模拟乘法器实验报告
模拟乘法器实验报告
模拟乘法器实验报告模拟乘法器实验报告引言:模拟乘法器是电子电路领域中非常重要的一种电路设计,它能够实现数字信号的乘法运算。
在本次实验中,我们将学习并实现一种基于模拟电路的乘法器设计,并对其性能进行评估。
一、实验目的本次实验的主要目的是通过设计和实现模拟乘法器电路,加深对模拟电路设计原理的理解,并通过实际测量和分析,评估乘法器的性能。
二、实验原理模拟乘法器是通过电压的乘法运算来实现的。
在本次实验中,我们采用了一种基于差分放大器和电流镜电路的乘法器设计。
其基本原理是利用差分放大器的非线性特性,将输入信号进行放大和非线性变换,从而实现乘法运算。
三、实验步骤1. 设计乘法器电路的基本框架,包括差分放大器、电流镜等电路元件的选择和连接。
2. 根据设计要求,选择适当的电阻和电容值,并进行电路元件的布局和连线。
3. 使用示波器和信号发生器,分别输入模拟的乘数和被乘数信号,并观察输出信号。
4. 调整输入信号的幅值和频率,记录输出信号的变化情况,并进行分析和比较。
5. 对乘法器电路进行性能评估,包括增益、非线性失真、带宽等方面的指标。
四、实验结果与分析通过实验测量和分析,我们得到了乘法器电路的性能数据。
首先,我们观察到输出信号的幅值与输入信号的幅值成正比关系,表明乘法器电路的放大倍数与输入信号的幅值相关。
其次,我们发现输出信号的频率与输入信号的频率一致,说明乘法器电路能够正确地传递输入信号的频率特性。
此外,我们还对乘法器电路的非线性失真进行了评估,发现在输入信号较大的情况下,输出信号存在一定的非线性畸变,这可能是由于差分放大器的非线性特性引起的。
五、实验总结通过本次实验,我们深入学习了模拟乘法器的原理和设计方法,并通过实际测量和分析,对乘法器的性能进行了评估。
实验结果表明,所设计的乘法器电路能够较好地实现乘法运算,并具有一定的线性范围。
然而,在实际应用中,我们还需要考虑乘法器电路的稳定性、功耗等因素,并进一步优化电路设计,以满足不同应用场景的需求。
模拟乘法器调幅(AM、DSB、SSB)实验报告
实验十二模拟乘法器调幅(AM、DSB、SSB)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅。
抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
三、实验原理幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1596、MC1495、MC1496、LM1595、LM1596等。
(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
MC1496是四象限模拟乘法器。
其内部电路图和引脚图如图12-1所示。
其中V1、V2与V3、V4组成双差分放大器,以反极性方式相连接,而且两组差分对的恒流源V5与V6又组成一对差分电路,因此恒流源的控制电压可图12-1 MC1496的内部电路及引脚图正可负,以此实现了四象限工作。
V7、V8为差分放大器V5与V6的恒流源。
(2)静态工作点的设定1)静态偏置电压的设置静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集-基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。
模拟乘法器实验
模拟乘法器的应用——低电平调幅姓名: 学号: 实验台号:一、 实验目的1、掌握集成模拟乘法器的工作原理及其特点2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法二、实验仪器低频信号发生器 高频信号发生器频率计 稳压电源 万用表 示波器三、实验原理1、MC1496/1596 集成模拟相乘器集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。
可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB 乘法检波器、AM 调制解调器、FM 解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。
MC1496的内部电路继引脚排列如图所示MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz 以下的频率。
