耦合器用于实现信号的均匀分配。

接下来,设置传输线的特性阻抗和长度,以及阻抗匹配器和耦合器的阻抗数值。

通过调整这些参数,可以实现所需的功分比例和工作频率范围。

完成电路设计后,可以进行仿真和优化。

选择“Simulation”菜单,设置仿真参数,如频率范围和步长。

然后,运行仿真并得到结果。

根据仿真结果,可以评估电路的性能,并进行优化。

如果需要改变功分比例或工作频率范围,可以调整各个元件的数值,并重新运行仿真。

最后,完成电路设计和优化后,可以进行PCB布局和封装设计。

根据实际需求,选择合适的材料和尺寸,并进行布局和封装设计。

总结:本文介绍了威尔金森功分器的设计原理和仿真方法。

通过合理选择和调整各个元件的数值,可以实现所需的功分比例和工作频率范围。

基于ADS的等分威尔金森功分器仿真PPT课件

基于ADS的等分威尔金森功分器仿真PPT课件

.
13
功分器的发展趋势
近年来随着我国国民经济和科学技 术的发展,电子信息尤其是无线通信日 新月异,3G还没普及,4G已经崭露头角, 功率分配器不仅应用在射频功率的分配 和合成,在超宽带短脉冲电磁场应用中, 采用阵列天线的技术是提高探测距离是 较为理想的选择,阵列天线的关键技 术——功分器的研制就相当重要。
功分器实物图:
.
2
课题任务及主要技术指标
课题任务: 通过功分器的学习,利用ADS仿真软件, 设计一个等分威尔金森功分器,并仿真 得到其各端口的S参数。
等分威尔金森功分器设计主要技术指标: • 频率范围:0.9~1.1GHz • 频带内输入端口的回波损耗:C11>20dB • 频带内的插入损耗:C21<3.1dB,C31<3.1dB • 两个输出ห้องสมุดไป่ตู้口间的隔离度:C23>25dB
.
3
功分器电路结构图
.
4
主要内容
• 首先介绍微带型的功分器的工作原理和 主要技术指标;
• 利用ADS对功率分配器的电路原理图进行 设计、仿真及其优化;
• 为了更加贴近实际电路,在原理图仿真 的基础上,使用矩量法对版图进行进一 步仿真。
.
5
课题研究难点、重点及其 关键是什么?
• 功分器设计的难点功分器微带电路的设 计以及隔离电阻的选择。
• 功分器设计的重点功分器原理图的仿真 及优化
• 功分器设计的关键是电路参数的优化, 以及版图的仿真。
.
6
威尔金森功分器原理图
.
7
原理图生成的功分器版图
.
8
课题完成结果:原理图的S 参数仿真结果
.
9
结论:从图中结果可以看出,采取理论计 算的结果作为功分器的参数时,除了S11参 数外,各项指标都不上十分理想,功分器 在所要求的全频带内隔离度没有达到指标, 并且平坦度较差,并且当频率偏移中心频 率1GHz时,S11参数出现了严重的恶化,所 有还需要对功分器的各个参数进行优化。

功分器设计报告

功分器设计报告
P2 IL: IL 10 lg (dB) 20 lg S 21 P1
(4)输出端口间的隔离度 端口 3 和端口 2 互为隔离端口,在理想情况下,隔离端口间应没有相互输出 的功率,但由于设计及制作精度的限制,使隔离端口间尚有一些功率输出。端口 3 到端口 2 的隔离度定义为: D 20 lg S 23 (dB)
/ 4
Zo 2Z o Zo
2Z o Zo 2Z o
/ 4
图2
关于这一点,我没有详述,大家可以参考由栾秀珍、房少军、金红和邰佑城 老师编著的《微波技术》这本书,书中对这阐述的非常详细。
三、功分器的基本指标
(1)频率范围 频率范围是各种射频和微波电路工作的前提, 功率分配器的设计结构和尺寸 大小与工作频率密切相关, 必须首先明确功率分配器的工作频率,才能进行具体 的设计工作。尤其是需要指明中心频率及其频带宽度。 (2)输入端口 1 的回波损耗 用 RL1 表示的端口 1 的回波损耗为: RL1 20 lg S11 (dB) (3)输入输出间的传输损耗 定义为输出端口 2 的输出功率 P2 和输入端口 1 的输入功率 P1 之比,记为
姓名:陶伟 班级:电科 09-1 班 学号:2220092322
一、 引言
功率分配器是将输人功率分成相等或不相等的几路功率输出的一种多端口 微波网络。在微波系统中, 需要将发射功率按一定的比例分配到各发射单元, 如 相控阵雷达等, 因此功分器在微波系统中有着广泛的应用。它的性能好坏直接影 响到整个系统能量的分配、合成效率。功率分配器有多种形式,其中最常用的是 四分之一波长(λp/4)功率分配器,这种功率分配器称为威尔金森(Wilkinson) 功率分配器。 威尔金森功率分配器由三端口网络构成, 其功率分配可以是相等的, 也可以是不相等的。在这里,我介绍的是等功率分配的微带线 Wilkinson功率分 配器。

