Mathematical用法 大全 实用版

合集下载

mathematica用法

mathematica用法

Mathematica是一款非常强大的数学软件,它支持符号计算、数值计算和图形可视化等功能。

以下是一些Mathematica的基本用法:
表达式输入:在Mathematica中,可以通过输入表达式来得到结果。

例如,输入 2 + 3,然后按下回车键,就会得到结果5。

定义变量:使用Let 命令可以定义变量,例如Let[x = 5]。

使用函数:Mathematica提供了大量的内置函数,可以直接使用。

例如,Sin[x] 可以计算sin(x)的值。

使用Pattern替换:Mathematica支持模式替换,可以通过/. 操作进行。

例如,设 a 是一个变量,有a/.a->1 就可以将所有出现的a 替换为1。

使用纯函数:纯函数是一个没有副作用的函数,它对参数进行操作并返回结果,不会改变参数的值。

在Mathematica中,可以使用Function 命令定义纯函数。

例如,f = Function[{x}, x^2] 可以定义一个对输入的x进行平方操作的纯函数。

使用Plot和ParametricPlot:Plot 和ParametricPlot 是Mathematica中用于绘图的命令,可以用来绘制函数的图像或者参数方程的图像。

例如,Plot[Sin[x], {x, 0, 2*Pi}] 就会绘制sin(x)的图像。

mathematica简明使用教程

mathematica简明使用教程

mathematica简明使用教程Mathematica是一种强大的数学软件,广泛应用于科学研究、工程计算和数据分析等领域。

本文将简要介绍Mathematica的使用方法,帮助读者快速上手。

一、安装和启动Mathematica我们需要下载并安装Mathematica软件。

在安装完成后,可以通过桌面图标或开始菜单中的快捷方式来启动Mathematica。

二、界面介绍Mathematica的界面分为菜单栏、工具栏、输入区域和输出区域四部分。

菜单栏提供了各种功能选项,工具栏包含了常用的工具按钮,输入区域用于输入代码或表达式,而输出区域则显示执行结果。

三、基本操作1. 输入和输出在输入区域输入代码或表达式后,按下Shift+Enter键即可执行,并在输出区域显示结果。

Mathematica会自动对输入进行求解或计算,并返回相应的输出结果。

2. 变量定义可以使用等号“=”来定义变量。

例如,输入“a = 3”,然后执行,就会将3赋值给变量a。

定义的变量可以在后续的计算中使用。

3. 函数调用Mathematica内置了许多常用的数学函数,可以直接调用使用。

例如,输入“Sin[π/2]”,然后执行,就会返回正弦函数在π/2处的值。

4. 注释和注解在代码中添加注释可以提高代码的可读性。

在Mathematica中,可以使用“(*注释内容*)”的格式来添加注释。

四、数学运算Mathematica支持各种数学运算,包括基本的加减乘除,以及更复杂的求导、积分、矩阵运算等。

下面简要介绍几个常用的数学运算:1. 求导可以使用D函数来求导。

例如,输入“D[Sin[x], x]”,然后执行,就会返回正弦函数的导数。

2. 积分可以使用Integrate函数来进行积分运算。

例如,输入“Integrate[x^2, x]”,然后执行,就会返回x的平方的不定积分。

3. 矩阵运算Mathematica提供了丰富的矩阵运算函数,可以进行矩阵的加减乘除、转置、求逆等操作。

mathmatic 基本用法

mathmatic 基本用法

mathmatic 基本用法Mathematica是一种强大的数学软件,它具有广泛的数学计算和可视化功能。

基本用法包括使用Mathematica进行数学运算、求解方程、绘制图表等。

1.数学运算:Mathematica可以进行基本的数学运算,如加减乘除、幂运算、三角函数、对数函数等。

例如,可以输入"2+3"得到结果"5",输入"Sin[π/2]"得到结果"1"。

2.方程求解:Mathematica可以求解各种类型的方程。

例如,可以输入"Solve[x^2 - 3x + 2 == 0, x]"来求解这个二次方程,得到结果"x == 1 || x == 2"。

3.符号计算:Mathematica可以进行符号计算,包括展开、化简、因式分解等。

例如,可以输入"Simplify[(x^2 + x - 6)/(x + 3)]"来化简这个表达式,得到结果"x - 2"。

4.绘图功能:Mathematica可以生成各种类型的图表,包括二维曲线图、三维曲面图、柱状图、散点图等。

例如,可以输入"Plot[Sin[x], {x, 0, 2π}]"来绘制正弦函数的曲线图。

除了基本用法外,Mathematica还有许多其他功能,如矩阵计算、微积分、概率统计、符号推导、动态演示等。

它还提供了大量的内置函数和算法,可以用于求解复杂的数学问题。

使用Mathematica还可以进行科学计算、工程计算、数据分析等各种应用领域。

总之,Mathematica是一款功能强大的数学软件,可以帮助用户进行各种数学计算和可视化操作。

mathematica简单算例

mathematica简单算例

mathematica简单算例Mathematica是一款强大的数学软件,可以用于解决各种数学问题和进行数值计算。

在本文中,我们将介绍一些简单的算例,展示Mathematica的基本用法和功能。

一、求解方程假设我们需要求解一个简单的一元二次方程,比如x^2-5x+6=0。

我们可以使用Mathematica的Solve函数来解这个方程。

代码如下:```mathematicaSolve[x^2 - 5x + 6 == 0, x]```运行以上代码后,Mathematica会给出方程的解,即x=2和x=3。

通过这个例子,我们可以看到Mathematica可以方便地解决各种复杂的方程。

二、绘制函数图像Mathematica还可以用来绘制函数的图像。

假设我们想要绘制函数y=x^2的图像,我们可以使用Mathematica的Plot函数。

代码如下:```mathematicaPlot[x^2, {x, -10, 10}]```运行以上代码后,Mathematica会生成一个关于y=x^2的图像,x 的取值范围为-10到10。

通过这个例子,我们可以看到Mathematica可以帮助我们直观地理解数学函数。

三、计算数列Mathematica还可以用来计算数列的和。

假设我们需要计算斐波那契数列的前20项的和。

我们可以使用Mathematica的Sum函数来计算。

代码如下:```mathematicaSum[Fibonacci[n], {n, 1, 20}]```运行以上代码后,Mathematica会计算出斐波那契数列的前20项的和。

通过这个例子,我们可以看到Mathematica可以帮助我们快速计算各种数学问题。

四、符号计算Mathematica还可以进行符号计算。

假设我们需要对一个多项式进行展开,比如(x+1)^3。

我们可以使用Mathematica的Expand函数来展开多项式。

代码如下:```mathematicaExpand[(x + 1)^3]```运行以上代码后,Mathematica会展开多项式(x+1)^3,结果为x^3+3x^2+3x+1。

Mathematical用法-大全-实用版

Mathematical用法-大全-实用版

Mathematica for Windows 用法一、Mathematica的主要功能Mathematica是美国Wolfram公司开发的一个功能强大的计算机数学系统,提供了范围广泛的数学计算功能,主要包括三个方面:符号演算、数值计算、图形。

例如:多项式的四则运算、展开、因式分解,有理式的各种计算,有理方程、超越方程的解,向量和矩阵的各种计算,求极限、导数、极值、不定积分、定积分、幂级数展开式,求解微分方程,作一元、二元函数的图形等等。

二、Mathematica的基本知识1.输入表达式:直接输入一个表达式(包括算式和命令,长表达式用“Enter”换行)后,按“Shift+Enter”执行,执行后以“Out[命令序号]= ……”形式输出执行结果,输出的结果可在后续的表达式中使用。

若命令后有分号,则不输出执行结果(图形输出与Print命令除外)。

“%”表示上一个输出,“%%”表示倒数第2个输出,“%i”表示第i个命令的输出。

2.运算符:+、-、*、/、^ ,“*”可用空格代替,“^”表示乘方。

如:In[1]:=2^10,输出为“Out[1]= 1024”,其中“In[1]:=”不需要输入。

In[2]:=3+5,Out[2]= 8;In[3]:=%-2,Out[3]= 6;In[4]:=%2+4,Out[4]= 12;In[5]:=1/3-1/4,Out[5]=121;In[6]:=N[%],Out[6]= 0.0833333;In[7]:=N[%5+12,10],Out[7]= 12.08333333(注意字母的大小写)3.变量赋值:变量=表达式,“x=.”或Clear[x] 表示清除对x的赋值。

表达式/.t ->c ,将表达式中的t全替换成c。

?x,查x信息。

4.常用的数学常数:Pi (π)、E(e)、Infinity (∞)、I (1-)5.常用的数学函数:Abs, Sin, Cos, T an, Cot, ArcSin, Log (自然对数), Sqrt,Exp如:In[1]:=Sqrt[2]+1;In[2]:=Sin[2]+ArcSin[1];In[3]:=Exp[2]+%(自变量用[]括,区分大小写,首字母大写)三、常用运算1.多项式运算:In[1]:= (2+4*x^2)*(1-x)^3或In[1]:= t = (2+4*x^2)*(1-x)^3 (将右端表达式赋值给t);In[2]:=a=t/.x->4 (计算表达式t当x=4时的值,并赋值给变量a )In[3]:=a=.(清除变量a )In[3]:=Expand[t](展开);In[4]:=Factor[%](把上一个结果因式分解)2.解方程:In[1]:=Solve[x^2+3*x = = 2];In[2]:=N[%];In[3]:=Solve[a*x-b= = 0, x];In[4]:=NSolve[{x-2*y= =0,x^2-y= =1},{x,y}](解方程组并得到数值解)3.自定义函数:In[1]:= f [x_ ]:=x^2+2*x ;In[2]:=f[5]+7;In[3]:=f[a+b]4.求极限:In[1]:=Limit[Sin[x]/x, x ->0];In[2]:=Limit[(1+1/n)^n, n->Infinity],Out[2]=E5.求(偏)导数:In[1]:=D[a*x^2+3, x];In[2]:=D[x^2+y^3-Sin[2*y], y](对y的偏导数);In[3]:=D[Log[x], {x,2}] (求对x的二阶导数);In[4]:=D[Sin[x+y]*Exp[z*y^2],x,y] (求对x、y的二阶混合偏导数);In[5]:=Simplify[%] (对前一结果化简);In[6]:=D[Sin[x+y]*Exp[z*y^2],{x,2},{y,3}]6.求不定积分:In[1]:=Integrate[x^2,x];In[2]:=Integrate[1/(x^2+a^2),x]7.定积分:In[1]:=Integrate[x^2, {x,0,1}];In[2]:=Integrate[x^2,{x,a,b}];In[3]:=Integrate[x^2+y^2, {x,0,a},{y,0,b}];(求矩形域上的二重积分)In[4]:=Integrate[1, {x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}];Out[4]=Pi(圆面积)8.幂级数展开:In[1]:=Series[Exp[x],{x,0,4}](在x=0处展开到x的四次幂)9.矩阵的输入和输出:In[1]:= a ={{1,2},{3,4}}(定义一个2x2的矩阵a ,按行写);In[2]:=MatrixForm[a](输出为矩阵形式);In[3]:=Transpose[a](a的转置);In[4]:=a[[2]](a的第2行);In[5]:=Tanspose[a][[2]](a的第2列);In[6]:=Inverse[a](求a的逆矩阵);In[7]:=Det[a](矩阵的行列式);In[8]:=Eigenvalues[a](求特征值);In[9]:=Eigenvectors[a](求特征向量);In[10]:=RowReduce[a](把a化为阶梯形,可用于求矩阵的秩、判断线性相关性);In[11]:= b ={{5,6,7},{8,9,10}};In[12]:= a.b(矩阵a与b的乘积)10.解线性方程组:In[1]:= a ={{3,4,5,6},{6,8,10,12},{4,5,6,7},{5,6,7,8}};(a的秩为2)In[2]:= b ={1,2,3,5}(列向量);(增广矩阵的秩也为2)In[3]:=LinearSolve[a,b](求线性方程组ax=b的一个特解);In[4]:=NullSpace[a](求线性方程组ax=0的一个基础解系);In[5]:= x =k1%4[[1]]+k2%4[[2]]+%3(ax=b的全部解,k1、k2为任意常数)11.求和:In[1]:=NSum[Sin[n]/n^3,{n,1,Infinity}](求级数∑∞=13 sinn nn的和)12.求极小值:In[1]:=FindMinimum[Sin[x]*Cos[x],{x,0.5}](求函数在0.5附近的极小值);In[2]:=FindMinimum[Sin[x*y]*Exp[x^2],{x,0.2}, {y,0.3}](求多元函数极小值)13.求解线性规划问题:Min cx,mx≥b,x≥0,求向量x 。

Mathematica常用函数的中文说明及使用方法

Mathematica常用函数的中文说明及使用方法

Mathematica常⽤函数的中⽂说明及使⽤⽅法Mathematica常⽤函数的中⽂说明及使⽤⽅法---------------------------------------------------------------------注:为了对Mathematica有⼀定了解,使同学系统掌握Mathematica的强⼤功能,将常⽤函数的中⽂说明及使⽤⽅法总结如下,希望能对⼤家有所帮助。