双差分对模拟乘法器MC1496/1596的差值输出电流为121562()()()22TyTi i i th th V R V υυυ=-≈MC1595是差值输出电流为式中,错误!未找到引用源。
为乘法器的乘法系数。
MC1496/1596使用时,VT1至VT6的基极均需外加偏置电压。
2.乘法器振幅调制原理X通道两输入端8和10脚直流电位均为6V,可作为载波输入通道;Y通道两输入端1和4脚之间有外接调零电路;输出端6和12脚外可接调谐于载频的带通滤波器;2和3脚之间外接Y通道负反馈电阻R8。
若实现普通调幅,可通过调节10kΩ电位器RP1使1脚电位比4脚高错误!未找到引用源。
,调制信号错误!未找到引用源。
与直流电压错误!未找到引用源。
叠加后输入Y通道,调节电位器可改变错误!未找到引用源。
的大小,即改变调制指数Ma ;若实现DSB调制,通过调节10kΩ电位器RP1使1、4脚之间直流等电位,即Y通道输入信号仅为交流调制信号。
为了减小流经电位器的电流,便于调零准确,可加大两个750Ω电阻的阻值,比如各增大10Ω。
模拟乘法器的调查报告
模拟乘法器的调查报告陈凤通信与信息系统一、 模拟乘法器的基本原理现在,常用的模拟乘法器基本上都已实现集成化。
而且集成模拟乘法器是一种重要的非线性器件,广泛应用于频率变换、信号处理电路中,构成调制、解调或其它电路。
随着集成技术的发展和应用的日益广泛,它已成为继集成运算放大器后最通用的模拟集成电路之一。
下面简单介绍一下模拟乘法器。
(一)模拟乘法器的基本特性模拟乘法器是实现两个模拟量相乘功能的器件,理想乘法器的输出电压与同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。
其符号如下图一中(a )和(b)所示,K 为乘法器的增益系数。
图一 模拟乘法器符号图理想乘法器—对输入电压没有限制, u x = 0 或 u y = 0 时,u O = 0,输入电压的波形、幅度、极性和频率可以是任意的 。
实际乘法器当u x = 0 , u y = 0 时,u O ≠ 0,此时的输出电压称为输出输出失调电压。
u x = 0,u y ≠ 0 (或 u y = 0,u x ≠ 0)时,u O ≠ 0,这是由于u y (u x )信号直接流通到输出端而形成的,此时 的输出电压为u y (u x )的输出馈通电压。
(二)变跨导模拟乘法器的基本工作原理变跨导模拟乘法器是在带电流源差分放大电路的基础上发展起来的,其基本原理电路如下图所示 。
在室温下,K 为常数,可见输出电压u O 与输入电压u y 、u x 的乘积成正比,所以差分放大电路具有乘法功能。
但u y 必须为正才能正常工作,故为二象限乘法器。
当 u Y 较小 时,相乘结果误差较大,因 I C3 随 u Y 而变,其比值为电导量,称变跨导乘法器.二、模拟乘法器在振幅调制解调中的应用(一)信息传输的基本概念1.对传输信号进行调制的原因(1)根据电磁波理论,天线尺寸大于信号波长的十分之一,信号才能有效发射。
如声音信号的频率范围为0.1 ~ 6 kHz。
通信电子线路实验:实验六 模拟乘法器
5PT3
结论
同步检波器也可用于解调普通的Am波。 与二极管包络检波器比较,同步检波器电路较复杂。当 与已调波的载波不同频不同相,将会产生解调信号失真。
(5) 1°将接于5PT2的示波器探头接于5PT3,调节低频信号 发生器输出,增大ma=100%,记录ma=100%的调幅波 波形与抑制载波波形作比较,指出其区别。
(3)1°观察记录二极管包络检波器的输出波形(7PT) 2°观察记录二极管包络检波器的解调输出波形与已调 波(5PT3)包络的关系。 3°将接5PT3的示波器探头改接5PT2,观察记录包络检 波器的解调输出波形与原调制信号的差异。
7PT3 7PT3
5PT2 5PT3
结论:二极管包络检波器可解调ma<1的普通调幅波
对3°,4°实验结果进行分析 写出结论。
(2) 抑制载波调幅波的解调。
1°同集成模拟乘法器构成的同步解调器进行解调将5K3连通 2-3端,示波器一通道接5PT2,另一通道6PT1,观察,记 录解调输出(6PT1)波形与原解调制信号(5PT2)波形 的异同。将接5PT2的示波器输出探头改接5PT3,观察记 录解调输出波形与已调波包迹的关系。图如下:
3 普通调幅波的产生及其解调
(4)1°将5K3连通2-3端,示波器一通道探头接6PT1另一 通道探头接5PT2,观察记录同步检波器解调输出波 形与原调制信号波形的异同。
2°将接5PT的示波器探头改接5PT3,观察记录同步检 波器解调输出波形与原调制信号包络的关系。