等分威尔金森功分器的设计

等分威尔金森功分器的设计

摘要本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端口的回波损耗:C11>20dB,频带内的插入损耗:C21<3.1dB,C31<3.1dB,两个输出端口间的隔离度:C23>25dB为设计指标的等分威尔金森功分器。

先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。

优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。

关键词:仿真,威尔金森功分器,ADS,优化ABSTRACTIn this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required.Key words:Simulation Wilkinson Power dividers ADS optimization目录第1章引言 (1)1.1 功分器的发展概述 (1)1.2本次设计的主要工作 (3)第2章功分器的技术基础 (4)2.1基本工作原理 (4)2.2 功分器的技术指标 (6)第3章 ADS介绍 (8)3.1 ADS发展概述 (8)3.2 ADS 的仿真设计方法 (9)3.3 ADS的辅助设计功能 (10)3.4 ADS与其他EDA软件和测试设备间的连接 (15)3.5 ADS应用结论 (15)第4章功分器的原理图设计、仿真与优化 (16)4.1等分威尔金森功分器的设计指标 (16)4.2建立工程与设计原理图 (16)4.3基本参数设置 (16)4.4功分器原理图仿真 (19)4.5功分器的电路参数的优化 (26)第5章功分器版图的生成与仿真 (28)5.1功分器版图的生成 (28)5.2功分器版图的仿真 (34)第6章结论 (37)参考文献 (38)致谢 (35)外文资料原文 (36)译文 (44)主要符号表1P ...................................................1端口的输入功率 2P ...................................................2端口的输出功率 3P ...................................................3端口的输出功率 0Z ..................................................输入端口特性阻抗 02Z ..........................................4λ分支微带线的特性阻抗 03Z ..........................................4λ分支微带线的特性阻抗 2R .................................................2端口接的负载电阻 3R .................................................3端口接的负载电阻 2U .....................................................2端口输入电压 3U .....................................................3端口输入电压 2in Z ....................................................2端口输入阻抗 3in Z ....................................................3端口输入阻抗 r P ..........................................................反射功率 i P ..........................................................入射功率 11S .....................................端口2匹配时,端口1的反射系数 21S .........................端口2匹配时,端口1到端口2的正向传输系数 31S .........................端口3匹配时,端口1到端口3的正向传输系数 11C ..........................................................回波损耗 21C ..........................................................插入损耗 31C ..........................................................插入损耗 23C ...........................................................隔离度第1章引言1.1 功分器的发展概述功率分配器是将输入信号功率分成相等或不相等的几路输出的一种多端口的微波网络,广泛应用于雷达、多路中继通信机等大功率器件等微波射频电路中。

一种改进型Wilkinson 功分器的设计方案

一种改进型Wilkinson 功分器的设计方案

一种改进型Wilkinson 功分器的设计方案0 引言功分器是无线通信系统中的一种非常重要的微波无源器件,在天线阵馈电系统、功率放大器和无线局域网中都有着广泛的应用。

目前应用最多的微波功率分配器多为威尔金森(Wilkinson)形式的功分器,其优点在于设计方法较简单、易于实现,输出端口可以实现较高隔离。

近年来,功分器的研究已经越来越成熟,也越来越深入在传统Wilkinson 功分器的输出端添加短路枝节的方法实现了宽带功分器;文芦状的多节阻抗变换器Wilkinson 功分器结构,显着展宽了功分器的工作带宽;一款平面结构的新型双频功分器;直接多路输出Wilkinson 功分器的计算公式,进一步完善了该功分器的设计指导。

然而,当工作频率升高以后,制作器件的实际尺寸将会缩小,由于隔离电阻的存在,使得两个输出支路的电路布局存在限制,尤其在不等功率分配,两个输出端口存在强烈互耦而恶化功分器的整体性能。