---------------------------------------------------------------------⼀、运算符及特殊符号Line1; 执⾏Line,不显⽰结果Line1,line2 顺次执⾏Line1,2,并显⽰结果name 关于系统变量name的信息name 关于系统变量name的全部信息!command 执⾏Dos命令n! N的阶乘!!filename 显⽰⽂件内容<Expr>> filename 打开⽂件写Expr>>>filename 打开⽂件从⽂件末写() 结合率[] 函数{} ⼀个表<*Math Fun*> 在c语⾔中使⽤math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作⽤于后⾯的式⼦% 前⼀次的输出%% 倒数第⼆次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下⽂a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘⽅base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha ⾮++,-- ⾃加1,⾃减1+=,-=,*=,/= 同C语⾔>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs ⽴即赋值lhs:=rhs 建⽴动态赋值lhs:>rhs 建⽴替换规则lhs->rhs 建⽴替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应⽤于exprexpr//.rule 将规则rule不断应⽤于expr知道不变为⽌param_ 名为param的⼀个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)⼆、系统常数Pi 3.1415....的⽆限精度数值E 2.17828...的⽆限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....⾼斯常数GoldenRatio 1.61803...黄⾦分割数Degree Pi/180⾓度弧度换算I 复数单位Infinity ⽆穷⼤-Infinity 负⽆穷⼤ComplexInfinity 复⽆穷⼤Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进⾏化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因⼦FactorTerms[poly, x] 提出与x⽆关的数字因⼦FactorTerms[poly, {x1,x2...}] 提出与xi⽆关的数字因⼦Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最⾼指数Numerator[expr] 表达式expr的分⼦Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分⼦部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三⾓函数TrigFactor[expr] 给出表达式中的三⾓函数因⼦TrigFactorList[expr] 给出表达式中的三⾓函数因⼦的表TrigReduce[expr] 对表达式中的三⾓函数化简TrigToExp[expr] 三⾓到指数的转化ExpToTrig[expr] 指数到三⾓的转化RootReduce[expr]ToRadicals[expr]四、解⽅程Solve[eqns, vars] 从⽅程组eqns中解出varsSolve[eqns, vars, elims] 从⽅程组eqns中削去变量elims,解出vars DSolve[eqn, y, x] 解微分⽅程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分⽅程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分⽅程Eliminate[eqns, vars] 把⽅程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成⽴的所有参数满⾜的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] ⽤&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式⽅程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的⼆重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] ⼀阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表⽰⼀个在x0处x的幂级数,其中ai为系数O[x]^n n阶⼩量x^nO[x, x0]^n n阶⼩量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly中独⽴变量的列表CoefficientList[poly, var] 给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列表PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x] 以x为⾃变量的两个多项式之商式p/q PolynomialRemainder[p, q, x] 以x为⾃变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最⼤公因式PolynomialLCM[poly1,poly2,...] poly(i)的最⼩公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到⼀个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly中的数字公因⼦FactorTerms[poly, {x1,x2...}] 提出poly中与xi⽆关项的数字公因⼦FactorList[poly]给出poly各个因⼦及其指数{{poly1,exp1},{...}...}FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第⼀项是数字公因⼦,第⼆项是与xi⽆关的因式,其后是与xi有关的因式按升幂的排列Cyclotomic[n, x] n阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产⽣type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n为seed产⽣伪随机数如果采⽤了 <在2.0版本为 <<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m" Random[distribution]可以产⽣各种分布如Random[BetaDistribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常⽤的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution, UniformDistribution, WeibullDistribution⼋、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求⽅程数值解NSolve[eqn, var, n] 求⽅程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分⽅程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分⽅程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找⽅程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最⼩值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最⼩值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最⼩值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极⼩⽆关组数据处理:Fit[data,funs,vars]⽤指定函数组对数据进⾏最⼩⼆乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进⾏差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进⾏插值Fourier[list] 对复数数据进⾏付⽒变换InverseFourier[list] 对复数数据进⾏付⽒逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最⼩值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最⼤值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort[list] 将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序⽐较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐⾓Conjugate[expr] 复数表达式的共轭⼗、数的头及模式及其他操作Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式⽤在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传⼊参数的类型,另外也可⽤来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差⼩于dxChop[expr, delta] 将expr中⼩于delta的部分去掉,dx默认为10^-10 Accuracy[x] 给出x⼩数部分位数,对于Pi,E等为⽆限⼤Precision[x] 给出x有效数字位数,对于Pi,E等为⽆限⼤SetAccuracy[expr, n] 设置expr显⽰时的⼩数部分位数SetPrecision[expr, n] 设置expr显⽰时的有效数字位数⼗⼀、区间函数Interval[{min, max}] 区间[min, max](* Solve[3 x+2==Interval[{-2,5}],x]*) IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交⼗⼆、矩阵操作a.b.c 或 Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k⾏与第nk列交换Det[m] 矩阵的⾏列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性⽅程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶⼦矩阵的⾏列式的值(伴随阵,好像是) MatrixPower[mat, n] 阵mat⾃乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩阵Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的⼴义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解⼗三、表函数(*“表”,我认为是Mathematica中最灵活的⼀种数据类型 *)(*实际上表就是表达式,表达式也就是表,所以下⾯list==expr *) (*⼀个表中元素的位置可以⽤于⼀个表来表⽰ *)表的⽣成{e1,e2,...} ⼀个表,元素可以为任意表达式,⽆穷嵌套Table[expr,{imax}] ⽣成⼀个表,共imax个元素Table[expr,{i, imax}] ⽣成⼀个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] ⼀维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各⾃从1到ni) IdentityMatrix[n] n阶单位阵DiagonalMatrix[list] 对⾓阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的⼦表First[expr] 第⼀个元Last[expr] 最后⼀个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第⼀个元剩下的表Select[list, crit] 把crit作⽤到每⼀个list的元上,为True的所有元组成的表表的属性Length[expr] expr第⼀曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为⼀个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最⼤深度Level[expr,n] 给出expr中第n层⼦表达式的列表Count[list, pattern] 满⾜模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插⼊elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插⼊elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为newSort[list] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为⼀个⼦表分割后再组成的⼤表Flatten[list] 抹平所有⼦表后得到的⼀维⼤表Flatten[list,n] 抹平到第n层Split[list] 把相同的元组成⼀个⼦表,再合成的⼤表FlattenAt[list, n] 把list[[n]]处的⼦表抹平Permutations[list] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表⽽不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];⼗四、绘图函数⼆维作图Plot[f,{x,xmin,xmax}] ⼀维函数f[x]在区间[xmin,xmax]上的函数曲线Plot[{f1,f2..},{x,xmin,xmax}] 在⼀张图上画⼏条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数⽅程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在⼀张图上画多条参数曲线选项:PlotRange->{0,1} 作图显⽰的值域范围AspectRatio->1/GoldenRatio⽣成图形的纵横⽐PlotLabel ->label 标题⽂字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明⽂字Ticks->None,Automatic,fun⽤什么⽅式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜⾊等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的⽂字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜⾊等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜⾊等属性PlotPoints->15 曲线取样点,越⼤越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]⼆维函数f[x,y]的空间曲⾯Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲⾯的染⾊由s[x,y]值决定ListPlot3D[array] ⼆维数据阵array的⽴体⾼度图ListPlot3D[array,shades]同上,曲⾯的染⾊由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]⼆元数⽅程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长⽅体边框BoxRatios->{sx,sy,sz} 三轴⽐例BoxStyle 三维长⽅体边框线性颜⾊等属性Lighting ->True 是否染⾊LightSources->{s1,s2..} si为某⼀个光源si={{dx,dy,dz},color}color为灯⾊,向dx,dy,dz⽅向照射AmbientLight->颜⾊函数慢散射光的光源Mesh->True,False是否画曲⾯上与x,y轴平⾏的截⾯的截线MeshStyle 截线线性颜⾊等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}⽹格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜⾊Shading ->False,True 是否染⾊HiddenSurface->True,False 略去被遮住不显⽰部分的信息等⾼线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]⼆维函数f[x,y]在指定区间上的等⾼线图ListContourPlot[array] 根据⼆维数组array数值画等⾼线选项:Contours->n 画n条等⾼线Contours->{z1,z2,..} 在zi处画等⾼线ContourShading -> False 是否⽤深浅染⾊ContourLines -> True 是否画等⾼线ContourStyle -> {{style1},{style2},..}等⾼线线性颜⾊等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]⼆维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显⽰Show[graphics,options] 显⽰⼀组图形对象,options为选项设置Show[g1,g2...] 在⼀个图上叠加显⽰⼀组图形对象GraphicsArray[{g1,g2,...}]在⼀个图上分块显⽰⼀组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适⽤于全部图形函数)Background->颜⾊函数指定绘图的背景颜⾊RotateLabel -> True 竖着写⽂字TextStyle 此后输出⽂字的字体,颜⾊⼤⼩等ColorFunction->Hue等把其作⽤于某点的函数值上决定某点的颜⾊RenderAll->False 是否对遮挡部分也染⾊MaxBend 曲线、曲⾯最⼤弯曲度⼗四、绘图函数(续)图元函数Graphics[prim, options]prim为下⾯各种函数组成的表,表⽰⼀个⼆维图形对象Graphics3D[prim, options]prim为下⾯各种函数组成的表,表⽰⼀个三维图形对象SurfaceGraphics[array, shades]表⽰⼀个由array和shade决定的曲⾯对象ContourGraphics[array]表⽰⼀个由array决定的等⾼线图对象DensityGraphics[array]表⽰⼀个由array决定的密度图对象以上定义图形对象,可以进⾏对变量赋值,合并显⽰等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对⾓线指定的长⽅体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从⾓度a1~a2的圆弧Disk[{x, y}, r] 填充的园、椭圆、圆弧等参数同上Raster[array,ColorFunction->f] 颜⾊栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接⽤PostScript图元语⾔写Scaled[{x,y,..}] 返回点的坐标,且均⼤于0⼩于1颜⾊函数(指定其后绘图的颜⾊)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜⾊,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜⾊其他函数(指定其后绘图的⽅式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的⼤⼩Dashing[{r1,r2,..}] 虚线⼀个单元的间隔长度ImageSize->{x, y} 显⽰图形⼤⼩(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空⽩ImageRotated->False 是否旋转90度显⽰流程控制—————————————————————————————————————⼗五、流程控制分⽀If[condition, t, f] 如果condition为True,执⾏t段,否则f段If[condition, t, f, u] 同上,即⾮True⼜⾮False,则执⾏u段Which[test1,block1,test2,block2..] 执⾏第⼀为True的testi对应的blockiSwitch[expr,form1,block1,form2,block2..]执⾏第⼀个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执⾏expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执⾏body直到test为FalseFor[start,test,incr,body]类似于C语⾔中的for,注意","与";"的⽤法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停⽌计算,把value返回给最近⼀个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停⽌Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停⽌其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的⼀重循环Continue[ ] 停⽌本次循环,进⾏下⼀次循环Goto[tag] ⽆条件转向Label[Tag]处Label[tag] 设置⼀个断点Check[expr,failexpr] 计算expr,如果有出错信息产⽣,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产⽣时则返回failexprCheckAbort[expr,failexpr]当产⽣abort信息时放回failexprInterrupt[ ] 中断运⾏Abort[ ] 中断运⾏TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终⽌MemoryConstrained[expr,b]计算expr,当耗⽤内存超过b字节时终⽌运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产⽣⼀个输⼊对话框,返回所输⼊任意表达式Input["prompt"] 同上,prompt为对话框的提⽰Pause[n] 运⾏暂停n秒函数编程—————————————————————————————————————⼗六、函数编程(*函数编程是Mathematica中很有特⾊也是最灵活的⼀部分,它充分体现了 *)(*Mathematica的“⼀切都是表达式”的特点,如果你想使你的Mathematica程 *)(*序快于⾼级语⾔,建议你把本部分搞通*)纯函数Function[body]或body& ⼀个纯函数,建⽴了⼀组对应法则,作⽤到后⾯的表达式上Function[x, body] 单⾃变量纯函数Function[{x1,x2,...},body]多⾃变量纯函数#,#n 纯函数的第⼀、第n个⾃变量## 纯函数的所有⾃变量的序列examp: #1^#2& [2,3] 返回第⼀个参数的第⼆个参数次⽅映射Map[f,expr]或f/@expr 将f分别作⽤到expr第⼀层的每⼀个元上得到的列表Map[f,expr,level] 将f分别作⽤到expr第level层的每⼀个元上Apply[f,expr]或f@@expr 将expr的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作⽤到expr的每⼀层的每⼀个元上MapAt[f,expr,n] 把f作⽤到expr的第n个元上MapAt[f,expr,{i,j,...}] 把f作⽤到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f作⽤于expr的每⼀个元Scan[f,expr,levelspec] 同上,仅作⽤第level层的元素复合映射Nest[f,expr,n] 返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0重到n重复合函数的列表{expr,f[expr],f[f[expr]]..} FixedPoint[f, expr] 将f复合作⽤于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n次,如果不收敛则停⽌FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后⼀个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f对加法的分配率Distribute[expr, g] 对g的分配率Identity[expr] expr的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译⼀个函数,编译后运⾏速度可以⼤⼤加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型⼗七、替换规则lhs->rhs 建⽴了⼀个规则,把lhs换为rhs,并求rhs的值lhs:>rhs 同上,只是不⽴即求rhs的值,知道使⽤该规则时才求值Replace[expr,rules] 把⼀组规则应⽤到expr上,只作⽤⼀次expr /. rules 同上expr //.rules 将规则rules不断作⽤到expr上,直到⽆法作⽤为⽌Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产⽣⼀组优化的规则组查询函数、串函数—————————————————————————————————————⼗⼋、查询函数(*查询函数⼀般是检验表达式是否满⾜某些特殊形式,并返回True或False*)(*可以在Mathematica中⽤“?*Q”查询到 *)ArgumentCountQ MatrixQAtomQ MemberQDigitQ NameQEllipticNomeQ NumberQEvenQ NumericQExactNumberQ OddQFreeQ OptionQHypergeometricPFQ OrderedQInexactNumberQ PartitionsQIntegerQ PolynomialQIntervalMemberQ PrimeQInverseEllipticNomeQ SameQLegendreQ StringMatchQLetterQ StringQLinkConnectedQ SyntaxQLinkReadyQ TrueQListQ UnsameQLowerCaseQ UpperCaseQMachineNumberQ ValueQMatchLocalNameQ VectorQMatchQ⼗九、字符串函数"text" ⼀个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..] 串的连接StringLength["string"] 串长度StringReverse["string"] 串反转StringTake["string", n] 取串的前n个字符的⼦串,参数同Take[]StringDrop["string", n] 参见Drop,串也就是⼀个表StringInsert["string","snew",n] 插⼊,参见Insert[]StringPosition["string", "sub"] 返回⼦串sub在string中起⽌字母位置StringReplace["string",{"s1"->"p1",..}] ⼦串替换StringReplacePart["string", "snew", {m, n}]把string第m~n个字母之间的替换为snewStringToStream["string"] 把串当作⼀个输⼊流赋予⼀个变量Characters["string"] 把串"string"分解为每⼀个字符的表ToCharacterCode["string"] 把串"string"分解为每⼀个字符ASCII值的表FromCharacterCode[n] ToCharacterCode的逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode的逆函数ToUpperCase[string] 把串的⼤写形式ToLowerCase[string] 把串的⼩写形式CharacterRange["c1","c2"] 给出ASCII吗在c1到c2之间的字符列表ToString[expr] 把表达式变为串的形式ToExpression[input] 把⼀个串变为表达式Names["string"] 与?string同,返回与string同名的变量列表。