6PT1
6PT1
结论 (下页) 5PT2
VΩ vAM VDSB
1°普通AM波的包络函数 αVΩ(t)VDSB波的 包络函数α∣ VΩ(t)∣
2° VΩ=0 普通AM波的振幅为原载波
实验三 模拟乘法器应用实验报告
实验题目:乘法器调幅(AM、DSB、SSB)、同步检波、混频及倍频实验原理:2TP3(2P3、2Q3)—载波(本振)信号输入端;2Q4—调制信号(或高频已调信号)输入端;2TP4—调制信号(或高频已调信号)输入端测试点;2TP5(2P5)—乘法器同相输出端;2TP5A—乘法器反相输出端;2TP6(2Q6)—2.5MHz带通滤波器输出;2W11—调制信号(或高频已调信号)输入端幅度调节;2W1—乘法器1、4输入端平衡调节;2W2—增益调节。
图3.1 乘法器调幅、混频实验电路图2TP9(2P9)—载波(本振)信号输入端;2TP10(2P10)—高频已调信号输入端;2TP11(2P11)—同步检波输出端;2W5—1、4输入端平衡调节。
图3.2 乘法器同步检波器电路图2TP7(2P7)—信号输入端;2TP8(2P8)—信号输出端;2W3—调节中心频率;2W4—调节输出幅度。
实验内容及步骤:一. 普通波调幅(AM )1. 电路连接《调幅与调频接收模块》接±12V 电源电压;打开“乘法器调幅 混频”电路的电源开关(电源指示灯点亮);2TP3接载波信号C u (20KHz ,100mV PP );2TP4接调制信号u Ω(1kHz 、300mVpp );用示波器同时观测C u 、u Ω和同相输出端(2TP5)。
注:C u 由示波器(Wave Gen )提供;u Ω由信号源(F20A A 路)提供,并以u Ω所接示波器通道做触发源。
2. 电路调整调节2W11,使2TP4端幅度最大;调节示波器使波形清晰稳定;调节2W1,使2TP5输出信号为AM 已调波AM u (如图3.4);调节2W2,使AM u 的波峰、波谷无压缩失真(2W1、2W2往往配合调节)。
3. 时域测量记录或存储C u 、u Ω和AM u 的时域波形,按图3.4计算调制度m :图3.4 AM 波时域波形%100⨯+-=BA BA m4.频域测量①频谱仪射频输入(RF IN)接反相输出端2TP5A。
模拟乘法器1496实验报告综述
实验课程名称:_高频电子线路五.实验原理与电路设计仿真1、集成模拟乘法器1496的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。
所以目前在无线通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
下面介绍MC1496集成模拟乘法器。
(1)MC1496的内部结构MC1496 是目前常用的平衡调制/解调器。
它的典型应用包括乘、除、平方、开方、倍频、调制、混频、检波、鉴相、鉴频、动态增益控制等。
MC1496 的和内部电路与外部引脚图如图1(a)(b)所示。
(a)1496内部电路 (b)1496引脚图图1 MC1496的内部电路及引脚图它内部电路含有 8 个有源晶体管,引脚 8 与 10 接输入电压 VX、1与 4接另一输入电压VY,6 与12 接输出电压 VO。
一个理想乘法器的输出为VO=KVXVY,而实际上输出存在着各种误差,其输出的关系为:VO=K(VX +VXOS)(VY+VYOS)+VZOX。
为了得到好的精度,必须消除 VXOS、VYOS与 VZOX三项失调电压。
引脚 2 与 3 之间需外接电阻,对差分放大器 T5与 T6产生交流负反馈,可调节乘法器的信号增益,扩展输入电压的线性动态范围。
各引脚功能如下:1:SIG+ 信号输入正端 2: GADJ 增益调节端3:GADJ 增益调节端 4: SIG- 信号输入负端5:BIAS 偏置端 6: OUT+ 正电流输出端 7: NC 空脚 8: CAR+ 载波信号输入正端9: NC 空脚 10: CAR- 载波信号输入负端11: NC 空脚 12: OUT- 负电流输出端13: NC 空脚 14: V- 负电源(2)Multisim建立MC1496电路模块启动multisim11程序,Ctrl+N新建电路图文件,按照MC1496内部结构图,将元器件放到电子工作平台的电路窗口上,按住鼠标左键拖动,全部选中。
模拟乘法器调幅实验报告
模拟乘法器调幅实验报告模拟乘法器调幅实验报告引言:调幅(Amplitude Modulation, AM)是一种常用的调制技术,广泛应用于无线通信、广播电视等领域。