设计了改良型的Wilkinson 功分器,该功分器工作在无线局域网S 频段2.4~2.483 5 GHz 频率范围内,从而增加了其实用价值。

利用ADS 软件进行了仿真设计,并进行了实物加工和测试。

1 功分器设计对于基本的Wilkinson 功分器,其输入/输出端口特性阻抗为Z0,两段分支微带线的电长度均为&lambda;g 4 .实现等功分3 dB 设计的Wilkinson 功分器,基本原理与设计公式在参考文献[7]中已经做了详细介绍,其电路结构示意图如图1 所示。

然而传统的Wilkinson 功分器在工作于频率较高的情况下,电路尺寸将会缩小,电路布局受到限制,并且两输出端口互耦严重进而影响其性能。

为了解决这些问题,本文通过在隔离电阻两侧和两输出支路上引入电长度180&deg;( &lambda; 2)微带传输线,将图1 所示的功分器结构改进为图2 所示。

改进型Wilkinson 电路结构,通过引入&lambda; 2 长度的传输线后,大大提高了电路布局的灵活性。

实验七 等分威尔金森功分器的设计

实验七 等分威尔金森功分器的设计

实验七、等分威尔金森功分器的设计一、设计目标任务一:等分威尔金森功分器的设计的ADS仿真。

等分威尔金森功分器的设计的设计指标:(1)、频带范围:0.9-1.1GHz;(2)、频带内输入端口的回波损耗:C11>20dB;(3)、频带内的插入损耗:C12﹤3.3dB,C13﹤3.3dB;(4)、两个输入端口间的隔离度:C23>25dB。

二、设计步骤任务一:1.新建工程原理图:新建工程名为equal_divider,并设置如下:新建原理图名为equal_divider_norminal,并画出如下图的电路图:输入端口电路:阻抗变换电路:输出端口电路:完成后如图:2.参数设置:MSub控件参数:H=0.8mm:表示微带线介质基片厚度为0.8mm;Er=4.3:表示微带线介质基片的相对介电常数为4.3;Mur=1:表示微带线介质基片的相对磁导率为1;Cond=5.88E+7:表示微带金属片的电导率为5.88E+7;Hu=1.0e+033mm:表示微带电路的封装高度为1.0e+033mm;T=0.03mm:表示微带金属片的厚度为0.03mm;TanD=1e-4:表示微带线的损耗角正切为1e-4;Rough=0mm:表示微带线的表面粗糙度为0mm。

用微带线计算工具计算功分器各段微带线理论尺寸:Tools】→【LineCalc】→【StartLineCalc】,弹出如下图所示所示的“LineCalc”窗口。

在“Substrate Parameters”栏中填入上图所示的MSub控件的基本参数。

在“Component Parameters”栏的“Freq”项中输入功分器的中心频率为1GHz。

在“Electrical”栏的传输线特性阻抗“Z0”项中输入50Ω,如下图所示:插入V AR控件,设置变量,w1=1.52”、“w2=0.79”、“l=10”。

将原理图中参数更新:3.功分器原理图仿真:原理图中加入S参数,TERM,地,S参数如图:其他设置地方如图:仿真如图:从上面的仿真结果可知,两个端口间的隔离度(要求C23>25dB)明显不满足设计要求。

【原创】南京邮电大学 课程设计 Wilkinson(威尔金森)功分器的设计

【原创】南京邮电大学 课程设计 Wilkinson(威尔金森)功分器的设计

南京邮电大学电子科学与工程学院电磁场与无线技术Wilkinson功分器课题报告课题名称 Wilkinson功分器学院电子科学与工程学院专业电磁场与无线技术班级组长组员开课时间 2012/2013学年第一学期一、课题名称Wilkinson(威尔金森)功分器的设计二、课题任务运用功分器设计原理,利用HFSS软件设计一个Wilkinson功分器,中心工作频率3.0GHz。

⏹基本要求实现一个单阶Wilkinson等功分设计,带内匹配≤-10dB,输出端口隔离≤-10dB,任选一种微波传输线结构实现。

⏹进阶要求多阶(N≥2),匹配良好(S11≤-15dB),不等分,带阻抗变换器(输出端口阻抗不为50Ω),多种传输线实现。

三、实现方式自选一种或者多种传输线实现,如微带线,同轴线,带状线等,要求输入输出端口阻抗为50Ω,要求有隔离电阻(通过添加额外的端口实现)四、具体过程1.计算基本参数通过ADS Tool中的Linecalc这个软件来进行初步的计算。