Mathematical常用功能大全-精简版

Mathematical常用功能大全-精简版

Mathematica for Windows 常用用法一、Mathematica 的主要功能Mathematica 是美国Wolfram 公司开发的一个功能强大的计算机数学系统,提供了范围广泛的数学计算功能,主要包括三个方面:符号演算、数值计算、图形。

例如:多项式的四则运算、展开、因式分解,有理式的各种计算,有理方程、超越方程的解,向量和矩阵的各种计算,求极限、导数、极值、不定积分、定积分、幂级数展开式,求解微分方程,作一元、二元函数的图形等等。

二、Mathematica 的基本知识 1.输入表达式:直接输入一个表达式(包括算式和命令,长表达式用“Enter ”换行)后,按“Shift+Enter ”执行,执行后以“Out[命令序号]= ……”形式输出执行结果,输出的结果可在后续的表达式中使用。

若命令后有分号,则不输出执行结果(图形输出与Print 命令除外)。

“%”表示上一个输出,“%%”表示倒数第2个输出,“%i”表示第i个命令的输出。

2.运算符:+、-、*、/、^ ,“*”可用空格代替,“^”表示乘方。

如:In[1]:=2^10,输出为“Out[1]= 1024”,其中“In[1]:=”不需要输入。

In[2]:=3+5,Out[2]= 8;In[3]:=%-2,Out[3]= 6;In[4]:=%2+4,Out[4]= 12;In[5]:=1/3-1/4,Out[5]=121;In[6]:=N[%],Out[6]= 0.0833333; In[7]:=N[%5+12,10],Out[7]= 12.08333333(注意字母的大小写) 3.变量赋值:变量=表达式,“x=.”或Clear[x] 表示清除对x 的赋值。

表达式/.t ->c ,将表达式中的t 全替换成c 。

?x ,查x 信息。

4.常用的数学常数:Pi (π)、E(e)、Infinity (∞)、I (1-)5.常用的数学函数:Abs, Sin, Cos, Tan, Cot, ArcSin, Log (自然对数), Sqrt, Exp 如:In[1]:=Sqrt[2]+1;In[2]:=Sin[2]+ArcSin[1];In[3]:=Exp[2]+% (自变量用[ ]括,区分大小写,首字母大写) 三、常用运算 1.多项式运算:In[1]:= (2+4*x^2)*(1-x)^3 或 In[1]:= t = (2+4*x^2)*(1-x)^3 (将右端表达式赋值给t ); In[2]:=a=t/.x->4 (计算表达式t 当x=4时的值,并赋值给变量a ) In[3]:=a=. (清除变量a ) In[3]:=Expand[t](展开);In[4]:=Factor[%](把上一个结果因式分解) 2.解方程:In[1]:=Solve[x^2+3*x = = 2];In[2]:=N[%]; In[3]:=Solve[a*x-b= = 0, x]; In[4]:=NSolve[{x-2*y= =0,x^2-y= =1},{x,y}](解方程组并得到数值解) 3.自定义函数:In[1]:= f [x_ ]:=x^2+2*x ; In[2]:=f[5]+7; In[3]:=f[a+b] 4.求极限:In[1]:=Limit[Sin[x]/x, x ->0]; In[2]:=Limit[(1+1/n)^n, n->Infinity],Out[2]=E 5.求(偏)导数:In[1]:=D[a*x^2+3, x];In[2]:=D[x^2+y^3-Sin[2*y], y](对y 的偏导数); In[3]:=D[Log[x], {x,2}] (求对x 的二阶导数); In[4]:=D[Sin[x+y]*Exp[z*y^2],x,y] (求对x 、y 的二阶混合偏导数); In[5]:=Simplify[%] (对前一结果化简); In[6]:=D[Sin[x+y]*Exp[z*y^2],{x,2},{y,3}] 6.求不定积分:In[1]:=Integrate[x^2,x];In[2]:=Integrate[1/(x^2+a^2),x] 7.定积分:In[1]:=Integrate[x^2, {x,0,1}];In[2]:=Integrate[x^2,{x,a,b}]; In[3]:=Integrate[x^2+y^2, {x,0,a},{y,0,b}];(求矩形域上的二重积分) In[4]:=Integrate[1, {x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}];Out[4]=Pi (圆面积) 8.幂级数展开:In[1]:=Series[Exp[x],{x,0,4}](在x=0处展开到x 的四次幂) 9.矩阵的输入和输出:In[1]:= a ={{1,2},{3,4}}(定义一个2x2的矩阵a ,按行写);In[2]:=MatrixForm[a](输出为矩阵形式);In[3]:=Transpose[a](a 的转置); In[4]:=a[[2]](a 的第2行);In[5]:=Tanspose[a][[2]](a 的第2列); In[6]:=Inverse[a](求a 的逆矩阵);In[7]:=Det[a](矩阵的行列式); In[8]:=Eigenvalues[a](求特征值);In[9]:=Eigenvectors[a](求特征向量); In[10]:=RowReduce[a](把a 化为阶梯形,可用于求矩阵的秩、判断线性相关性); In[11]:= b ={{5,6,7},{8,9,10}};In[12]:= a .b (矩阵a 与b 的乘积) 10.解线性方程组:In[1]:= a ={{3,4,5,6},{6,8,10,12},{4,5,6,7},{5,6,7,8}};(a 的秩为2) In[2]:= b ={1,2,3,5}(列向量);(增广矩阵的秩也为2) In[3]:=LinearSolve[a,b](求线性方程组ax=b 的一个特解); In[4]:=NullSpace[a](求线性方程组ax=0的一个基础解系);In[5]:= x =k1%4[[1]]+k2%4[[2]]+%3(ax=b 的全部解,k1、k2为任意常数)11.求和:In[1]:=NSum[Sin[n]/n^3,{n,1,Infinity}](求级数∑∞=13sin n nn 的和)12.求极小值:In[1]:=FindMinimum[Sin[x]*Cos[x],{x,0.5}](求函数在0.5附近的极小值);In[2]:=FindMinimum[Sin[x*y]*Exp[x^2],{x,0.2}, {y,0.3}](求多元函数极小值) 13.求解线性规划问题:Min cx ,mx ≥b ,x ≥0,求向量x 。

mathmatica符号运算

mathmatica符号运算

Mathematica是一种强大的数学符号计算系统,它可以进行符号运算、数值计算、绘图和数据分析等多种数学操作。

作为一种专业的数学软件,Mathematica在科学研究、工程设计和教育教学中被广泛应用,它为用户提供了丰富的功能和简洁的操作界面。

本文将介绍Mathematica中的符号运算功能,包括基本运算、方程求解、微积分计算、矩阵运算等内容,帮助读者更好地了解和使用这一强大的数学工具。

一、基本运算在Mathematica中,可以使用基本的运算符号进行加减乘除等计算。

输入表达式"a + b",Mathematica会自动进行加法运算并给出结果。

除了基本的四则运算外,Mathematica还支持幂运算、取余运算等操作,可以满足用户在数学计算中的各种需求。

二、方程求解Mathematica能够对各种类型的方程进行求解,包括线性方程、二次方程、多项式方程、常微分方程等。

用户可以通过输入方程表达式,使用Solve或NSolve等函数进行求解,得到方程的解析解或数值解。

Mathematica还支持对方程组进行求解,可以解决多元方程的求解问题。

三、微积分计算微积分是数学中重要的内容,Mathematica提供了丰富的微积分计算功能,包括求导、积分、极限、级数等操作。

用户可以通过输入函数表达式,使用D、Integrate、Limit等函数进行微积分计算,得到函数的导数、不定积分、定积分等结果。

这些功能在科学研究和工程设计中具有重要的应用价值。

四、矩阵运算矩阵运算是数学中常见的运算方式,Mathematica为用户提供了丰富的矩阵运算功能,包括矩阵乘法、转置、逆矩阵、特征值等操作。

用户可以通过输入矩阵表达式,使用Dot、Transpose、Inverse、Eigenvalues等函数进行矩阵运算,得到矩阵的乘积、转置矩阵、逆矩阵、特征值等结果。

这些功能上线性代数和数值分析中具有重要的应用价值。

Mathematica常用命令

Mathematica常用命令

Mathe‎m atic‎a常用命令‎软件学习‎2010-‎10-19‎21:0‎2:15 ‎阅读127‎评论0 ‎字号:‎大中小订‎阅 .‎M athe‎m atic‎a的内部常‎数Pi ‎,或π(‎从基本输入‎工具栏输入‎,或“E‎s c”+“‎p”+“E‎s c”)圆‎周率πE‎(从基本‎输入工具栏‎输入, 或‎“Esc”‎+“ee”‎+“Esc‎”)自然对‎数的底数e‎I (从‎基本输入工‎具栏输入,‎或“Es‎c”+“i‎i”+“E‎s c”)虚‎数单位i‎I nfin‎i ty, ‎或∞(从基‎本输入工具‎栏输入 ,‎或“Es‎c”+“i‎n f”+“‎E sc”)‎无穷大∞‎D egre‎e或°(‎从基本输入‎工具栏输入‎,或“Es‎c”+“d‎e g”+“‎E sc”)‎度Mat‎h emat‎i ca的常‎用内部数学‎函数指数‎函数Exp‎[x]以e‎为底数对‎数函数Lo‎g[x]自‎然对数,即‎以e为底数‎的对数L‎o g[a,‎x]以a为‎底数的x的‎对数开方‎函数Sqr‎t[x]表‎示x的算术‎平方根绝‎对值函数A‎b s[x]‎表示x的绝‎对值三角‎函数(自‎变量的单位‎为弧度)S‎i n[x]‎正弦函数‎C os[x‎]余弦函数‎Tan[‎x]正切函‎数Cot‎[x]余切‎函数Se‎c[x]正‎割函数C‎s c[x]‎余割函数‎反三角函数‎A rcSi‎n[x]反‎正弦函数‎A rcCo‎s[x]反‎余弦函数‎A rcTa‎n[x]反‎正切函数‎A rcCo‎t[x]反‎余切函数‎A rcSe‎c[x]反‎正割函数‎A rcCs‎c[x]反‎余割函数‎双曲函数S‎i nh[x‎]双曲正弦‎函数Co‎s h[x]‎双曲余弦函‎数Tan‎h[x]双‎曲正切函数‎Coth‎[x]双曲‎余切函数‎S ech[‎x]双曲正‎割函数C‎s ch[x‎]双曲余割‎函数反双‎曲函数Ar‎c Sinh‎[x]反双‎曲正弦函数‎ArcC‎o sh[x‎]反双曲余‎弦函数A‎r cTan‎h[x]反‎双曲正切函‎数Arc‎C oth[‎x]反双曲‎余切函数‎A rcSe‎c h[x]‎反双曲正割‎函数Ar‎c Csch‎[x]反双‎曲余割函数‎求角度函‎数ArcT‎a n[x,‎y]以坐标‎原点为顶点‎,x轴正半‎轴为始边,‎从原点到点‎(x,y)‎的射线为终‎边的角,其‎单位为弧度‎数论函数‎G CD[a‎,b,c,‎...]最‎大公约数函‎数LCM‎[a,b,‎c,...‎]最小公倍‎数函数M‎o d[m,‎n]求余函‎数(表示m‎除以n的余‎数)Qu‎o tien‎t[m,n‎]求商函数‎(表示m除‎以n的商)‎Divi‎s ors[‎n]求所有‎可以整除n‎的整数F‎a ctor‎I nteg‎e r[n]‎因数分解,‎即把整数分‎解成质数的‎乘积Pr‎i me[n‎]求第n个‎质数Pr‎i meQ[‎n]判断整‎数n是否为‎质数,若是‎,则结果为‎T rue,‎否则结果为‎F alse‎Rand‎o m[In‎t eger‎,{m,n‎}]随机产‎生m到n之‎间的整数‎排列组合函‎数Fact‎o rial‎[n]或n‎!阶乘函数‎,表示n的‎阶乘复数‎函数Re[‎z]实部函‎数Im[‎z]虚部函‎数Arg‎(z)辐角‎函数Ab‎s[z]求‎复数的模‎C onju‎g ate[‎z]求复数‎的共轭复数‎Exp[‎z]复数指‎数函数求‎整函数与截‎尾函数Ce‎i ling‎[x]表示‎大于或等于‎实数x的最‎小整数F‎l oor[‎x]表示小‎于或等于实‎数x的最大‎整数Ro‎u nd[x‎]表示最接‎近x的整数‎Inte‎g erPa‎r t[x]‎表示实数x‎的整数部分‎Frac‎t iona‎l Part‎[x]表示‎实数x的小‎数部分分‎数与浮点数‎运算函数N‎[num]‎或num/‎/N把精确‎数num化‎成浮点数(‎默认16位‎有效数字)‎N[nu‎m,n]把‎精确数nu‎m化成具有‎n个有效数‎字的浮点数‎Numb‎e rFor‎m[num‎,n]以n‎个有效数字‎表示num‎Rati‎o nali‎z e[fl‎o at]将‎浮点数fl‎o at转换‎成与其相等‎的分数R‎a tion‎a lize‎[floa‎t,dx]‎将浮点数f‎l oat转‎换成与其近‎似相等的分‎数,误差小‎于dx最‎大、最小函‎数Max[‎a,b,c‎,...]‎求最大数‎M in[a‎,b,c,‎...]求‎最小数符‎号函数Si‎g n[x]‎Math‎e mati‎c a中的数‎学运算符‎a+b 加‎法a-b‎减法a*‎b (可用‎空格键代替‎*)乘法‎a/b (‎输入方法为‎:“ Ct‎r l ” ‎+ “ /‎” ) ‎除法a^‎b (输入‎方法为:“‎Ctrl‎” + ‎“ ^ ”‎)乘方‎-a 负号‎Math‎e mati‎c a的关系‎运算符=‎=等于<‎小于>大‎于<=小‎于或等于‎>=大于或‎等于!=‎不等于注‎:上面的关‎系运算符也‎可从基本输‎入工具栏输‎入。