在调幅技术中,模拟乘法器是一个关键的组件,它能够实现信号的调幅处理。
本实验旨在通过搭建模拟乘法器电路,深入了解调幅原理,并通过实验验证其效果。
一、实验目的通过搭建模拟乘法器电路,掌握调幅原理,并验证其调幅效果。
二、实验原理调幅是通过将调制信号与载波信号相乘,实现信号的幅度调制。
模拟乘法器是实现这一功能的关键元件。
在本实验中,我们采用二极管作为模拟乘法器的核心元件。
当二极管正向偏置时,其电流与输入电压成正比。
将调制信号与载波信号输入到二极管的正向偏置端,通过电流与电压的乘积,实现信号的幅度调制。
三、实验器材和仪器1. 信号发生器:提供调制信号和载波信号。
2. 二极管:作为模拟乘法器的核心元件。
3. 示波器:用于观察输出信号的波形。
四、实验步骤1. 搭建电路:将信号发生器的调制信号输出与载波信号输出分别连接到二极管的正向偏置端,将二极管的反向端接地。
将二极管的输出端连接到示波器,观察输出信号的波形。
2. 调节信号发生器:分别调节调制信号和载波信号的频率、幅度和相位,观察输出信号的变化。
3. 记录实验数据:记录不同调制信号和载波信号参数下的输出信号波形和幅度。
五、实验结果与分析在实验中,我们通过调节信号发生器的调制信号和载波信号的频率、幅度和相位,观察了输出信号的变化。
实验结果显示,当调制信号的频率与载波信号的频率相等时,输出信号呈现出明显的幅度调制效果。
当调制信号的幅度增大时,输出信号的幅度也相应增大。
当调制信号的相位与载波信号的相位相差90度时,输出信号的幅度最大,表现出最明显的幅度调制效果。
通过实验结果的分析,我们可以得出以下结论:1. 调制信号的频率与载波信号的频率相等时,能够实现明显的幅度调制效果。
2. 调制信号的幅度与输出信号的幅度成正比,调制信号的幅度增大时,输出信号的幅度也相应增大。
实验三模拟乘法器调幅及解调实验
实验三模拟乘法器调幅及解调实验实验三模拟乘法器调幅(am、dsb、ssb)及解调实验(包络检波及同步检波实验)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对照全系列载波调幅、Daye载波双边拎调幅和单边拎调幅的波形。
5.介绍演示乘法器(mc1496)的工作原理,掌控调整与测量其特性参数的方法。
6.进一步介绍调幅波的原理,掌控调幅波的模拟信号方法。
7.掌控二极管峰值包络检波的原理。
8.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。
9.掌控用集成电路同时实现同步检波的方法。
二、实验内容1.调测演示乘法器mc1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
5.完成普通调幅波的解调。
6.观测遏制载波的双边拎调幅波的模拟信号。
7.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。
三、实验原理及实验电路表明1、调幅部分幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465khz高频信号,1khz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部结构内置演示乘法器就是顺利完成两个模拟量(电压或电流)相加的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴成正比调制与模拟信号的过程,均可视作两个信号相加或涵盖相加的过程。
使用内置演示乘法器同时实现上述功能比使用拆分器件例如二极管和三极管必须直观得多,而且1性能优越。
所以目前无线通信、广播电视等方面应用领域较多。
内置演示乘法器常用产品存有bg314、f1595、f1596、mc1495、mc1496、lm1595、lm1596等。
模拟乘法器应用实验实验报告
模拟乘法器应用实验实验报告姓名:王攀学号:04085037实验目的:(1)了解模拟乘法器的工作原理(2)学会利用模拟乘法器完成平衡调制、混频、倍频、同步检波、鉴相及鉴频等功能。
实验仪器:高频信号发生器QF1055A 一台;超高频毫伏表DA22A 一台;频率特性测试仪BT-3C 一台;直流稳压电源HY1711-2 一台;数字示波器TDS210 一台.实验原理:实验电路如图1所示。
该电路可用来实现普通调幅、平衡调制、混频、倍频、同步检波等功能。