在HFSS中选定版型为Rogers RT/duroid 5880 (tm),如具体参数下图50Ω微带线计算得到选取微带线宽度约为0.67mm。

70.7Ω微带线计算得到选取微带线宽度约为0.34mm,由于微带线电长度与其宽度没有必然联系,所以两个分支微带线的长度根据具体情况进行更改。

2.绘制仿真模型微带单阶功分器◆微带参数:w50:阻抗为50Ω的微带线宽度;w2:两分支线宽度;l1,l2,l3,l4:各部分微带线长度;rad1,rad2:各部分分支线长度(即半环半径)◆在本例中,需要调整的调整关键参数为w2,rad1,空气腔参数随关键参数相应调整即可。

◆根据计算,此处的吸收电阻值应该为100Ω,但是在实际情况中,选取97Ω。

微带多阶功分器◆微带参数:w50:阻抗为50Ω的微带线宽度;w2:两分支线宽度;l1,l2,l3,l4:各部分微带线长度;rad1,rad2:各部分分支线长度(即半环半径)◆在本例中,需要调整的调整关键参数为w2,rad1,微调参数为w50,rad2,空气腔参数随关键参数相应调整即可。

威尔金森功分器的设计

威尔金森功分器的设计

综合课程设计实验报告课程名称:综合课程设计(微波组)实验名称:威尔金森功分器的设计院(系):信息科学与工程学院2020 年6月12 日一、实验目的1. 了解功分器电路的原理和设计方法;2. 学习使用Microwave office 软件进行微波电路的设计、优化、仿真;3. 掌握功率分配器的制作及调试方法。

二、实验原理Wilkinson 功率分配器根据微波网络理论,对于三端口网络,匹配、互易、无耗三者中,只能有两个同时满足。

Wilkinson 功率分配器是一个有耗的三端口网络(如图1.1所示),它通过在输出端之间引入特性阻抗为2Z 0的电阻,实现了理想的功率分配与功率合成。

用于功率分配时,端口1是输入端,端口2和端口3是输出端;用于功率合成时,端口2和端口3是输入端,端口1是输出端。

可以制成任意功率分配比的Wilkinson 功率分配器,本实验只考虑等分(3dB )的情况,其结构如图1.2所示。

由两段微带线与输出端之间的电阻构成,两段微带线是对称的,其特性阻抗为02Z ,长度为/4g ,并联电阻值为2Z 0。

图1.1 Wilkinson 功分器示意图图1.2 微带线形式的等分Wilkinson 功分器三、实验内容和设计指标实验内容1. 了解Wilkinson功分器的工作原理;2.根据指标要求,使用Microwave office软件设计一个Wilkinson功分器,并对其参数进行优化、仿真。

设计指标在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个中心频率为f=3.2GHz、带宽为200MHz,用于50欧姆系统阻抗的3dB微带功分器。