Mathematica数学软件操作技巧及界面详解

Mathematica数学软件操作技巧及界面详解

Mathematica数学软件操作技巧及界面详解Mathematica是一款十分强大的数学计算软件,它可以广泛应用于科学、工程和教育等领域。

本文将介绍一些Mathematica的操作技巧,并详细解析其界面设计。

一、Mathematica的基本操作技巧1. 输入和计算Mathematica的主界面提供了一个输入框,我们可以在其中输入各种数学表达式和计算公式。

输入时需要遵循一定的语法规则,比如使用^表示乘方,使用*表示乘法,使用/表示除法等。

在输入完毕后,按下Enter键即可进行计算。

2. 变量定义和赋值在Mathematica中,我们可以使用等号(=)来定义和赋值变量。

比如,我们可以输入"radius = 5"来定义一个名为radius的变量,并将其赋值为5。

之后,我们可以直接使用radius来进行计算。

3. 函数调用Mathematica内置了许多数学函数,比如sin、cos、log等。

我们可以使用这些函数来进行各种数学运算。

调用函数时需要在函数名后加上待计算的参数,比如"sin(0.5)"可以计算出0.5的正弦值。

二、Mathematica的界面详解1. 顶部菜单栏Mathematica的顶部菜单栏包含了许多功能按钮,我们可以通过点击这些按钮来执行相应的操作,比如打开文件、保存文件、进行图像绘制等。

2. 工具栏在Mathematica的工具栏上,我们可以找到常用的绘图工具、格式调整工具和计算选项卡等。

这些工具可以帮助我们更加方便地进行数学计算和图形绘制。

3. 文档窗口Mathematica的文档窗口是我们进行数学计算和编写代码的主要区域。

我们可以在文档窗口中输入数学表达式、编写代码,并且可以将计算结果直接显示在文档窗口中。

4. 侧边栏在Mathematica的侧边栏上,我们可以找到各种各样的面板和选项卡。

这些面板和选项卡提供了对Mathematica的进一步设置和功能扩展,比如图形面板、数据面板和设置面板等。

mathematica 12 用法

mathematica 12 用法

mathematica 12 用法
Mathematica 12有很多新的功能和改进,以下是一些用法:
1. **函数和变量**:Mathematica 12中的函数和变量可以用来进行各种数学计算和操作。

例如,函数f[x_]可以用来定义一个函数f(x),变量a可以用来表示一个变量。

2. **表达式和公式**:在Mathematica 12中,可以使用各种符号和操作符来构建表达式和公式。

例如,x^2+3x+2可以表示一个二次多项式。

3. **绘图和可视化**:Mathematica 12具有强大的绘图和可视化功能,可以用来创建各种图表和图像。

例如,Plot[x^2,{x,-5,5}]可以用来创建一个x^2的函数图像。

4. **符号计算和代数**:Mathematica 12具有强大的符号计算和代数功能,可以用来解决各种数学问题。

例如,
Simplify[((x+1)^2)^3]可以用来化简一个复杂的数学表达式。

5. **动态交互**:Mathematica 12具有动态交互功能,可以在运行时与用户进行交互。

例如,点击一个按钮可以执行特定的操作,或者在用户输入数据时进行实时计算和更新。

6. **模板和包**:Mathematica 12具有许多模板和包,可以用来快速创建各种类型的工作簿、报告和应用程序。

例如,通过使用模板和包,可以轻松地创建出专业的文档、报告、演示文稿等。

总的来说,Mathematica 12是一个功能强大的数学软件,可以用来进行各种数学计算、绘图、符号计算、动态交互等操作。

Mathematical用法 大全 实用版

Mathematical用法 大全 实用版
In[4]:=a[[2]](a的第2行);In[5]:=Tanspose[a][[2]](a的第2列);
In[6]:=Inverse[a](求a的逆矩阵);In[7]:=Det[a](矩阵的行列式);
In[8]:=Eigenvalues[a](求特征值);In[9]:=Eigenvectors[a](求特征向量);
设置默认工作文件夹:In[1]:=SetDirectory["D:\MODEL"]
读数据文件:先建立数据文件lianxi.txt,其中的数据用空格分隔。
In[1]:=d=ReadList[“lianxi.txt”,Table[Number,{2}]] (读到矩阵d中)
注:可用“File”菜单中的“Save”命令保存所有的输入和输出。
2.解方程:In[1]:=Solve[x^2+3*x = = 2];In[2]:=N[%];
In[3]:=Solve[a*x-b= = 0, x];
In[4]:=NSolve[{x-2*y= =0,x^2-y= =1},{x,y}](解方程组并得到数值解)
3.自定义函数:In[1]:= f [x_ ]:=x^2+2*x;In[2]:=f[5]+7;In[3]:=f[a+b]
In[10]:=RowReduce[a](把a化为阶梯形,可用于求矩阵的秩、判断线性相关性);In[11]:= b ={{5,6,7},{8,9,10}};In[12]:= a.b(矩阵a与b的乘积)
10.解线性方程组:
In[1]:= a ={{3,4,5,6},{6,8,10,12},{4,5,6,7},{5,6,7,8}};(a的秩为2)
11.求和:In[1]:=NSum[Sin[n]/n^3,{n,1,Infinity}](求级数 的和)

(完整版)mathematica命令大全

(完整版)mathematica命令大全

<< Statistics`DescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data的众数。

数据data的格式为:{ a1,a2,…}
Mode[data]
如何用mathematica求方差和标准差
首先要加载Statistics`DescriptiveStatistics`函数库,加载方法为:
<< Statistics`DescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data的样本方差。

数据data的格式为:{ a1,a2,…} Variance[data]
VarianceMLE[data] 求数据data的母体方差。

数据data的格式为:{ a1,a2,…} StandardDeviation[data] 求数据data的样本标准差。

数据data的格式为:{a1,a2,…} StandardDeviationMLE[data] 求数据data的母体标准差。

数据data的格式为:{ a1,a2,…}
如何用mathematica求协方差和相关系数
首先要加载Statistics`MultiDescriptiveStatistics`函数库,加载方法为:
<< Statistics`MultiDescriptiveStatistics`
或者加载整个统计函数库,加载方法为:
<<Statistics`
求数据data1和data2的样本协方差。