图中R L为负载电阻,R B是偏置电阻,R E是负载反馈电阻,R W和R1、R2组成平衡调节电路,调节R W,可使1、4两脚的直流电位差为零,从而满足平衡调幅的需要,若1、4脚直流电位差不为零,则1、4输入包括调制信号和直流分量两部分,此时可实现普通调幅波,电感L1和C1、C2组成BPF以混频输出所需的465KHz 中频信号,同步检波可用前边的限幅器(未给处)和模拟乘法器及低通滤波器(L2 C3 C4)构成。
图1.模拟乘法器应用电路一:振幅调制、混频等实验内容:1.实验前,所有实验先进行计算机仿真,研究载波、调制信号大小及频率变化,直流分量大小对已调信号的影响。
2.用模拟乘法器MC1596实现正弦调幅。
分别加入f x=500KHz,U x=100mV,f y=10KHz,U y=0.2V的信号时调电位器R W工作在不平衡状态时便可产生含载波的正弦调幅信号。
a:保持U x(t)不变,改变U y值:50mV、100mV、150mV、200mV、250mV时,观察U o(t)的变化,并作出m~U y(t)关系曲线(*m指以调信号的调幅系数测试时可用公式m=(A-B)/(A+B))b:保持U y(t)不变,f y由小到大变化时,输出波形又如何变化?3.用模拟乘法器MC1596实现平衡调幅波。
a:调平衡:将乘法器y输入端接地,即U y(t)=0,x输入端加入f x=500KHz,U x=50mV的输入信号,调电位器R W 使U o(t)=0。
高频实验五 模拟乘法器幅度调制实验报告
实验五 模拟乘法器幅度调制实验实验六 调幅波同步解调实验实验五 模拟乘法器幅度调制实验 一.实验目的1. 通过实验了解集成模拟乘法器MC1496的典型应用电路工作原理,通过调整外部电路的元件参数,得到AM 波和DSB-SC 波。
2. 通过实验,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论,并研究调制信号、载波信号与已调波之间的关系。
3.掌握在示波器上观察调幅波和测量调幅指数的方法。
二、实验使用仪器1.集成模拟乘法调幅实验板 2.100MH 泰克双踪示波器 3. FLUKE 万用表 4.低频双通道信号源 5.高频信号源三、实验基本原理与电路 1.调幅信号的分析(一) 普通调幅波(AM )(表达式、波形、频谱、功率)(1).普通调幅波(AM )的数学表达式、波形 设调制信号为单一频率的余弦波: t U u m Ω=ΩΩcos ,载波信号为 :t U u c cm c ωcos = 普通调幅波(AM )的表达式为:AM u =t t U c AM ωcos )()cos 1(t m U a cm Ω+=t c ωcos式中,a m 称为调幅系数或调幅指数。
由于调幅系数a m 与调制电压的振幅成正比,即m U Ω越大,a m 越大,调幅波包络的变化速度越大。
一般a m 小于或等于1。
如果a m >1,调幅波产生失真,这种情况称为过调幅。
未调制状态调制状态图5-1 调幅波的波形(2). 普通调幅波(AM )的频谱 普通调幅波(AM )的表达式展开得:t U m t U m t U u c cm a c cm a c cm AM )cos(21)cos(21cos Ω-+Ω++=ωωω (5-2) 它由三个高频分量组成。
将这三个频率分量用图画出,便可得到图5-2所示的频谱图,在这个图上调幅波的每一个正弦分量用一个线段表示,线段的长度代表其幅度,线段在横轴上的位置代表其频率。
实验三模拟乘法器调幅及解调实验
实验三模拟乘法器调幅(AM、DSB、SSB)及解调实验(包络检波及同步检波实验)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅、抑止载波双边带调幅和单边带调幅的方法。
2.研究已调波与调制信号以及载波信号的关系。
3.掌握调幅系数的测量与计算方法。
4.通过实验对比全载波调幅、抑止载波双边带调幅和单边带调幅的波形。
5.了解模拟乘法器(MC1496)的工作原理,掌握调整与测量其特性参数的方法。
6.进一步了解调幅波的原理,掌握调幅波的解调方法。
7.掌握二极管峰值包络检波的原理。
8.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。
9. 掌握用集成电路实现同步检波的方法。
二、实验内容1.调测模拟乘法器MC1496正常工作时的静态值。
2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。
3.实现抑止载波的双边带调幅波。
4.实现单边带调幅。