要求:工作频带内各端口的反射系数小于-20dB,两输出端口间的隔离度大于25dB,传输损耗小于3.5dB。

功分器的参考结构如1.3图所示。

在设计时要保证两个输出端口之间的距离大于10mm,以便于安装测试接头;同时为了便于焊接电阻,d要为2.54mm左右。

等分威尔金森功分器的设计

等分威尔金森功分器的设计

等分威尔金森功分器的设计威尔金森功分器(Wilkinson power divider)是一种常用的无源微波分路器,可以将输入信号等分为三个输出信号。

它广泛应用于无线通信系统、天线阵列、雷达系统等领域。

在设计威尔金森功分器时,需要考虑频率响应、插入损耗、功分精度等因素。

```________[3dB]_________输入---威尔金森功分输出1--输出2--________[3dB]________```为了实现等分,威尔金森功分器需要满足以下条件:1.输入和输出之间的相位差为0度,即输入和输出之间的信号相位一致。

2.输入和输出之间的功率比为1:2,即输出1和输出2之间功率比为1:13.输入和输出之间的波阻抗匹配,即输入和输出之间的阻抗一致。

威尔金森功分器的设计可以分为两个主要步骤:计算和布局。

1.计算:根据所需的频率范围,计算威尔金森功分器的参数。

首先,选择合适的传输线类型(如微带线、同轴线等)和介质材料,确定传输线的特性阻抗。

然后,根据所需的频率范围和功分精度,计算传输线的长度和宽度。

最后,根据所选的耦合器类型,计算其特性阻抗和尺寸。

2.布局:根据计算得到的参数,进行电路布局。

首先,绘制输入和输出传输线的布局,保证它们的长度和宽度符合计算结果。

然后,将耦合器和传输线连接起来,确保它们的相互作用符合设计要求。

最后,进行电路的布线和布局优化,减少传输线之间的串扰和损耗。

在威尔金森功分器的设计中,还需要考虑一些其他因素,如插入损耗、功分精度和频率响应等。

为了减小插入损耗,可以选择低损耗的传输线材料和合适的耦合器类型。

为了提高功分精度,可以采用精确的计算方法和优化的布局。

为了获得平坦的频率响应,可以采用宽带的传输线和耦合器。

总之,威尔金森功分器的设计是一个综合考虑多个因素的过程,需要进行计算、布局和优化。

通过合理选择参数和优化布局,可以实现性能良好的威尔金森功分器,满足不同应用的需求。

威尔金森功分器设计

威尔金森功分器设计

威尔金森功分器设计威尔金森(Wilkinson)功分器是一种被广泛应用于微波和射频电路中的功率分配器。

它可以将输入功率均匀地分配到多个输出端口上,同时保持相对较低的插入损耗和反射损耗。

该设计是由威尔金森在1960年首次提出的,至今仍被广泛使用。

威尔金森功分器的基本原理是利用两个负载和两个耦合器来实现功率的分配。

它的结构简单,由一个中央传输线和两个分支传输线组成。

中央传输线被连接到输入端口,而分支传输线则与两个输出端口相连。

两个耦合器被用来连接中央传输线和分支传输线,以实现功率的分配。

在威尔金森功分器中,输入功率通过中央传输线传输到两个分支传输线上。

在分支传输线的连接点处,耦合器将一部分功率耦合到负载上,同时将另一部分功率传输到另一个分支传输线上。

这样,输入功率就被均匀地分配到两个输出端口上。

为了保持较低的插入损耗和反射损耗,威尔金森功分器要求分支传输线具有相同的特性阻抗,并且耦合器能够实现理想的功率分配。

在实际设计中,可以使用微带线、同轴电缆或波导等不同的传输线类型来实现威尔金森功分器。

威尔金森功分器的设计需要考虑多个参数,包括特性阻抗、分支传输线的长度和宽度、耦合器的设计等。

通过合理选择这些参数,可以实现所需的功率分配比例和频率响应。

尽管威尔金森功分器在功率分配方面表现出色,但它也存在一些限制。

首先,它只能实现功率的均匀分配,不能实现不同比例的功率分配。

其次,威尔金森功分器的设计需要考虑较多的参数,对于频率较高的应用来说,设计和制造的难度会增加。

总之,威尔金森功分器是一种常用的功率分配器,广泛应用于微波和射频电路中。

它的设计原理简单,通过合理选择参数可以实现所需的功率分配比例。

然而,设计师在使用威尔金森功分器时需要考虑一些限制,以确保其性能和可靠性。

Wilkinson功分器设计与仿真

Wilkinson功分器设计与仿真

图12:由原理图生成的功分器版图
2. 功分器版图的仿真
生成功分器的版图后,为观察功分器的性能,需要在版图里再 次进行S 参数的仿真。参数设置与前面S参数仿真类似。本次功分器 版图的仿真结果如图13所示。可以看出能满足设计指标的要求。
P C21 10Log 2 20Log S 21 Pi
P3 C31 10Log P 20Log S31 i
3.输出端口间的隔离度 输出端口2 和输出端口3 间的隔离度根据输出端口2 的输出功率 和输出端口3 的输出功率之比来计算:
S 21 P2 C 23 10Log P 20Log S 31 3
目录:
选题背景 功分器的工作原理和技术指标 功分器原理图的设计与优化 功分器的版图生成与仿真
一选题背景:
1. 什么是功分器
功率分配器是将输入信号功率分成相等或不相等的几路输出 的一种多端口的微波网络,广泛应用于雷达、多路中继通信机等 大功率器件等微波射频电路中。功率分配器又可以逆向使用作为 功率合成器,因此有时又称为功率分配/合成器。
2.建立工程与设计原理图
建立工程:这部分主要是对ADS软件的运用。 设计原理图:大致分为五个小的部分,输入端口,两个匹配分支和 两个输出端口。
a) 所用电路元件为“TLines-Microstrip”元件库中的:
: :一般微带线 :弧形微带线 :微带T型结
: 微带基片
: 薄膜电阻
b) 在微带线器件面板中选择MLIN与MTEE插入原理图中,并用导线连接 起来,构成功率分配器的输入端口。双击MLIN、,在弹出的参数设 置窗口中设置MLIN的W=w1mm、L=5mm。用同样的方法设置MTEE的 W1=2mm,W2=w2mm和W3=w1mm。完成参数设置设计出来的输入端口电 路,输入端口的电路连接如图1 所示。

微波工程威尔金森功率分配器ppt课件

微波工程威尔金森功率分配器ppt课件

二.基于QWOS的三波段带通滤波器
并发的三波段带通滤波器原理图如下图, 由三个QWOS构造组成,分别用来匹配三 个任务频率。
QWOS:1/4入开路支节,根据设计需求可 计算出准确位置,在所需的三个频段表现为 高阻抗并且在不同的频段之间频率点上引入 了0传输从而起到了隔离频带的效果。

为了使电路设计紧凑,应到达匹配,故 当传输线特性阻抗为50欧姆时,此处设 计Zi的特性阻抗为100欧姆,QWOS的 尺寸设计为相应通带频率点的 入gi/4,而QWOS构造的位置沿着主传输 线依次排开,准确位置由以下公式得出: 另:L1=入g1/4
• 由功率分配器和滤波器组成 • 一个宽频带的和一个新型的基于QW
OS的三频带带通滤波器

威尔金森功率分配器
由威尔金森1提出的匹配的对称双功率分
频器,是用于一样的幅值/相位功率划分
的拓扑构造之一。威尔金森提出了匹配的
双向功率分配器的根本配置,即
三个特性阻抗需满足关系1:1.414:2:1
,同时在两个输出端口之间引入一个电阻,
一.三波段功率分配器设计
问题: 由于1/4入传输线构造会使得电路尺寸过 大 处理方法: 采用慢波构造,构造如下图,慢波 构造依赖于一种周期性的微型化的 传输线路,它可以降低传播波的相 速度;因此,更小的物理尺寸就可 以到达同样的电尺寸,从而减小了 电路尺寸。
设计参量: d、Cp、l
据其他论文研讨分析:一个单级的功率 分配器足以提供在1.25到2.6GHZ之间 的带宽的。
从而加强了它们之间的隔离。由于威尔金
森的分频器利用一个四分之一波长的变压
器来将分割线与输入端口相匹配,变压器
的尺寸——特别是低频运用——
的尺寸是无法接受的。运用传统的方法将

威尔金森(wilkinson)功分器设计

威尔金森(wilkinson)功分器设计

威尔⾦森(wilkinson)功分器设计此功分器⽐较简单。

如果只是做仿真,ADS较为⽅便,如果要做实物或产品的话,HFSS⽐较可靠。

本⼈亲测HFSS仿真结果和实物基本⼀致,ADS差别不⼀。

多节功分器原理和单节⼀样,⽹上有多节等分功分器归⼀化数据表格,按照表格中的值球的传输线阻抗得到的功分器只需要少许优化即可。

接下来以双节8-11G功分器⼤致介绍⼀下设计流程。

如图所⽰,L0和L3都是Z0阻抗的传输线,⼀般选择为50Ω,在ADS中可以算出现款和线长,线的长度L0和L3对功分器没太⼤影响,所以在做的时候可以根据要求增加或减少。

因为是8-11G的,f2/f1<1.5,所以双节的都满⾜要求,可以⽤频带宽度⽐为1.5的功分器,这样的话隔离度更好。

查表得到L1L2归⼀化阻抗分别是1.1998和1.6070归⼀化电阻为5.3163和1.8643,得到阻抗和电阻值分别是60、80.33和93、265,注意的是电阻顺序是倒过来的这样分别⽤微带线计算软件算得两段线的带宽和π/4线长,分别是0.324/6.28和0.653/6.15,这样在HFSS中九可以建⽴模型仿真,在建模的时候做成参数模型,这样可以调节和优化,电阻直接在合适的地⽅画⼀个矩形,右键lumped RLC可以设置。

模型可以做成实际的0.035mm的铜,也可以设置成perfect E,⼤致都差不多,我做过⼀个,实测和仿真基本上⼀致,损耗都在3.2左右,隔离倒是有点差,差了约5db。

有些做成弧形,原理都是⼀样,个⼈觉得倒是美观很多。

弧形这个是我对上⾯功分器改变形状得来的,出来的效果只是差了⼀点点。

对了,基⽚背⾯需要铺地,否则仿真时可能有问题,本⼈也是兴趣⾃⼰做着玩的,不是专业的,有错请指正,有需要模型或交流的可以联系我,最后总结⼀下。

1、建模的时候最好建⽴参数模型,可调可优化;2、基板背⾯最好铺地;3、在仿真的时候波端⼝向量应该向接地(向下);4、归⼀化电阻值顺序和归⼀化阻抗是相反的;5、输⼊端的驻波⽐要好好仿真,容易变差;。

基于ADS的等分威尔金森功分器仿真PPT课件

基于ADS的等分威尔金森功分器仿真PPT课件

.
14
无线电发射设备中,为了保证足够 远的传输距离,待传输信号须经过 一系列的功率放大直至获得足够大 的功率再送至发射天线。采用功率 合成技术将多路固态器件输出功率 进行同向叠加,是获得更高输出功 率的有效途径之一。
.
15
本科毕业设计论文答辩 毕业设计课题:
等分威尔金森功分器的设计
指导老师: 学生:
.
1
选题背景及意义
功率分配器是将输入信 号功率分成相等或不相 等的几路输出的一种多 端口的微波网络,广泛 应用于雷达、多路中继 通信机等大功率器件等 微波射频电路中。功率 分配器又可以逆向使用 作为功率合成器,因此 有时又称为功率分配/合 成器 。
• 功分器设计的重点功分器原理图的仿真 及优化
• 功分器设计的关键是电路参数的优化, 以及版图的仿真。
.
6
威尔金森功分器原理图
.
7原理图生成的功分器版图. Nhomakorabea8
课题完成结果:原理图的S 参数仿真结果
.
9