数据的格式为:{a1,a2,…}。

mathematica命令大全

mathematica命令大全

楼主大中小发表于 2005-11-20 21:55 只看该作者[分享]mathematica命令大全Mathematica函数大全一、运算符及特殊符号Line1; 执行Line,不显示结果Line1,line2 顺次执行Line1,2,并显示结果?name 关于系统变量name的信息??name 关于系统变量name的全部信息!command 执行Dos命令n! N的阶乘!!filename 显示文件内容Expr>> filename 打开文件写Expr>>>filename 打开文件从文件末写() 结合率[] 函数{} 一个表<*Math Fun*> 在c语言中使用math的函数(*Note*) 程序的注释#n 第n个参数## 所有参数rule& 把rule作用于后面的式子% 前一次的输出%% 倒数第二次的输出%n 第n个输出var::note 变量var的注释"Astring " 字符串Context ` 上下文a+b 加a-b 减a*b或a b 乘a/b 除a^b 乘方base^^num 以base为进位的数lhs&&rhs 且lhs||rhs 或!lha 非++,-- 自加1,自减1+=,-=,*=,/= 同C语言>,<,>=,<=,==,!= 逻辑判断(同c)lhs=rhs 立即赋值lhs:=rhs 建立动态赋值lhs:>rhs 建立替换规则lhs->rhs 建立替换规则expr//funname 相当于filename[expr]expr/.rule 将规则rule应用于exprexpr//.rule 将规则rule不断应用于expr知道不变为止param_ 名为param的一个任意表达式(形式变量)param__ 名为param的任意多个任意表达式(形式变量)二、系统常数Pi 3.1415....的无限精度数值E 2.17828...的无限精度数值Catalan 0.915966..卡塔兰常数EulerGamma 0.5772....高斯常数GoldenRatio 1.61803...黄金分割数Degree Pi/180角度弧度换算I 复数单位Infinity 无穷大-Infinity 负无穷大ComplexInfinity 复无穷大Indeterminate 不定式三、代数计算Expand[expr] 展开表达式Factor[expr] 展开表达式Simplify[expr] 化简表达式FullSimplify[expr] 将特殊函数等也进行化简PowerExpand[expr] 展开所有的幂次形式ComplexExpand[expr,{x1,x2...}] 按复数实部虚部展开FunctionExpand[expr] 化简expr中的特殊函数Collect[expr, x] 合并同次项Collect[expr, {x1,x2,...}] 合并x1,x2,...的同次项Together[expr] 通分Apart[expr] 部分分式展开Apart[expr, var] 对var的部分分式展开Cancel[expr] 约分ExpandAll[expr] 展开表达式ExpandAll[expr, patt] 展开表达式FactorTerms[poly] 提出共有的数字因子FactorTerms[poly, x] 提出与x无关的数字因子FactorTerms[poly, {x1,x2...}] 提出与xi无关的数字因子Coefficient[expr, form] 多项式expr中form的系数Coefficient[expr, form, n] 多项式expr中form^n的系数Exponent[expr, form] 表达式expr中form的最高指数Numerator[expr] 表达式expr的分子Denominator[expr] 表达式expr的分母ExpandNumerator[expr] 展开expr的分子部分ExpandDenominator[expr] 展开expr的分母部分ExpandDenominator[expr] 展开expr的分母部分TrigExpand[expr] 展开表达式中的三角函数TrigFactor[expr] 给出表达式中的三角函数因子TrigFactorList[expr] 给出表达式中的三角函数因子的表TrigReduce[expr] 对表达式中的三角函数化简TrigToExp[expr] 三角到指数的转化ExpToTrig[expr] 指数到三角的转化RootReduce[expr]ToRadicals[expr]搜索更多相关主题的帖子: mathematica大全命令name变量TOP沙发大中小发表于 2005-11-20 21:58 只看该作者回复:(ABBYABBIE)[分享]mathematica命令大全四、解方程Solve[eqns, vars] 从方程组eqns中解出vars Solve[eqns, vars, elims] 从方程组eqns中削去变量elims,解出vars DSolve[eqn, y, x] 解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn, y, {x1,x2...}] 解偏微分方程Eliminate[eqns, vars] 把方程组eqns中变量vars约去SolveAlways[eqns, vars] 给出等式成立的所有参数满足的条件Reduce[eqns, vars] 化简并给出所有可能解的条件LogicalExpand[expr] 用&&和||将逻辑表达式展开InverseFunction[f] 求函数f的逆函数Root[f, k] 求多项式函数的第k个根Roots[lhs==rhs, var] 得到多项式方程的所有根五、微积分函数D[f, x] 求f[x]的微分D[f, {x, n}] 求f[x]的n阶微分D[f,x1,x2..] 求f[x]对x1,x2...偏微分Dt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}]'或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中ai为系数O[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^nDt[f, x] 求f[x]的全微分df/dxDt[f] 求f[x]的全微分dfDt[f, {x, n}] n阶全微分df^n/dx^nDt[f,x1,x2..] 对x1,x2..的偏微分Integrate[f, x] f[x]对x在的不定积分Integrate[f, {x, xmin, xmax}] f[x]对x在区间(xmin,xmax)的定积分Integrate[f, {x, xmin, xmax}, {y, ymin, ymax}] f[x,y]的二重积分Limit[expr, x->x0] x趋近于x0时expr的极限Residue[expr, {x,x0}] expr在x0处的留数Series[f, {x, x0, n}] 给出f[x]在x0处的幂级数展开Series[f, {x, x0,nx}, {y, y0, ny}]先对y幂级数展开,再对xNormal[expr] 化简并给出最常见的表达式SeriesCoefficient[series, n] 给出级数中第n次项的系数SeriesCoefficient[series, {n1,n2...}] '或Derivative[n1,n2...][f] 一阶导数InverseSeries[s, x] 给出逆函数的级数ComposeSeries[serie1,serie2...] 给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中aiO[x]^n n阶小量x^nO[x, x0]^n n阶小量(x-x0)^n六、多项式函数Variables[poly] 给出多项式poly中独立变量的列表CoefficientList[poly, var] 给出多项式poly中变量var的系数CoefficientList[poly, {var1,var2...}]给出多项式poly中变量var(i)的系数列?PolynomialMod[poly, m] poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p, q, x] 以x为自变量的两个多项式之商式p/qPolynomialRemainder[p, q, x] 以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...] poly(i)的最大公因式PolynomialLCM[poly1,poly2,...] poly(i)的最小公倍式PolynomialReduce[poly, {poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var] 约去poly1,poly2中的varFactor[poly] 因式分解(在整式范围内)FactorTerms[poly] 提出poly中的数字公因子FactorTerms[poly, {x1,x2...}] 提出poly中与xi无关项的数字公因子FactorList[poly]给出poly各个因子及其指数{{poly1,exp1},{...}...}FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}] 给出各个因式列表,第一项是数字公因子,第二项是与xi无关的因式,其后是与xi有关的因式按升幂的排排?Cyclotomic[n, x] n阶柱函数Decompose[poly, x] 迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly InterpolatingPolynomial[data, var] 在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f, form] 得到f[x]=0的所有根,并求得Sum[form[xi]]七、随机函数Random[type,range] 产生type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[] 0~1上的随机实数SeedRandom[n] 以n为seed产生伪随机数如果采用了 <在2.0版本为 <<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m"Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha, beta]]stribution[alpha, beta]]Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution,ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution, LaplaceDistribution, LogNormalDistribution,LogisticDistribution, RayleighDistribution,NoncentralStudentTDistribution,UniformDistribution, WeibullDistribution八、数值函数N[expr] 表达式的机器精度近似值N[expr, n] 表达式的n位近似值,n为任意正整数NSolve[lhs==rhs, var] 求方程数值解NSolve[eqn, var, n] 求方程数值解,结果精度到n位NDSolve[eqns, y, {x, xmin, xmax}]微分方程数值解NDSolve[eqns, {y1,y2,...}, {x, xmin, xmax}]微分方程组数值解FindRoot[lhs==rhs, {x,x0}] 以x0为初值,寻找方程数值解FindRoot[lhs==rhs, {x, xstart, xmin, xmax}]NSum[f, {i,imin,imax,di}] 数值求和,di为步长NSum[f, {i,imin,imax,di}, {j,..},..] 多维函数求和NProduct[f, {i, imin, imax, di}]函数求积NIntegrate[f, {x, xmin, xmax}] 函数数值积分优化函数:FindMinimum[f, {x,x0}] 以x0为初值,寻找函数最小值FindMinimum[f, {x, xstart, xmin, xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f, {inequ}, {x, y,..}]同上LinearProgramming[c,m,b] 解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}] 向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp: Fit[{10.22,12,3.2,9.9}, {1, x, x^2,Sin[x]}, x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}] FunctionInterpolation[expr,{x,xmin,xmax}, {y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier对复数数据进行付氏变换InverseFourier对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list, crit] 将表中使得crit为True的元素选择出来Count[list, pattern] 将表中匹配模式pattern的元素的个数Sort将表中元素按升序排列Sort[list,p] 将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort中默认p=Greater集合论:Union[list1,list2..] 表listi的并集并排序Intersection[list1,list2..] 表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集九、虚数函数Re[expr] 复数表达式的实部Im[expr] 复数表达式的虚部Abs[expr] 复数表达式的模Arg[expr] 复数表达式的辐角Conjugate[expr] 复数表达式的共轭十、数的头及模式及其他操作复制内容到剪贴板Integer _Integer 整数Real _Real 实数Complex _Complex 复数Rational_Rational 有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real] 规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len] 数字n以b近制的前len个码元RealDigits[x,b,len] 类上FromDigits[list] IntegerDigits的反函数Rationalize[x,dx] 把实数x有理化成有理数,误差小于dxChop[expr, delta] 将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x] 给出x小数部分位数,对于Pi,E等为无限大Precision[x] 给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr, n] 设置expr显示时的小数部分位数SetPrecision[expr, n] 设置expr显示时的有效数字位数十一、区间函数Interval[{min, max}] 区间[min, max](* Solve[3x+2==Interval[{-2,5}],xx]*)IntervalMemberQ[interval, x] x在区间内吗?IntervalMemberQ[interval1,interval2] 区间2在区间1内吗?IntervalUnion[intv1,intv2...] 区间的并IntervalIntersection[intv1,intv2...] 区间的交十二、矩阵操作a.b.c 或 Dot[a, b, c] 矩阵、向量、张量的点积Inverse[m] 矩阵的逆Transpose[list] 矩阵的转置Transpose[list,{n1,n2..}]将矩阵list 第k行与第nk列交换Det[m] 矩阵的行列式Eigenvalues[m] 特征值Eigenvectors[m] 特征向量特征值Eigenvectors[m] 特征向量Eigensystem[m] 特征系统,返回{eigvalues,eigvectors}LinearSolve[m, b] 解线性方程组m.x==bNullSpace[m] 矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m] m化简为阶梯矩阵Minors[m, k] m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是)MatrixPower[mat, n] 阵mat自乘n次Outer[f,list1,list2..] listi中各个元之间相互组合,并作为f的参数的到的矩矩?Outer[Times,list1,list2]给出矩阵的外积SingularValues[m] m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m] m的广义逆QRDecomposition[m] QR分解SchurDecomposition[m] Schur分解LUDecomposition[m] LU分解十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型 *) (*实际上表就是表达式,表达式也就是表,所以下面list==expr *)(*一个表中元素的位置可以用于一个表来表示 *)表的生成{e1,e2,...} 一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}] 生成一个表,共imax个元素Table[expr,{i, imax}] 生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..] 多维表Range[imax] 简单数表{1,2,..,imax}Range[imin, imax, di] 以di为步长的数表Array[f, n] 一维表,元素为f[i] (i从1到n)Array[f,{n1,n2..}] 多维表,元素为f[i,j..] (各自从1到ni)IdentityMatrix[n] n阶单位阵DiagonalMatrix[/i][/i][/u][list][u][i][i] 对角阵元素操作Part[expr, i]或expr[[i]]第i个元expr[[-i]] 倒数第i个元expr[[i,j,..]] 多维表的元expr[[{i1,i2,..}] 返回由第i(n)的元素组成的子表First[expr] 第一个元Last[expr] 最后一个元Head[expr] 函数头,等于expr[[0]]Extract[expr, list] 取出由表list制定位置上expr的元素值Take[list, n] 取出表list前n个元组成的表Take[list,{m,n}] 取出表list从m到n的元素组成的表Drop[list, n] 去掉表list前n个元剩下的表,其他参数同上Rest[expr] 去掉表list第一个元剩下的表Select[list, crit] 把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr] expr第一曾元素的个数Dimensions[expr] 表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr] 秩Depth[expr] expr最大深度Level[expr,n] 给出expr中第n层子表达式的列表Count[list, pattern] 满足模式的list中元的个数MemberQ[list, form] list中是否有匹配form的元FreeQ[expr, form] MemberQ的反函数Position[expr, pattern] 表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr, elem] 返回在表expr的最后追加elem元后的表Prepend[expr, elem] 返回在表expr的最前添加elem元后的表Insert[list, elem, n] 在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elemDelete[expr, {i, j,..}] 删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n] 将expr的第n元替换为new Sort[/i][/i][/i][/u][list][u][i][i][i] 返回list按顺序排列的表Reverse[expr] 把表expr倒过来RotateLeft[expr, n] 把表expr循环左移n次RotateRight[expr, n] 把表expr循环右移n次Partition[list, n] 把list按每n各元为一个子表分割后再组成的大表Flatten[/i][/i][/i][/u][list][u][i][i][i] 抹平所有子表后得到的一维大表Flatten[list,n] 抹平到第n层Split[/i][/i][/i][/u][list][u][i][i][i] 把相同的元组成一个子表,再合成的大表FlattenAt[list, n] 把list[[n]]处的子表抹平FlattenAt[list, n] 把list[[n]]处的子表抹平Permutations[/i][/i][/i][/u][list][u][i][i][i] 由list的元素组成的所有全排列的列表Order[expr1,expr2] 如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[/i][/i][/i][/u][list][u][i][i][i] 把list通过两两交换得到标准顺序所需的交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem] 相当于list=Append[list,elem];PrependTo[list,elem] 相当于list=Prepend[list,elem];十四、绘图函数二维作图Plot[f,{x,xmin,xmax}] 一维函数f[x]在区间[xmin,xmax]上的函数曲?Plot[{f1,f2..},{x,xmin,xmax}] 在一张图上画几条曲线ListPlot[{y1,y2,..}] 绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}] 绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}] 由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1} 作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel ->label 标题文字Axes ->{False,True} 分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin ->{x,y} 坐标轴原点位置AxesStyle->{{xstyle}, {ystyle}}设置轴线的线性颜色等属性Frame ->True,False 是否画边框FrameLabel ->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的文字FrameTicks同Ticks 边框上是否画刻度GridLines 同Ticks 图上是否画栅格线FrameStyle ->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True] 把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15 曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax}, {y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s}, {x,xmin,xmax}, {y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定ListPlot3D[array] 二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint ->{x,y,z} 三维视点,默认为{1.3,-2.4,2}Boxed -> True,False 是否画三维长方体边框BoxRatios->{sx,sy,sz} 三轴比例BoxStyle 三维长方体边框线性颜色等属性Lighting ->True 是否染色LightSources->{s1,s2..} si为某一个光源si={{dx,dy,dz},color}color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False 是否画曲面上与x,y轴平行的截面的截线MeshStyle 截线线性颜色等属性MeshRange->{{xmin,xmax}, {ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading ->False,True 是否染色HiddenSurface->True,False 略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array] 根据二维数组array数值画等高线选项:Contours->n 画n条等高线Contours->{z1,z2,..} 在zi处画等高线ContourShading -> False 是否用深浅染色ContourLines -> True 是否画等高线ContourStyle -> {{style1},{style2},..}等高线线性颜色等属性FrameTicks 同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array] 同上图形显示Show[graphics,options] 显示一组图形对象,options为选项设置Show[g1,g2...] 在一个图上叠加显示一组图形对象GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel -> True 竖着写文字TextStyle 此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False 是否对遮挡部分也染色MaxBend 曲线、曲面最大弯曲度图元函数Graphics[prim, options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim, options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array, shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p] p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin, ymin}, {xmax, ymax}] 画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}] 封闭多边形Circle[{x,y},r] 画圆Circle[{x,y},{rx,ry}] 画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}] 从角度a1~a2的圆弧Disk[{x, y}, r] 填充的园、衷病⒃弧等参数同上Raster[array,ColorFunction->f] 颜色栅格Text[expr,coords] 在坐标coords上输出表达式PostScript["string"] 直接用PostScript图元语言写Scaled[{x,y,..}] 返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level] 灰度level为0~1间的实数RGBColor[red, green, blue] RGB颜色,均为0~1间的实数Hue[h, s, b] 亮度,饱和度等,均为0~1间的实数CMYKColor[cyan, magenta, yellow, black] CMYK颜色其他函数(指定其后绘图的方式)Thickness[r] 设置线宽为rPointSize[d] 设置绘点的大小Dashing[{r1,r2,..}] 虚线一个单元的间隔长度ImageSize->{x, y} 显示图形大小(像素为单位)ImageResolution->r 图形解析度r个dpi小(像素为单位)ImageResolution->r 图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False 是否旋转90度显示回复:(ABBYABBIE)[分享]mathematica命令大全十五、流程控制分支If[condition, t, f] 如果condition为True,执行t段,否则f段If[condition, t, f, u] 同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..] 执行第一为True的testi对应的blocki Switch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}] 重复执行expr imax次Do[expr,{i,imin,imax}, {j,jmin,jmax},...]多重循环While[test, body] 循环执行body直到test为False For[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp: For[i=1;t =x,i^2<10,i++,t =t+i;Print[t]]异常控制Throw[value] 停止计算,把value返回给最近一个Catch处理Throw[value, tag] 同上,Catch[expr] 计算expr,遇到Throw返回的值则停止Catch[expr, form] 当Throw[value, tag]中Tag匹配form时停止? 其他控制Return[expr] 从函数返回,返回值为exprReturn[ ] 返回值NullBreak[ ] 结束最近的一重循环Continue[ ] 停止本次循环,进行下一次循环Goto[tag] 无条件转向Label[Tag]处Label[tag] 设置一个断点Check[expr,failexpr] 计算expr,如果有出错信息产生,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexpr CheckAbort[expr,failexpr]当产生abort信息时放回failexprInterrupt[ ] 中断运行Abort[ ] 中断运行TimeConstrained[expr,t] 计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b]计算expr,当耗用内存超过b字节时终止运算交互式控制Print[expr1,expr2,...] 顺次输出expri的值examp: Print[ "X=" , X//N , " " ,f[x+1]];Input[ ] 产生一个输入对话框,返回所输入任意表达式Input["prompt"] 同上,prompt为对话框的提示Pause[n] 运行暂停n秒的提示Pause[n] 运行暂停n秒十六、函数编程(*函数编程是Mathematica中很有特色也是最灵活的一部分,它充分体现了 *) (*Mathematica的“一切都是表达式”的特点,如果你想使你的Mathematica程 *)(*序快于高级语言,建议你把本部分搞通*)纯函数Function[body]或body& 一个纯函数,建立了一组对应法则,作用到后面的表达达式?Function[x, body] 单自变量纯函数Function[{x1,x2,...},body]多自变量纯函数#,#n 纯函数的第一、第n个自变量## 纯函数的所有自变量的序列examp: #1^#2& [2,3] 返回第一个参数的第二个参数次方映射Map[f,expr]或f/@expr 将f分别作用到expr第一层的每一个元上得到的列表Map[f,expr,level] 将f分别作用到expr第level层的每一个元上Apply[f,expr]或f@@expr 将expr的“头”换为fApply[f,expr,level] 将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作用到expr的每一层的每一个元上MapAt[f,expr,n] 把f作用到expr的第n个元上MapAt[f,expr,{i,j,...}] 把f作用到expr[[{i,j,...}]]元上MapIndexed[f,expr] 类似MapAll,但都附加其映射元素的位置列表Scan[f, expr] 按顺序分别将f作用于expr的每一个元Scan[f,expr,levelspec] 同上,仅作用第level层的元素复合映射Nest[f,expr,n] 返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n] 返回0重到n重复合函数的列表{expr,f[expr],f[f[exprr]]..} FixedPoint[f, expr] 将f复合作用于expr直到结果不再改变,即找到其不定点FixedPoint[f, expr, n] 最多复合n次,如果不收敛则停止FixedPointList[f, expr] 返回各次复合的结果列表FoldList[f,x,{a,b,..}] 返回{x,f[x,a],f[f[x,a],b],..}Fold[f, x, list] 返回FoldList[f,x,{a,b,..}]的最后一个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]] f对加法的分配率Distribute[expr, g] 对g的分配率Identity[expr] expr的全等变换Composition[f1,f2,..] 组成复合纯函数f1[f2[..fn[ ]..]Operate[p,f[x,y]] 返回p[f][x, y]br> Operate[p,f[x,y]] 返回p[f][x, y]Through[p[f1,f2][x]] 返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译一个函数,编译后运行速度可以大大加快Compile[{{x1,t1},{x2,t2}..},expr] 同上,可以制定函数参数类型十七、替换规则lhs->rhs 建立了一个规则,把lhs换为rhs,并求rhs的值lhs:>rhs 同上,只是不立即求rhs的值,知道使用该规则时才求值Replace[expr,rules] 把一组规则应用到expr上,只作用一次expr /. rules 同上expr //.rules 将规则rules不断作用到expr上,直到无法作用为止Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产生一组优化的规则组十八、查询函数(*查询函数一般是检验表达式是否满足某些特殊形式,并返回True或False*) (*可以在Mathematica中用“?*Q”查询到 *)ArgumentCountQ MatrixQAtomQ MemberQDigitQ NameQEllipticNomeQ NumberQEvenQ NumericQExactNumberQ OddQFreeQ OptionQHypergeometricPFQ OrderedQInexactNumberQ PartitionsQIntegerQ PolynomialQIntervalMemberQ PrimeQInverseEllipticNomeQ SameQLegendreQ StringMatchQLetterQ StringQLinkConnectedQ SyntaxQLinkReadyQ TrueQListQ UnsameQLowerCaseQ UpperCaseQMachineNumberQ ValueQMatchLocalNameQ VectorQMatchQ十九、字符串函数"text" 一个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..] 串的连接StringLength["string"] 串长度StringReverse["string"] 串反转StringTake["string", n] 取串的前n个字符的子串,参数同Take[] StringDrop["string", n] 参见Drop,串也就是一个表StringInsert["string","snew",n] 插入,参见Insert[] StringPosition["string", "sub"] 返回子串sub在string中起止字母位置StringReplace["string",{"s1"->"p1",..}] 子串替换StringReplacePart["string", "snew", {m, n}]把string第m~n个字母之间的替换为snewStringToStream["string"] 把串当作一个输入流赋予一个变量Characters["string"] 把串"string"分解为每一个字符的表ToCharacterCode["string"] 把串"string"分解为每一个字符ASCII值的表FromCharacterCode[n] ToCharacterCode的逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode的逆函数ToUpperCase[string] 把串的大写形式ToLowerCase[string] 把串的小写形式CharacterRange["c1","c2"] 给出ASCII吗在c1到c2之间的字符列表ToString[expr] 把表达式变为串的形式ToExpression[input] 把一个串变为表达式Names["string"] 与?string同,返回与string同名的变量列表。

mathematics的意思用法总结

mathematics的意思用法总结

mathematics的意思用法总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!mathematics的意思用法总结mathematics有数学,〈诗〉同“ripen”,算学的意思。