5.完成普通调幅波的解调。
6.观察抑制载波的双边带调幅波的解调。
7.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。
三、实验原理及实验电路说明1、调幅部分幅度调制就是载波的振幅(包络)随调制信号的参数变化而变化。
本实验中载波是由晶体振荡产生的465KHz高频信号,1KHz的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
1.集成模拟乘法器的内部结构集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单得多,而且性能优越。
所以目前无线通信、广播电视等方面应用较多。
集成模拟乘法器常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。
(1)MC1496的内部结构在本实验中采用集成模拟乘法器MC1496来完成调幅作用。
南理工高频电子线路实验-模拟乘法器实验报告.doc
模拟乘法混频一、实验目的(1)了解集成混频器的工作原理。
(2)了解混频器中的寄生干扰。
二、实验原理混频,又称变频,也是一种频谱的线性搬移过程,它是使信号门某一个频率变换成另一个频率。
完成这种功能的电路称为混频器(或变频器)。
混频器是频谱线性搬移电路,是一个六端网络。
它有两个输入电压,输入信号叫和木地振荡信号叫,输出信号为坷,称为中频信号,其频率是几和齐的差频或和频,称为中频f,=f L±f c(同时也可采用谐波的差频或和频)。
由此可见,混频器在频域上起着减(加)法器的作用O混频器的输入信号心是高频已调波、本振如是正弦波信号,屮频信号也是己调波,除了中心频率与输入信号不同外,由于是频谱的线性搬移,其频谱结构与输入信号叫的频谱结构完全相同。
表现在波形上,中频输岀信号与输入信号的包络形状相同,只是填充频率不同(内部波形疏密程度不同)。
混频器是超外差接收机中的关键部件。
采用超外差技术后,将接收信号混频到一同定屮频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性较好,灵敏度可以做得很高,选择性也较好。
设输入到混频器中的输入已调信号冷和本振屯压叫分别为u s = U s cos Q/ cos co c tu L = U L cos a)L t这两个信号的乘积为u s u L = U S U L cosQ ? COS 67/COS=丄U S U L cosQ f[C0S(69L+a)c)t + COS(69L一叭"]若屮频f 严扎-人,经带通滤波器取出所需边带,可得中频电压为u { = U z cos Q t cos (Djt下图为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。
MC1496可以采用单电源供电,也可采用双电源供电。
本实验电路中采用+ 12V, —8V 供电。
血(820Q)、R 13 (820 Q)组成平衡电路,血为4. 5MHz 选频回 路。
木实验屮输入信号频率为人=4. 2MHz,木振频率九=8. 7MHz 。
模拟乘法器
3.12模拟乘法器一.实验目的1.了解模拟乘法器的构成和工作原理。
2 .掌握模拟乘法器在运算电路中的应用。
二.实验原理集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法,除法,乘方和开方等模拟运算,同时广泛用于信息传输系统中作为调幅,解调,混频和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有许多单片的集成电路。
此外,模拟乘法器还是一些现代专用模拟集成系统中的重要单元。
1.模拟乘法器的基本特性模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端电路符号如图3-12-1所示。
若输入信号为VyVx,,则输出信号Vo为KVxVyVo=式中,K为乘法器的增益系数或标尺因子,单位为1-V。
根据两个输入电压的不同极性,乘积输出的极性有四种组合,可用图3-12-2所示的工作象限来说明。
若信号VyVx,均限定为某一极性的电压时才能正常工作,该乘法器称为单象限乘法器;若信号VyVx,中一个能适应正,负两种极性电压,而另一个只能是单极性电压,为二象限乘法器;若两个输入信号能适应四种极性组合,则称为四象限乘法器。