结论:从图中结果可以看出,采取理论计 算的结果作为功分器的参数时,除了S11参 数外,各项指标都不上十分理想,功分器 在所要求的全频带内隔离度没有达到指标, 并且平坦度较差,并且当频率偏移中心频 率1GHz时,S11参数出现了严重的恶化,所 有还需要对功分器的各个参数进行优化。
.
13
功分器的发展趋势
近年来随着我国国民经济和科学技 术的发展,电子信息尤其是无线通信日 新月异,3G还没普及,4G已经崭露头角, 功率分配器不仅应用在射频功率的分配 和合成,在超宽带短脉冲电磁场应用中, 采用阵列天线的技术是提高探测距离是 较为理想的选择,阵列天线的关键技 术——功分器的研制就相当重要。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要摘要本文对一个等分威尔金森功分器进行了仿真,分析了功分器的基本原理,介绍了ADS软件基本使用方法,并选择了频率范围:0.9~1.1GHz,频带内输入端口的回波损耗:C11>20dB,频带内的插入损耗:C21<3.1dB,C31<3.1dB,两个输出端口间的隔离度:C23>25dB为设计指标的等分威尔金森功分器。

先进行威尔金森功分器原理图的设计,再用ADS软件进行原理图仿真,得出的结论采用理论计算的结果作为功分器参数时,功分器并没有达到所需设计的指标,所以要对功分器的各个参数进行优化。

优化后所得到的最佳数据保存以后再进行功分器版图的仿真,各项指标基本达到设计所需的要求。

关键词:仿真,威尔金森功分器,ADS,优化ABSTRACTABSTRACTIn this paper a power dividers quintiles Wilkinson is simulated, and analyzes the basic principle of power dividers, introduces the basic use ADS software method, and choose the frequency range: 0.9~GHz, frequency band 1.1 input ports C11 > 20dB return loss:, frequency band insertion loss: C21 < 3.1 dB, C31 < 3.1 dB, between the two output port C23 > 25dB isolation ratio: for the design index equal power dividers Wilkinson. First conducts the power dividers Wilkinson schematic design, reoccupy ADS software simulation principle diagram, the conclusion of the theoretical calculation result as parameters when power dividers power dividers did not reach the required design to index, so the power dividers various parameters were optimized. After optimization of the best data preserves received after power dividers again, and all the indexes of simulation territory to meet the design requirements of basic required.Key words:Simulation Wilkinson Power dividers ADS optimization目录目录第1章引言 (1)1.1 功分器的发展概述 (1)1.2本次设计的主要工作 (3)第2章功分器的技术基础 (4)2.1基本工作原理 (4)2.2 功分器的技术指标 (6)第3章 ADS介绍 (8)3.1 ADS发展概述 (8)3.2 ADS 的仿真设计方法 (9)3.3 ADS的辅助设计功能 (10)3.4 ADS与其他EDA软件和测试设备间的连接 (15)3.5 ADS应用结论 (15)第4章功分器的原理图设计、仿真与优化 (16)4.1等分威尔金森功分器的设计指标 (16)4.2建立工程与设计原理图 (16)4.3基本参数设置 (16)4.4功分器原理图仿真 (19)4.5功分器的电路参数的优化 (26)第5章功分器版图的生成与仿真 (28)5.1功分器版图的生成 (28)5.2功分器版图的仿真 (34)第6章结论 (37)参考文献 (38)致谢 (35)外文资料原文 (36)译文 (44)主要符号表1P ...................................................1端口的输入功率 2P ...................................................2端口的输出功率 3P ...................................................3端口的输出功率 0Z ..................................................