Mathematica 函数及使用方法

Mathematica 函数及使用方法

Mathematica函数及使用方法Mathematica函数大全--运算符及特殊符号一、运算符及特殊符号Line1;执行Line,不显示结果Line1,line2顺次执行Line1,2,并显示结果?name关于系统变量name的信息??name关于系统变量name的全部信息!command执行Dos命令n!N的阶乘!!filename显示文件内容<<filename读入文件并执行Expr>>filename打开文件写Expr>>>filename打开文件从文件末写()结合率[]函数{}一个表<*Math Fun*>在c语言中使用math的函数(*Note*)程序的注释#n第n个参数##所有参数rule&把rule作用于后面的式子%前一次的输出%%倒数第二次的输出%n第n个输出var::note变量var的注释"Astring"字符串Context`上下文a+b加a-b减a*b或a b乘a/b除a^b乘方base^^num以base为进位的数lhs&&rhs且lhs||rhs或!lha非++,--自加1,自减1+=,-=,*=,/=同C语言>,<,>=,<=,==,!=逻辑判断(同c)lhs=rhs立即赋值lhs:=rhs建立动态赋值收集制作:科研中国文章出处:南京大学小百合站lhs:>rhs建立替换规则lhs->rhs建立替换规则expr//funname相当于filename[expr]expr/.rule将规则rule应用于exprexpr//.rule将规则rule不断应用于expr知道不变为止param_名为param的一个任意表达式(形式变量)param__名为param的任意多个任意表达式(形式变量)Mathematica函数及使用方法—————————————————————————————————————二、系统常数Pi3.1415....的无限精度数值E2.17828...的无限精度数值Catalan0.915966..卡塔兰常数EulerGamma0.5772....高斯常数GoldenRatio1.61803...黄金分割数Degree Pi/180角度弧度换算I复数单位Infinity无穷大-Infinity负无穷大ComplexInfinity复无穷大Indeterminate不定式Mathematica函数及使用方法—————————————————————————————————————三、代数计算Expand[expr]展开表达式Factor[expr]展开表达式Simplify[expr]化简表达式FullSimplify[expr]将特殊函数等也进行化简PowerExpand[expr]展开所有的幂次形式ComplexExpand[expr,{x1,x2...}]按复数实部虚部展开FunctionExpand[expr]化简expr中的特殊函数Collect[expr,x]合并同次项Collect[expr,{x1,x2,...}]合并x1,x2,...的同次项Together[expr]通分Apart[expr]部分分式展开Apart[expr,var]对var的部分分式展开Cancel[expr]约分ExpandAll[expr]展开表达式ExpandAll[expr,patt]展开表达式FactorTerms[poly]提出共有的数字因子FactorTerms[poly,x]提出与x无关的数字因子FactorTerms[poly,{x1,x2...}]提出与xi无关的数字因子Coefficient[expr,form]多项式expr中form的系数收集制作:科研中国文章出处:南京大学小百合站Coefficient[expr,form,n]多项式expr中form^n的系数Exponent[expr,form]表达式expr中form的最高指数Numerator[expr]表达式expr的分子Denominator[expr]表达式expr的分母ExpandNumerator[expr]展开expr的分子部分ExpandDenominator[expr]展开expr的分母部分TrigExpand[expr]展开表达式中的三角函数TrigFactor[expr]给出表达式中的三角函数因子TrigFactorList[expr]给出表达式中的三角函数因子的表TrigReduce[expr]对表达式中的三角函数化简TrigToExp[expr]三角到指数的转化ExpToTrig[expr]指数到三角的转化RootReduce[expr]ToRadicals[expr]Mathematica函数及使用方法—————————————————————————————————————四、解方程Solve[eqns,vars]从方程组eqns中解出varsSolve[eqns,vars,elims]从方程组eqns中削去变量elims,解出varsDSolve[eqn,y,x]解微分方程,其中y是x的函数DSolve[{eqn1,eqn2,...},{y1,y2...},x]解微分方程组,其中yi是x的函数DSolve[eqn,y,{x1,x2...}]解偏微分方程Eliminate[eqns,vars]把方程组eqns中变量vars约去SolveAlways[eqns,vars]给出等式成立的所有参数满足的条件Reduce[eqns,vars]化简并给出所有可能解的条件LogicalExpand[expr]用&&和||将逻辑表达式展开InverseFunction[f]求函数f的逆函数Root[f,k]求多项式函数的第k个根Roots[lhs==rhs,var]得到多项式方程的所有根Mathematica函数及使用方法—————————————————————————————————————五、微积分函数D[f,x]求f[x]的微分D[f,{x,n}]求f[x]的n阶微分D[f,x1,x2..]求f[x]对x1,x2...偏微分Dt[f,x]求f[x]的全微分df/dxDt[f]求f[x]的全微分dfDt[f,{x,n}]n阶全微分df^n/dx^nDt[f,x1,x2..]对x1,x2..的偏微分Integrate[f,x]f[x]对x在的不定积分收集制作:科研中国文章出处:南京大学小百合站Integrate[f,{x,xmin,xmax}]f[x]对x在区间(xmin,xmax)的定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}]f[x,y]的二重积分Limit[expr,x->x0]x趋近于x0时expr的极限Residue[expr,{x,x0}]expr在x0处的留数Series[f,{x,x0,n}]给出f[x]在x0处的幂级数展开Series[f,{x,x0,nx},{y,y0,ny}]先对y幂级数展开,再对xNormal[expr]化简并给出最常见的表达式SeriesCoefficient[series,n]给出级数中第n次项的系数SeriesCoefficient[series,{n1,n2...}]'或Derivative[n1,n2...][f]一阶导数InverseSeries[s,x]给出逆函数的级数ComposeSeries[serie1,serie2...]给出两个基数的组合SeriesData[x,x0,{a0,a1,..},nmin,nmax,den]表示一个在x0处x的幂级数,其中ai为系数O[x]^n n阶小量x^nO[x,x0]^n n阶小量(x-x0)^nMathematica函数及使用方法—————————————————————————————————————六、多项式函数Variables[poly]给出多项式poly中独立变量的列表CoefficientList[poly,var]给出多项式poly中变量var的系数CoefficientList[poly,{var1,var2...}]给出多项式poly中变量var(i)的系数列表PolynomialMod[poly,m]poly中各系数mod m同余后得到的多项式,m可为整式PolynomialQuotient[p,q,x]以x为自变量的两个多项式之商式p/q PolynomialRemainder[p,q,x]以x为自变量的两个多项式之余式PolynomialGCD[poly1,poly2,...]poly(i)的最大公因式PolynomialLCM[poly1,poly2,...]poly(i)的最小公倍式PolynomialReduce[poly,{poly1,poly2,...},{x1,x2...}]得到一个表{{a1,a2,...},b}其中Sum[ai*polyi]+b=polyResultant[poly1,poly2,var]约去poly1,poly2中的varFactor[poly]因式分解(在整式范围内)FactorTerms[poly]提出poly中的数字公因子FactorTerms[poly,{x1,x2...}]提出poly中与xi无关项的数字公因子FactorList[poly]给出poly各个因子及其指数{{poly1,exp1},{...}...}FactorSquareFreeList[poly]FactorTermsList[poly,{x1,x2...}]给出各个因式列表,第一项是数字公因子,第二项是与xi无关的因式,其后是与xi有关的因式按升幂的排列Cyclotomic[n,x]n阶柱函数Decompose[poly,x]迭代分解,给出{p1,p2,...},其中p1(p2(...))=poly收集制作:科研中国文章出处:南京大学小百合站InterpolatingPolynomial[data,var]在数据data上的插值多项式data可以写为{f1,f2..}相当于{{x1=1,y1=f1}..}data可以写为{{x1,f1,df11,df12,..},{x2,f2,df21..}可以指定数据点上的n阶导数值RootSum[f,form]得到f[x]=0的所有根,并求得Sum[form[xi]] Mathematica函数及使用方法—————————————————————————————————————七、随机函数Random[type,range]产生type类型且在range范围内的均匀分布随机数type可以为Integer,Real,Complex,不写默认为Realrange为{min,max},不写默认为{0,1}Random[]0~1上的随机实数SeedRandom[n]以n为seed产生伪随机数如果采用了<<Statistics`ContinuousDistributions`后在2.0版本为<<"D:\\Math\\PACKAGES\\STATISTI\\Continuo.m"Random[distribution]可以产生各种分布如Random[BetaDistribution[alpha,beta]]Random[NormalDistribution[miu,sigma]]等常用的分布如BetaDistribution,CauchyDistribution,ChiDistribution, NoncentralChiSquareDistribution,ExponentialDistribution, ExtremeValueDistribution,NoncentralFRatioDistribution, GammaDistribution,HalfNormalDistribution,LaplaceDistribution, LogNormalDistribution,LogisticDistribution,RayleighDistribution,NoncentralStudentTDistribution,UniformDistribution,WeibullDistributionMathematica函数及使用方法—————————————————————————————————————八、数值函数N[expr]表达式的机器精度近似值N[expr,n]表达式的n位近似值,n为任意正整数NSolve[lhs==rhs,var]求方程数值解NSolve[eqn,var,n]求方程数值解,结果精度到n位NDSolve[eqns,y,{x,xmin,xmax}]微分方程数值解NDSolve[eqns,{y1,y2,...},{x,xmin,xmax}]微分方程组数值解FindRoot[lhs==rhs,{x,x0}]以x0为初值,寻找方程数值解FindRoot[lhs==rhs,{x,xstart,xmin,xmax}]NSum[f,{i,imin,imax,di}]数值求和,di为步长NSum[f,{i,imin,imax,di},{j,..},..]多维函数求和收集制作:科研中国文章出处:南京大学小百合站NProduct[f,{i,imin,imax,di}]函数求积NIntegrate[f,{x,xmin,xmax}]函数数值积分优化函数:FindMinimum[f,{x,x0}]以x0为初值,寻找函数最小值FindMinimum[f,{x,xstart,xmin,xmax}]ConstrainedMin[f,{inequ},{x,y,..}]inequ为线性不等式组,f为x,y..之线性函数,得到最小值及此时的x,y..取值ConstrainedMax[f,{inequ},{x,y,..}]同上LinearProgramming[c,m,b]解线性组合c.x在m.x>=b&&x>=0约束下的最小值,x,b,c为向量,m为矩阵LatticeReduce[{v1,v2...}]向量组vi的极小无关组数据处理:Fit[data,funs,vars]用指定函数组对数据进行最小二乘拟和data可以为{{x1,y1,..f1},{x2,y2,..f2}..}多维的情况emp:Fit[{10.22,12,3.2,9.9},{1,x,x^2,Sin[x]},x]Interpolation[data]对数据进行差值,data同上,另外还可以为{{x1,{f1,df11,df12}},{x2,{f2,.}..}指定各阶导数InterpolationOrder默认为3次,可修改ListInterpolation[array]对离散数据插值,array可为n维ListInterpolation[array,{{xmin,xmax},{ymin,ymax},..}]FunctionInterpolation[expr,{x,xmin,xmax},{y,ymin,ymax},..]以对应expr[xi,yi]的为数据进行插值Fourier[list]对复数数据进行付氏变换InverseFourier[list]对复数数据进行付氏逆变换Min[{x1,x2...},{y1,y2,...}]得到每个表中的最小值Max[{x1,x2...},{y1,y2,...}]得到每个表中的最大值Select[list,crit]将表中使得crit为True的元素选择出来Count[list,pattern]将表中匹配模式pattern的元素的个数Sort[list]将表中元素按升序排列Sort[list,p]将表中元素按p[e1,e2]为True的顺序比较list的任两个元素e1,e2,实际上Sort[list]中默认p=Greater集合论:Union[list1,list2..]表listi的并集并排序Intersection[list1,list2..]表listi的交集并排序Complement[listall,list1,list2...]从全集listall中对listi的差集Mathematica函数及使用方法—————————————————————————————————————收集制作:科研中国文章出处:南京大学小百合站九、虚数函数Re[expr]复数表达式的实部Im[expr]复数表达式的虚部Abs[expr]复数表达式的模Arg[expr]复数表达式的辐角Conjugate[expr]复数表达式的共轭Mathematica函数及使用方法—————————————————————————————————————十、数的头及模式及其他操作Integer_Integer整数Real_Real实数Complex_Complex复数Rational_Rational有理数(*注:模式用在函数参数传递中,如MyFun[Para1_Integer,Para2_Real]规定传入参数的类型,另外也可用来判断If[Head[a]==Real,...]*) IntegerDigits[n,b,len]数字n以b近制的前len个码元RealDigits[x,b,len]类上FromDigits[list]IntegerDigits的反函数Rationalize[x,dx]把实数x有理化成有理数,误差小于dxChop[expr,delta]将expr中小于delta的部分去掉,dx默认为10^-10 Accuracy[x]给出x小数部分位数,对于Pi,E等为无限大Precision[x]给出x有效数字位数,对于Pi,E等为无限大SetAccuracy[expr,n]设置expr显示时的小数部分位数SetPrecision[expr,n]设置expr显示时的有效数字位数Mathematica函数及使用方法—————————————————————————————————————十一、区间函数Interval[{min,max}]区间[min,max](*Solve[3x+2==Interval[{-2,5}],x]*)IntervalMemberQ[interval,x]x在区间内吗?IntervalMemberQ[interval1,interval2]区间2在区间1内吗?IntervalUnion[intv1,intv2...]区间的并IntervalIntersection[intv1,intv2...]区间的交Mathematica函数及使用方法—————————————————————————————————————十二、矩阵操作a.b.c或Dot[a,b,c]矩阵、向量、张量的点积Inverse[m]矩阵的逆Transpose[list]矩阵的转置Transpose[list,{n1,n2..}]将矩阵list第k行与第nk列交换Det[m]矩阵的行列式收集制作:科研中国文章出处:南京大学小百合站Eigenvalues[m]特征值Eigenvectors[m]特征向量Eigensystem[m]特征系统,返回{eigvalues,eigvectors}LinearSolve[m,b]解线性方程组m.x==bNullSpace[m]矩阵m的零空间,即m.NullSpace[m]==零向量RowReduce[m]m化简为阶梯矩阵Minors[m,k]m的所有k*k阶子矩阵的行列式的值(伴随阵,好像是) MatrixPower[mat,n]阵mat自乘n次Outer[f,list1,list2..]listi中各个元之间相互组合,并作为f的参数的到的矩阵Outer[Times,list1,list2]给出矩阵的外积SingularValues[m]m的奇异值,结果为{u,w,v},m=Conjugate[Transpose[u]].DiagonalMatrix[w].vPseudoInverse[m]m的广义逆QRDecomposition[m]QR分解SchurDecomposition[m]Schur分解LUDecomposition[m]LU分解Mathematica函数及使用方法—————————————————————————————————————十三、表函数(*“表”,我认为是Mathematica中最灵活的一种数据类型*)(*实际上表就是表达式,表达式也就是表,所以下面list==expr*)(*一个表中元素的位置可以用于一个表来表示*)表的生成{e1,e2,...}一个表,元素可以为任意表达式,无穷嵌套Table[expr,{imax}]生成一个表,共imax个元素Table[expr,{i,imax}]生成一个表,共imax个元素expr[i]Table[expr,{i,imin,imax},{j,jmin,jmax},..]多维表Range[imax]简单数表{1,2,..,imax}Range[imin,imax,di]以di为步长的数表Array[f,n]一维表,元素为f[i](i从1到n)Array[f,{n1,n2..}]多维表,元素为f[i,j..](各自从1到ni)IdentityMatrix[n]n阶单位阵DiagonalMatrix[list]对角阵元素操作Part[expr,i]或expr[[i]]第i个元expr[[-i]]倒数第i个元expr[[i,j,..]]多维表的元expr[[{i1,i2,..