2.集成模拟乘法器集成模拟乘法器的常见产品有BG314,F1595,F1596,MC1495,MC1496,LM1595,LM1596等。
下面介绍BG314集成模拟乘法器。
BG314内部结构与典型应用电路分别如图3-12-3和图3-12-4所示。
输出电压与输入电压的关系为KVxVyVo=式中,IoxRxRyRcK2=为乘法器的增益系数。
图3-12-1 模拟乘法器的电路符号 图3-12-2 模拟乘法器的工作象限图3-12-3 BG314内部电路(1) 电路特点a. 当反馈电阻Rx 和Ry 足够大时,输出电压Vo 与输入电压Vy Vx ,的乘积成正比,具有接近于理想的相乘作用。
b. 输入电压Vy Vx ,均可取正或负极性,所以是四象限乘法器。
实验报告——模拟乘法器振幅调制
电子电路实验教学中心-高电信号实验室制
桂林电子科技大学教学实践部电子电路实验教学中心
电子电路实验教学中心-高电信号实验室制
桂林电子科技大学教学实践部电子电路实验教学中心
通信电子电路实验报告
-----------------------------------------------------------------------------------------------------------------------------------------------------
电子电路实验教学中心-高电信号实验室制
桂林电子科技大学教学实践部电子电路实验教学中心
通信电子电路实验报告
-----------------------------------------------------------------------------------------------------------------------------------------------------
C5008
MP5 00 3
C5 00 9
P50 0 4
GND
P50 0 5
R5013 R5013'
R5004 R5006
GND
GND
GND
GND GND
-----------------------------------------------------------------------------------------------------------
最新乘法器实验报告
最新乘法器实验报告实验目的:本实验旨在验证乘法器的工作原理,并通过实际操作加深对数字电路中乘法运算实现的理解。
通过构建和测试不同的乘法器电路,我们将分析其性能和适用场景,以及可能的改进方向。
实验设备和材料:1. FPGA开发板2. 集成电路芯片(包括乘法器芯片)3. 示波器4. 电源5. 连接线和面包板6. 计算机辅助设计(CAD)软件7. 数字逻辑分析仪实验步骤:1. 设计一个基本的乘法器电路图,使用CAD软件进行电路模拟。
2. 根据电路图在FPGA开发板上搭建实际电路。
3. 准备测试向量,包括一系列的二进制数值,用于乘法器的输入。
4. 连接电源,使用示波器观察乘法器的输出结果。
5. 对输出结果进行分析,验证其正确性,并记录在实验报告中。
6. 改变输入值,重复步骤4和5,以测试乘法器对不同输入的处理能力。
7. 使用数字逻辑分析仪进一步分析乘法器的性能,包括运算速度和资源消耗。
8. 根据实验结果,提出可能的改进措施和乘法器的应用前景。
实验结果:在本次实验中,我们成功搭建并测试了一个基本的乘法器电路。
通过对不同输入值的测试,我们发现乘法器能够准确地计算出两个二进制数的乘积。
实验数据显示,乘法器的运算速度和资源消耗符合预期,但在处理大数值乘法时存在一定的局限性。
讨论与改进:实验结果表明,所构建的乘法器在处理小数值乘法时表现良好,但在处理大数值时,由于资源限制和运算速度的约束,性能有所下降。
为了改进这一点,可以考虑使用更高效的算法,如Booth算法或Wallace 树算法,来优化乘法器的设计。
此外,通过优化电路布局和使用更高性能的集成电路,也可以提高乘法器的整体性能。
结论:通过本次实验,我们验证了乘法器的基本原理和工作性能,并通过实际操作加深了对其设计和应用的理解。
未来的研究可以集中在提高乘法器的运算速度和减少资源消耗上,以适应更广泛的应用需求。
集成电路模拟乘法器的应用实验
集成电路模拟乘法器的应用实验
一、实验目的
了解模拟乘法器(MC1496)的工作原理,掌握 其调整与特性参数的测量方法。 掌握乘法器实现鉴频电路的原理及方法。
二、实验内容
改变模拟乘法器外部电路,实现鉴频电路。 观察测量输出点波形。
测量鉴频特性曲线。
三、实验仪器