输入端口特性阻抗 02Z ..........................................4λ分支微带线的特性阻抗 03Z ..........................................4λ分支微带线的特性阻抗 2R .................................................2端口接的负载电阻 3R .................................................3端口接的负载电阻 2U .....................................................2端口输入电压 3U .....................................................3端口输入电压 2in Z ....................................................2端口输入阻抗 3in Z ....................................................3端口输入阻抗 r P ..........................................................反射功率 i P ..........................................................入射功率 11S .....................................端口2匹配时,端口1的反射系数 21S .........................端口2匹配时,端口1到端口2的正向传输系数 31S .........................端口3匹配时,端口1到端口3的正向传输系数 11C ..........................................................回波损耗 21C ..........................................................插入损耗 31C ..........................................................插入损耗 23C ...........................................................隔离度第1章引言1.1 功分器的发展概述功率分配器是将输入信号功率分成相等或不相等的几路输出的一种多端口的微波网络,广泛应用于雷达、多路中继通信机等大功率器件等微波射频电路中。

功率分配器又可以逆向使用作为功率合成器,因此有时又称为功率分配/合成器。

对于高效率应用场合,对功率分配器的主要要求是:插损较小,各路幅度和相位一致性要好,以保证较高的分配与合成效率;两支路之间的隔离度要好,平滑度高,当其中的一路出现故障时不至于影响另一路的正常工作或影响很小,以提高设备的安全系数和可靠性;宽频带,即在超宽的频带内达到所要求的性能;电路形式简单,容易调整,且体积小,以便于设备的小型化和实现批量生产;有足够的功率容量,以满足大功率分配合成的需要。

当功率分配/合成器的工作频率较低时,其理论分析与实际研制都能达到较高的效果,但随着频率升高,特别是在10GHz以上,则会带来许多的问题:要求加工精度更高,微带线的损耗增加,微带不连续模型不够精确,隔离电阻尺寸可以与波长相比拟,不再是一个纯电阻,且波长变短使分配/合成器的体积减小带来微带间的耦合等等。

随着我国军事装备发展的突飞猛进,对频率高端,尤其是2GHz~10GHz宽频带内高可靠微波功分器的应用也越来越广,需求量迅猛增加。

特别是在微波测量和电子对抗系统中,为提高装备的实用性和多信号捕捉能力,往往选用宽带体制来作为系统方案,此时对功分器提出了全频带带宽覆盖的要求。

功分器是微波接收、发射及频率合成系统中不可缺少的部件,无论是微波通信、雷达、遥控遥感、电子侦测、电子对抗还是微波测量系统中,都有将信号等功率分配的要求,讲信号等功率分配为多路,再分别进行处理,是非常普遍的应用。

在发射系统中,将功分器反转使用,就是功率合成器,在中、大功率发射源中,对整个系统性能有着重要的影响。

尤其是在多通道侧向系统中,更是决定着系统性能的关键部件,对幅度的一致性、相位的一致性指标有着严格的要求,这样才能保证系统的测量精度。

微波功分器除了幅度、相位一致性要求外,对功分器的插入损耗还有着较高电子科技大学成都学院本科毕业设计论文的要求,以避免过大的损耗降低信号强度。

同时,为保证各路之间的不受串扰的影响,隔离度指标也相当的重要,在微波测量系统中尤其如此。

此外,在微波发射源中作为微波功率合成器使用时,对微波功分器的承受功率还有更高的要求。

近年来随着我国国民经济和科学技术的发展,电子信息尤其是无线通信日新月异,3G还没普及,4G已经崭露头角,功率分配器不仅应用在射频功率的分配和合成,在超宽带短脉冲电磁场应用中,采用阵列天线的技术是提高探测距离是较为理想的选择,阵列天线的关键技术——功分器的研制就相当重要。

无线电发射设备中,为了保证足够远的传输距离,待传输信号须经过一系列的功率放大直至获得足够大的功率再送至发射天线。

采用功率合成技术将多路固态器件输出功率进行同向叠加,是获得更高输出功率的有效途径之一。

随着无线通信技术的快速发展,各种通讯系统的载波频率不断提高,小型化低功耗的高频电子器件及电路设计使微带技术发挥了优势。

单波传输使得系统的增益达不到实际的要求,从而必须实现多波传输,也就是将功率进行分配,即产生了功率分配器,简单功分器。

本文设计仿真的是最简单最经典的威尔金森功分器,在射频电路和测量系统中,如混频器、功率放大器电路中的功率分配与耦合元件的性能将影响整个系统的通信质量,而微带功分器在实践应用中显得更为突出。

相关文档
最新文档