}]返回由第i(n)的元素组成的子表First[expr]第一个元收集制作:科研中国文章出处:南京大学小百合站Last[expr]最后一个元Head[expr]函数头,等于expr[[0]]Extract[expr,list]取出由表list制定位置上expr的元素值Take[list,n]取出表list前n个元组成的表Take[list,{m,n}]取出表list从m到n的元素组成的表Drop[list,n]去掉表list前n个元剩下的表,其他参数同上Rest[expr]去掉表list第一个元剩下的表Select[list,crit]把crit作用到每一个list的元上,为True的所有元组成的表表的属性Length[expr]expr第一曾元素的个数Dimensions[expr]表的维数返回{n1,n2..},expr为一个n1*n2...的阵TensorRank[expr]秩Depth[expr]expr最大深度Level[expr,n]给出expr中第n层子表达式的列表Count[list,pattern]满足模式的list中元的个数MemberQ[list,form]list中是否有匹配form的元FreeQ[expr,form]MemberQ的反函数Position[expr,pattern]表中匹配模式pattern的元素的位置列表Cases[{e1,e2...},pattern]匹配模式pattern的所有元素ei的表表的操作Append[expr,elem]返回在表expr的最后追加elem元后的表Prepend[expr,elem]返回在表expr的最前添加elem元后的表Insert[list,elem,n]在第n元前插入elemInsert[expr,elem,{i,j,..}]在元素expr[[{i,j,..}]]前插入elem Delete[expr,{i,j,..}]删除元素expr[[{i,j,..}]]后剩下的表DeleteCases[expr,pattern]删除匹配pattern的所有元后剩下的表ReplacePart[expr,new,n]将expr的第n元替换为newSort[list]返回list按顺序排列的表Reverse[expr]把表expr倒过来RotateLeft[expr,n]把表expr循环左移n次RotateRight[expr,n]把表expr循环右移n次Partition[list,n]把list按每n各元为一个子表分割后再组成的大表Flatten[list]抹平所有子表后得到的一维大表Flatten[list,n]抹平到第n层Split[list]把相同的元组成一个子表,再合成的大表FlattenAt[list,n]把list[[n]]处的子表抹平Permutations[list]由list的元素组成的所有全排列的列表Order[expr1,expr2]如果expr1在expr2之前返回1,如果expr1在expr2之后返回-1,如果expr1与expr2全等返回0Signature[list]把list通过两两交换得到标准顺序所需的收集制作:科研中国文章出处:南京大学小百合站交换次数(排列数)以上函数均为仅返回所需表而不改变原表AppendTo[list,elem]相当于list=Append[list,elem];PrependTo[list,elem]相当于list=Prepend[list,elem];Mathematica函数及使用方法--绘图函数—————————————————————————————————————十四、绘图函数二维作图Plot[f,{x,xmin,xmax}]一维函数f[x]在区间[xmin,xmax]上的函数曲线Plot[{f1,f2..},{x,xmin,xmax}]在一张图上画几条曲线ListPlot[{y1,y2,..}]绘出由离散点对(n,yn)组成的图ListPlot[{{x1,y1},{x2,y2},..}]绘出由离散点对(xn,yn)组成的图ParametricPlot[{fx,fy},{t,tmin,tmax}]由参数方程在参数变化范围内的曲线ParametricPlot[{{fx,fy},{gx,gy},...},{t,tmin,tmax}]在一张图上画多条参数曲线选项:PlotRange->{0,1}作图显示的值域范围AspectRatio->1/GoldenRatio生成图形的纵横比PlotLabel->label标题文字Axes->{False,True}分别制定是否画x,y轴AxesLabel->{xlabel,ylabel}x,y轴上的说明文字Ticks->None,Automatic,fun用什么方式画轴的刻度AxesOrigin->{x,y}坐标轴原点位置AxesStyle->{{xstyle},{ystyle}}设置轴线的线性颜色等属性Frame->True,False是否画边框FrameLabel->{xmlabel,ymlabel,xplabel,yplabel}边框四边上的文字FrameTicks同Ticks边框上是否画刻度GridLines同Ticks图上是否画栅格线FrameStyle->{{xmstyle},{ymstyle}设置边框线的线性颜色等属性ListPlot[data,PlotJoined->True]把离散点按顺序连线PlotSytle->{{style1},{style2},..}曲线的线性颜色等属性PlotPoints->15曲线取样点,越大越细致三维作图Plot3D[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]的空间曲面Plot3D[{f,s},{x,xmin,xmax},{y,ymin,ymax}]同上,曲面的染色由s[x,y]值决定收集制作:科研中国文章出处:南京大学小百合站ListPlot3D[array]二维数据阵array的立体高度图ListPlot3D[array,shades]同上,曲面的染色由shades[数据]值决定ParametricPlot3D[{fx,fy,fz},{t,tmin,tmax}]二元数方程在参数变化范围内的曲线ParametricPlot3D[{{fx,fy,fz},{gx,gy,gz},...},{t,tmin,tmax}]多条空间参数曲线选项:ViewPoint->{x,y,z}三维视点,默认为{1.3,-2.4,2}Boxed->True,False是否画三维长方体边框BoxRatios->{sx,sy,sz}三轴比例BoxStyle三维长方体边框线性颜色等属性Lighting->True是否染色LightSources->{s1,s2..}si为某一个光源si={{dx,dy,dz},color} color为灯色,向dx,dy,dz方向照射AmbientLight->颜色函数慢散射光的光源Mesh->True,False是否画曲面上与x,y轴平行的截面的截线MeshStyle截线线性颜色等属性MeshRange->{{xmin,xmax},{ymin,ymax}}网格范围ClipFill->Automatic,None,color,{bottom,top}指定图形顶部、底部超界后所画的颜色Shading->False,True是否染色HiddenSurface->True,False略去被遮住不显示部分的信息等高线ContourPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的等高线图ListContourPlot[array]根据二维数组array数值画等高线选项:Contours->n画n条等高线Contours->{z1,z2,..}在zi处画等高线ContourShading->False是否用深浅染色ContourLines->True是否画等高线ContourStyle->{{style1},{style2},..}等高线线性颜色等属性FrameTicks同上密度图DensityPlot[f,{x,xmin,xmax},{y,ymin,ymax}]二维函数f[x,y]在指定区间上的密度图ListDensityPlot[array]同上图形显示Show[graphics,options]显示一组图形对象,options为选项设置Show[g1,g2...]在一个图上叠加显示一组图形对象收集制作:科研中国文章出处:南京大学小百合站GraphicsArray[{g1,g2,...}]在一个图上分块显示一组图形对象SelectionAnimate[notebook,t]把选中的notebook中的图画循环放映选项:(此处选项适用于全部图形函数)Background->颜色函数指定绘图的背景颜色RotateLabel->True竖着写文字TextStyle此后输出文字的字体,颜色大小等ColorFunction->Hue等把其作用于某点的函数值上决定某点的颜色RenderAll->False是否对遮挡部分也染色MaxBend曲线、曲面最大弯曲度图元函数Graphics[prim,options]prim为下面各种函数组成的表,表示一个二维图形对象Graphics3D[prim,options]prim为下面各种函数组成的表,表示一个三维图形对象SurfaceGraphics[array,shades]表示一个由array和shade决定的曲面对象ContourGraphics[array]表示一个由array决定的等高线图对象DensityGraphics[array]表示一个由array决定的密度图对象以上定义图形对象,可以进行对变量赋值,合并显示等操作,也可以存盘Point[p]p={x,y}或{x,y,z},在指定位置画点Line[{p1,p2,..}]经由pi点连线Rectangle[{xmin,ymin},{xmax,ymax}]画矩形Cuboid[{xmin,ymin,zmin},{xmax,ymax,zmax}]由对角线指定的长方体Polygon[{p1,p2,..}]封闭多边形Circle[{x,y},r]画圆Circle[{x,y},{rx,ry}]画椭圆,rx,ry为半长短轴Circle[{x,y},r,{a1,a2}]从角度a1~a2的圆弧Disk[{x,y},r]填充的园、椭圆、圆弧等参数同上Raster[array,ColorFunction->f]颜色栅格Text[expr,coords]在坐标coords上输出表达式PostScript["string"]直接用PostScript图元语言写Scaled[{x,y,..}]返回点的坐标,且均大于0小于1颜色函数(指定其后绘图的颜色)GrayLevel[level]灰度level为0~1间的实数RGBColor[red,green,blue]RGB颜色,均为0~1间的实数Hue[h,s,b]亮度,饱和度等,均为0~1间的实数CMYKColor[cyan,magenta,yellow,black]CMYK颜色其他函数(指定其后绘图的方式)Thickness[r]设置线宽为r收集制作:科研中国文章出处:南京大学小百合站PointSize[d]设置绘点的大小Dashing[{r1,r2,..}]虚线一个单元的间隔长度ImageSize->{x,y}显示图形大小(像素为单位)ImageResolution->r图形解析度r个dpiImageMargins->{{left,right},{bottom,top}}四边的空白ImageRotated->False是否旋转90度显示Mathematica函数及使用方法——流程控制—————————————————————————————————————十五、流程控制分支If[condition,t,f]如果condition为True,执行t段,否则f段If[condition,t,f,u]同上,即非True又非False,则执行u段Which[test1,block1,test2,block2..]执行第一为True的testi对应的blockitch[expr,form1,block1,form2,block2..]执行第一个expr所匹配的formi所对应的blocki段循环Do[expr,{imax}]重复执行expr imax次Do[expr,{i,imin,imax},{j,jmin,jmax},...]多重循环While[test,body]循环执行body直到test为FalseFor[start,test,incr,body]类似于C语言中的for,注意","与";"的用法相反examp:For[i=1;t=x,i^2<10,i++,t=t+i;Print[t]]异常控制Throw[value]停止计算,把value返回给最近一个Catch处理Throw[value,tag]同上,Catch[expr]计算expr,遇到Throw返回的值则停止Catch[expr,form]当Throw[value,tag]中Tag匹配form时停止其他控制Return[expr]从函数返回,返回值为exprReturn[]返回值NullBreak[]结束最近的一重循环Continue[]停止本次循环,进行下一次循环Goto[tag]无条件转向Label[Tag]处Label[tag]设置一个断点Check[expr,failexpr]计算expr,如果有出错信息产生,则返回failexpr的值Check[expr,failexpr,s1::t1,s2::t2,...]当特定信息产生时则返回failexpr CheckAbort[expr,failexpr]当产生abort信息时放回failexprInterrupt[]中断运行Abort[]中断运行收集制作:科研中国文章出处:南京大学小百合站TimeConstrained[expr,t]计算expr,当耗时超过t秒时终止MemoryConstrained[expr,b]计算expr,当耗用内存超过b字节时终止运算交互式控制Print[expr1,expr2,...]顺次输出expri的值examp:Print["X=",X//N,"",f[x+1]];Input[]产生一个输入对话框,返回所输入任意表达式Input["prompt"]同上,prompt为对话框的提示Pause[n]运行暂停n秒Mathematica函数及使用方法——函数编程—————————————————————————————————————十六、函数编程(*函数编程是Mathematica中很有特色也是最灵活的一部分,它充分体现了*) (*Mathematica的“一切都是表达式”的特点,如果你想使你的Mathematica程*) (*序快于高级语言,建议你把本部分搞通*)纯函数Function[body]或body&一个纯函数,建立了一组对应法则,作用到后面的表达式上Function[x,body]单自变量纯函数Function[{x1,x2,...},body]多自变量纯函数#,#n纯函数的第一、第n个自变量##纯函数的所有自变量的序列examp:#1^#2&[2,3]返回第一个参数的第二个参数次方映射Map[f,expr]或f/@expr将f分别作用到expr第一层的每一个元上得到的列表Map[f,expr,level]将f分别作用到expr第level层的每一个元上Apply[f,expr]或f@@expr将expr的“头”换为fApply[f,expr,level]将expr第level层的“头”换为fMapAll[f,expr]或f//@expr把f作用到expr的每一层的每一个元上MapAt[f,expr,n]把f作用到expr的第n个元上MapAt[f,expr,{i,j,...}]把f作用到expr[[{i,j,...}]]元上MapIndexed[f,expr]类似MapAll,但都附加其映射元素的位置列表Scan[f,expr]按顺序分别将f作用于expr的每一个元Scan[f,expr,levelspec]同上,仅作用第level层的元素复合映射Nest[f,expr,n]返回n重复合函数f[f[...f[expr]...]]NestList[f,expr,n]返回0重到n重复合函数的列表{expr,f[expr],f[f[ex pr]]..}FixedPoint[f,expr]将f复合作用于expr直到结果不再改变,即找到其不定点收集制作:科研中国文章出处:南京大学小百合站FixedPoint[f,expr,n]最多复合n次,如果不收敛则停止FixedPointList[f,expr]返回各次复合的结果列表FoldList[f,x,{a,b,..}]返回{x,f[x,a],f[f[x,a],b],..}Fold[f,x,list]返回FoldList[f,x,{a,b,..}]的最后一个元ComposeList[{f1,f2,..},x]返回{x,f1[x],f2[f1[x]],..}的复合函数列表Distribute[f[x1,x2,..]]f对加法的分配率Distribute[expr,g]对g的分配率Identity[expr]expr的全等变换Composition[f1,f2,..]组成复合纯函数f1[f2[..fn[]..]Operate[p,f[x,y]]返回p[f][x,y]Through[p[f1,f2][x]]返回p[f1[x],f2[x]]Compile[{x1,x2,..},expr]编译一个函数,编译后运行速度可以大大加快Compile[{{x1,t1},{x2,t2}..},expr]同上,可以制定函数参数类型Mathematica函数及使用方法—————————————————————————————————————十七、替换规则lhs->rhs建立了一个规则,把lhs换为rhs,并求rhs的值lhs:>rhs同上,只是不立即求rhs的值,知道使用该规则时才求值Replace[expr,rules]把一组规则应用到expr上,只作用一次expr/.rules同上expr//.rules将规则rules不断作用到expr上,直到无法作用为止Dispatch[{lhs1->rhs1,lhs2->rhs2,...}]综合各个规则,产生一组优化的规则组Mathematica函数及使用方法——查询函数、串函数—————————————————————————————————————十八、查询函数(*查询函数一般是检验表达式是否满足某些特殊形式,并返回True或False*) (*可以在Mathematica中用“?*Q”查询到*)ArgumentCountQ MatrixQAtomQ MemberQDigitQ NameQEllipticNomeQ NumberQEvenQ NumericQExactNumberQ OddQFreeQ OptionQHypergeometricPFQ OrderedQInexactNumberQ PartitionsQIntegerQ PolynomialQIntervalMemberQ PrimeQInverseEllipticNomeQ SameQ收集制作:科研中国文章出处:南京大学小百合站LegendreQ StringMatchQLetterQ StringQLinkConnectedQ SyntaxQLinkReadyQ TrueQListQ UnsameQLowerCaseQ UpperCaseQMachineNumberQ ValueQMatchLocalNameQ VectorQMatchQMathematica函数及使用方法—————————————————————————————————————十九、字符串函数"text"一个串,头为_String"s1"<>"s2"<>..或StringJoin["s1","s2",..]串的连接StringLength["string"]串长度StringReverse["string"]串反转StringTake["string",n]取串的前n个字符的子串,参数同Take[]StringDrop["string",n]参见Drop,串也就是一个表StringInsert["string","snew",n]插入,参见Insert[]StringPosition["string","sub"]返回子串sub在string中起止字母位置StringReplace["string",{"s1"->"p1",..}]子串替换StringReplacePart["string","snew",{m,n}]把string第m~n个字母之间的替换为snewStringToStream["string"]把串当作一个输入流赋予一个变量Characters["string"]把串"string"分解为每一个字符的表ToCharacterCode["string"]把串"string"分解为每一个字符ASCII值的表FromCharacterCode[n]ToCharacterCode的逆函数FromCharacterCode[{n1,n2,..}]ToCharacterCode的逆函数ToUpperCase[string]把串的大写形式ToLowerCase[string]把串的小写形式CharacterRange["c1","c2"]给出ASCII吗在c1到c2之间的字符列表ToString[expr]把表达式变为串的形式ToExpression[input]把一个串变为表达式Names["string"]与?string同,返回与string同名的变量列表。