GDS数字示波器 万用表 调试工具 频率特性扫频仪
鉴频灵敏度:
五、实验步骤
六、注意事项
由于万用表输出电容的影响,将万用表接在 变容二极管D1两侧和不接在D1两侧时,Q2发 射极信号的频率会不一样,本步骤实验万用 表在测量直流电压后应取下,再用示波器在 Q2发射极测信号频率。
七、思考题
为什么静态电流Ieo增大,输出振幅增加而Ieo 过大反而会使振荡器输出幅度下降; 讨论回路电感变化对三点式振荡器输出波形 非线性失真的影响; 讨论变容二极管接入电容对压控振荡器频偏 的影响。
MC1496构成的同步检波器
电路对有载波调幅信号及抑制载波的调幅信号均可实现解调
载波输入端:频率fc=10.7MHz,峰峰值UCP-P= 200mV。 调节平衡电位器RP,使输出信号u0(t)=0。 信号输入端:输入有载波的调制信号uS: fc=10.7MHz,fΩ=1KHz, UCP-P= 200mV ,调制度m=100%。 输出信号u0(t)波形如下图。
抑制载波振幅调制
1. 载波输入端:频率fc=10.7MHz,峰峰值UCP-P= 40mV 2 . 调制信号输入端: 频率fΩ=1KHz,先使峰峰值UΩP-P=0 3 .调节RP,使输出u0=0,逐渐增加UΩP-P,则输出信号u0(t)的幅度逐渐增大, 出现下图所示的抑制载波的调幅信号。
模拟乘法器混频实验报告
模拟乘法器混频实验报告一、引言模拟乘法器混频实验是电子工程领域中一项重要的实验。
通过该实验,我们可以了解模拟乘法器的工作原理以及混频技术的应用。
本实验报告将详细介绍实验的目的、所用仪器设备、实验步骤、实验结果以及分析和讨论。
二、实验目的本实验的目的是通过搭建模拟乘法器混频电路,观察并分析乘法器的工作原理以及混频效果。
具体目标如下:1. 理解模拟乘法器的基本原理;2. 掌握模拟乘法器混频电路的搭建方法;3. 分析乘法器的非线性特性对混频效果的影响;4. 通过实验结果验证理论分析的正确性。
三、仪器设备本实验所用的仪器设备如下:1. 函数信号发生器:用于产生输入信号;2. 模拟乘法器:用于实现模拟乘法运算;3. 混频器:用于实现信号的混频;4. 示波器:用于观测信号的波形和频谱。
四、实验步骤1. 连接仪器设备:将函数信号发生器的输出信号连接到模拟乘法器的一个输入端,将另一个输入端连接到混频器的输出端,再将混频器的输出端连接到示波器的输入端。
2. 设置参数:设置函数信号发生器的输出信号频率和幅值,选择合适的参数。
3. 观察波形:打开示波器,观察模拟乘法器输出端的波形,并记录波形的特点。
4. 分析频谱:通过示波器的频谱分析功能,观察信号的频谱特性,并记录分析结果。
5. 调整参数:根据实验结果,适当调整函数信号发生器的输出频率和混频器的参数,再次观察波形和频谱。
6. 分析和讨论:根据实验结果,分析模拟乘法器的工作原理和混频效果,并进行讨论。
五、实验结果经过实验观察和分析,得到以下结果:1. 模拟乘法器输出波形呈现非线性特性,波形的形状与输入信号频率和幅值有关;2. 混频器能将两个频率不同的信号进行混合,产生新的频率组合,并且频谱特性能够反映出混频效果;3. 调整函数信号发生器的频率和混频器的参数,可以改变输出波形和频谱的特征。
六、分析和讨论通过实验结果的观察和分析,我们可以得出以下结论:1. 模拟乘法器的工作原理是利用非线性特性,将两个输入信号相乘,产生新的输出信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟乘法器实验报告
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
实验课程名称:_高频电子线路
图1-1 1496构成的振幅调制电路电原理图图中载波信号经高频耦合电容C1输入到Uc⑩端,C3为高频旁路电容,使⑧交流接地。
调制信号经高频耦合电容C2输入到
为高频旁路电容,使①交流接地。
调制信号UAM从⑿脚单端输出。
电路
供电,所以⑤脚接
此,改变
的大小,即:
VEE=-8V,I5=1mA时,可算得:<MC1496器件的静态电流一
=1mA左右)
R5={<8-0.75)/<1X10-3)}-500=6.75KΩ取标称
,,
所以取:R1=R2=1K R3=51Ω R4=R5=750Ω,R6=R7=1K
引脚⑧⑩①④⑥12 ②③⑤⑦14 电压<V
)。
实验测得信号波形如图1-3
时,过零点为一条直线。
1-4 图1-5
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。