mathematica 用法

mathematica 用法

Mathematica 可以对矩阵进行运算, 下面我们用函数 Eigensystem 求出矩阵 2
2 2 的特征值和特征向量: 2 2 2 ] 2 2
输入: Eigensystem[
输出: 0, 4 , 1,1 , 1,1 2.2 符号计算功能 求方程 ax2 bx c 0 根: 输入:Solve[ ax2 bx c 0, x ] 输出:{{ x
4.1.2 用 Array 创建矩阵 Array[a,n] 创建一个元素为 a[i]的有 n 个元素的表(向量) Array[a,{n1,n2}]创建一个元素为 a[i1,i2]的有 n1×n2 个元素的 2 层表。 4.1.3 通过基本数学输入工具创建 4.2 矩阵的运算(课用来解线性方程组) 加:A+B 数乘:4A 矩阵相乘: Dot[A,B] 或者 A.B 转置矩阵: Transpose[A]//MatrixForm (求逆矩阵并表示成矩阵形式) 逆矩阵:Inverse[A] 方阵的行列式:Det[A] 迹(对角线元素之和) :Tr[A] Eigenvalues[A] Eigenvectors[A] Eigensystem[A] 求全部特征值 一组线性无关的特征向量 全部特征值和对应的线性无关的特征向量组
) (把多项式化成最简形式)
若输入:D[Cos[x]/(x+Sin[x]),{x,2}] //������������������������������������������������
输出:
3+Cos [2������ ]+2������ Sin [������ ]+Cos [������ ](4−������ 2 +������ Sin [������ ]) (������ +Sin [������ ])3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mathematica for Windows 用法一、Mathematica 的主要功能Mathematica 是美国Wolfram 公司开发的一个功能强大的计算机数学系统,提供了范围广泛的数学计算功能,主要包括三个方面:符号演算、数值计算、图形。

例如:多项式的四则运算、展开、因式分解,有理式的各种计算,有理方程、超越方程的解,向量和矩阵的各种计算,求极限、导数、极值、不定积分、定积分、幂级数展开式,求解微分方程,作一元、二元函数的图形等等。

二、Mathematica 的基本知识 1.输入表达式:直接输入一个表达式(包括算式和命令,长表达式用“Enter ”换行)后,按“Shift+Enter ”执行,执行后以“Out[命令序号]= ……”形式输出执行结果,输出的结果可在后续的表达式中使用。

若命令后有分号,则不输出执行结果(图形输出与Print 命令除外)。

“%”表示上一个输出,“%%”表示倒数第2个输出,“%i”表示第i个命令的输出。

2.运算符:+、-、*、/、^ ,“*”可用空格代替,“^”表示乘方。

如:In[1]:=2^10,输出为“Out[1]= 1024”,其中“In[1]:=”不需要输入。

In[2]:=3+5,Out[2]= 8;In[3]:=%-2,Out[3]= 6;In[4]:=%2+4,Out[4]= 12;In[5]:=1/3-1/4,Out[5]=121;In[6]:=N[%],Out[6]= 0.0833333; In[7]:=N[%5+12,10],Out[7]= 12.08333333(注意字母的大小写) 3.变量赋值:变量=表达式,“x=.”或Clear[x] 表示清除对x 的赋值。

表达式/.t ->c ,将表达式中的t 全替换成c 。

?x ,查x 信息。

4.常用的数学常数:Pi (π)、E(e)、Infinity (∞)、I (1-)5.常用的数学函数:Abs, Sin, Cos, Tan, Cot, ArcSin, Log (自然对数), Sqrt, Exp 如:In[1]:=Sqrt[2]+1;In[2]:=Sin[2]+ArcSin[1];In[3]:=Exp[2]+% (自变量用[ ]括,区分大小写,首字母大写) 三、常用运算 1.多项式运算:In[1]:= (2+4*x^2)*(1-x)^3 或 In[1]:= t = (2+4*x^2)*(1-x)^3 (将右端表达式赋值给t ); In[2]:=a=t/.x->4 (计算表达式t 当x=4时的值,并赋值给变量a ) In[3]:=a=. (清除变量a ) In[3]:=Expand[t](展开);In[4]:=Factor[%](把上一个结果因式分解) 2.解方程:In[1]:=Solve[x^2+3*x = = 2];In[2]:=N[%]; In[3]:=Solve[a*x-b= = 0, x]; In[4]:=NSolve[{x-2*y= =0,x^2-y= =1},{x,y}](解方程组并得到数值解) 3.自定义函数:In[1]:= f [x_ ]:=x^2+2*x ; In[2]:=f[5]+7; In[3]:=f[a+b] 4.求极限:In[1]:=Limit[Sin[x]/x, x ->0]; In[2]:=Limit[(1+1/n)^n, n->Infinity],Out[2]=E 5.求(偏)导数:In[1]:=D[a*x^2+3, x];In[2]:=D[x^2+y^3-Sin[2*y], y](对y 的偏导数); In[3]:=D[Log[x], {x,2}] (求对x 的二阶导数); In[4]:=D[Sin[x+y]*Exp[z*y^2],x,y] (求对x 、y 的二阶混合偏导数); In[5]:=Simplify[%] (对前一结果化简); In[6]:=D[Sin[x+y]*Exp[z*y^2],{x,2},{y,3}] 6.求不定积分:In[1]:=Integrate[x^2,x];In[2]:=Integrate[1/(x^2+a^2),x] 7.定积分:In[1]:=Integrate[x^2, {x,0,1}];In[2]:=Integrate[x^2,{x,a,b}]; In[3]:=Integrate[x^2+y^2, {x,0,a},{y,0,b}];(求矩形域上的二重积分) In[4]:=Integrate[1, {x,-1,1},{y,-Sqrt[1-x^2],Sqrt[1-x^2]}];Out[4]=Pi (圆面积) 8.幂级数展开:In[1]:=Series[Exp[x],{x,0,4}](在x=0处展开到x 的四次幂) 9.矩阵的输入和输出:In[1]:= a ={{1,2},{3,4}}(定义一个2x2的矩阵a ,按行写);In[2]:=MatrixForm[a](输出为矩阵形式);In[3]:=Transpose[a](a 的转置); In[4]:=a[[2]](a 的第2行);In[5]:=Tanspose[a][[2]](a 的第2列); In[6]:=Inverse[a](求a 的逆矩阵);In[7]:=Det[a](矩阵的行列式); In[8]:=Eigenvalues[a](求特征值);In[9]:=Eigenvectors[a](求特征向量); In[10]:=RowReduce[a](把a 化为阶梯形,可用于求矩阵的秩、判断线性相关性); In[11]:= b ={{5,6,7},{8,9,10}};In[12]:= a .b (矩阵a 与b 的乘积) 10.解线性方程组:In[1]:= a ={{3,4,5,6},{6,8,10,12},{4,5,6,7},{5,6,7,8}};(a 的秩为2) In[2]:= b ={1,2,3,5}(列向量);(增广矩阵的秩也为2) In[3]:=LinearSolve[a,b](求线性方程组ax=b 的一个特解); In[4]:=NullSpace[a](求线性方程组ax=0的一个基础解系);In[5]:= x =k1%4[[1]]+k2%4[[2]]+%3(ax=b 的全部解,k1、k2为任意常数)11.求和:In[1]:=NSum[Sin[n]/n^3,{n,1,Infinity}](求级数∑∞=13sin n nn 的和)12.求极小值:In[1]:=FindMinimum[Sin[x]*Cos[x],{x,0.5}](求函数在0.5附近的极小值);In[2]:=FindMinimum[Sin[x*y]*Exp[x^2],{x,0.2}, {y,0.3}](求多元函数极小值) 13.求解线性规划问题:Min cx ,mx ≥b ,x ≥0,求向量x 。

In[1]:= c ={2,-3}(列向量);In[2]:= m ={{-1,-1},{1,-1},{1,0}}; In[3]:= b ={-10,2,1}; In[4]:=LinearProgramming[c,m,b]14.数据拟合:In[1]:= d ={{1,2.18},{1.2,2.56},{1.6,3.0},{1.8,2.66}}; In[2]:= f =Fit[d,{1, x, x^2}, x](求和上面4个点吻合最好的二次多项式f ); 检验效果:In[3]:=ListPlot[d](画d 中4个点的图); In[4]:=Plot[f,{x,0.8,2.0}](画多项式f 在x 从0.8到2.0之间的图); In[5]:=Show[%3, %4](把上面两个图画在一起) 注:函数集{1, x, x^2}可以是更高次的或其它函数集,如三角函数集等。

15.一元函数作图:In[1]:=Plot[Exp[-x^2]*Sin[6*x],{x,-2,2}](如图1) 参数方程作图:In[2]:=ParametricPlot[{Sin[t]^3,Cos[t]^3},{t,0,2*Pi}] 16.二元函数作图:In[1]:=Plot3D[Sin[x*y],{x,-Pi, Pi},{y,-Pi, Pi}];(如图2) In[2]:=Plot3D[Sin[x*y],{x,-Pi, Pi},{y,-Pi, Pi},PlotPoints->40, ViewPoint->{2,-3,2}]In[3]:=ParametricPlot3D[{Cos[u]*Cos[v],Sin[u]*Cos[v],Sin[v]},{u,0,2*Pi},{v,-Pi/2,Pi/2}] 17.数据画图:In[1]:= d ={{1,2},{3,4},{7,6}};In[2]:=ListPlot[d]; In[3]:=ListPlot[d, PlotStyle->{RGBColor[1,0,0], PointSize[0.02]}](红色的大点);或直接用 In[4]:=ListPlot[{1,2},{3,4},{7,6}] 代替“In[2]:=”。

18.作图范围:In[1]:=Plot[x-x^3/6,{x,-4,4}]; In[2]:=Plot[x-x^3/6,{x,-4,4},PlotRange->{-5,2}](限定纵坐标(函数值)范围)19.图形组合:In[1]:=Plot[{Sin[x],Cos[x]},{x,0,2*Pi}];或In[2]:= g1=Plot[Sin[x],{x,0,2*Pi}, PlotStyle->{RGBColor[1,0,0]}]; In[3]:= g2=Plot[Cos[x],{x,0,2*Pi}, PlotStyle->{RGBColor[0,0,1]}]; In[4]:=Show[g1,g2](把g1、g2画在一起) 20.文件的使用:In[1]:= y =25;In[2]:= a ={{1,4},{2,6}};In[3]:= f [x_ ]:=x^2 ; In[4]:= g =Plot[Sin[x],{x,0,2*Pi}, PlotStyle->{RGBColor[1,0,0]}];In[5]:=Save[“abc .m”,a,y,f,g](将a, y, f, g 保存在文件“abc .m ”中,扩展名为m ); In[6]:=!!abc .m (显示文件内容);In[1]:=<<abc .m (退出后重新进入时,从文件中恢复保存的变量)设置默认工作文件夹:In[1]:=SetDirectory["D:\MODEL"]读数据文件:先建立数据文件lianxi.txt ,其中的数据用空格分隔。

相关文档
最新文档