《二次函数》单元备课
九年级数学《二次函数》单元备课

《第二十六章二次函数》单元备课一、学情分析九年级学生的思维正处于由经验型向理论型转型期,虽然经过第三学段学习,抽象思维能力有了长足发展,但形象思维仍然处于主流位置,加之二次函数的学习是以已学函数内容为基础的,从八年级上册“一次函数”、八年级下册“反比例函数”的学习到九年级下册“二次函数”的学习,相互间隔时间较长,而函数的概念、描点法画函数的图象等在本章中都要用到。
因此,要注意复习已学函数相关内容,是顺利完成本章学习的基础,帮助学生学好二次函数。
在学习过程中,需要不断地提高认识问题的水平,这包括对过去已认识过的事物的再认识,也包括对新认识的事物与已认识的事物之间的联系的认识。
这种认识水平的提高,是构建知识体系的过程中不可缺少的。
二、教学任务分析:本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数的图像抛物线,既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
函数不仅仅可以看成变量之间的依赖关系,同时函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
这几节的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此这一章节的教学目标:1.使学生经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系;2.能用表格、关系式、图象表示变量之间的二次函数关系,发展有条理地进行思考和语言表达的能力,并能根据具体问题,选取适当的方法表示变量之间的二次函数关系;3.会作二次函数的图象,并能根据图象对二次函数的性质进行分析,并逐步积累研究一般函数性质的经验;4.能根据二次函数的表达式,确定二次函数的开口方向、对称轴和顶点坐标。
二次函数单元整体教学设计

《二次函数》单元整体教学设计一、教学内容分析本章的主要内容有:二次函数的概念、二次函数的图像和性质、二次函数和一元二次方程的关系、二次函数的应用。
本章是在学习了正比例函数、一次函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流等有形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章知识从现实生活出发,以喷泉喷出的水为例导出二次函数,不仅使学生充分认识到数学和现实生活的联系,并激发学生的求知欲。
再通过实例正方体表面积的计算先认识最简单的二次函数)(0a 2≠=ax y , 然后逐渐深入到一般形式)0(y 2≠++=a c bx ax ,经历这种从特殊到一般,从简单到复杂的学习过程,并且在学生原有的知识一次函数的基础上来类比学习,让学生体会知识点时间的联系。
二、单元教学有关内容分析(一)单元数学分析本章知识是在之前学习过一次函数和一元二次方程的基础之上学习的,又为以后学习反比例函数提供经验,在整个初中的数学学习中起到了承上启下的作用,抛物线作为学生第一条接触到的曲线,对它的性质的研究也对以后其它曲线的学习有很大的帮助。
(二)单元课标分析新课程标准对本章知识的学习有具体的要求:掌握并认识二次函数,会用描点法做出二次函数的图像,并会通过图像的到二次函数的性质(包括开口方向、顶点、对称轴、增减性以及最值问题),体会二次函数与一元二次方程的区别及联系,并会用二次函数解决一些实际问题。
(三)单元学情分析我所在的学校为城市初级中学,我所教的两个班级是实验班,学生基础较好,学困生占班级比例很小,两极分化还不严重,学生上课基本都能够认真听讲,课后也能及时的完成作业。
九年级《二次函数》全章教案

一、教学内容
1.定义:二次函数的定义
2.标准二次函数:了解标准二次函数的式子及其性质
3.图像特征:了解图像的性质,如极值,唯一性,对称性,凹凸性等
4.求解二次函数的根:了解求解二次函数根的方法,学会用数学方法解二次方程
二、教学目标
1.学会定义二次函数的概念,以及熟练使用标准二次函数的式子
2.掌握图像性质,能够分析二次函数的图像特征
3.掌握二次函数根的求解方法,能熟练运用二次函数的性质进行求解
三、教学重点
1.学会定义二次函数的概念,以及熟练使用标准二次函数的式子
2.掌握图像性质,能够分析二次函数的图像特征
四、教学难点
1.了解求解二次函数根的方法,学会用数学方法解二次方程
五、教学过程
(一)热身
1.学生回顾前一节课学习内容,小组讨论二次函数的定义
2.学生观察二次函数的图像,分析图像的特征
3.启发:求解二次函数的根的方法
(二)正式教学
1.由学生结合上节课内容,定义二次函数的概念,以及介绍标准二次函数的式子
2.提出图像的性质,如极值,唯一性,对称性,凹凸性,并通过实例图形进行理解
3.通过实例,让学生学会求解二次函数的根的方法。
人教版九年级数学上册第二十二章二次函数大单元教学设计

(1)完成课本第22章练习题1、2、3,要求学生熟练掌握二次函数的定义、图像性质、顶点式与标准式的转换。
(2)利用图形计算器或计算机软件,绘制几个典型二次函数的图像,观察并分析开口方向、顶点、对称轴、最值等性质。
2.实际问题应用:
(3)结合生活实际,编写一道关于二次函数的应用题,要求学生将实际问题抽象为二次函数模型,并求解。
人教版九年级数学上册第二十二章二次函数大单元教学设计
一、教学目标
(一)知识与技能
1.让学生掌握二次函数的定义,能够准确地识别和描述二次函数的一般形式,即f(x) = ax^2 + bx + c(a≠0)。
2.使学生理解二次函数图像的基本性质,包括开口方向、对称轴、顶点、最小(大)值等,并能够利用这些性质解决相关问题。
2.教学方法:采用情境导入法,通过生活实例激发学生的兴趣,引导学生从实际问题中发现数学规律。
3.教学步骤:
a.展示生活中抛物线运动的图片或视频,让学生观察并描述其运动轨迹。
b.学生分享观察到的运动轨迹特点,教师引导总结出抛物线的一般形式。
c.提问:“这些运动轨迹都可以用一个数学模型来描述,你们知道是什么吗?”由此引出二次函数的定义。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们认识到数学在现实生活中的广泛应用和价值。
2.通过二次函数的学习,让学生感受到数学的对称美和秩序美,培养他们的审美情趣。
3.引导学生树立正确的价值观,认识到数学知识的学习不仅是为了应对考试,更重要的是为了解决实际问题,为我国的社会发展做出贡献。
3.教学步骤:
a.将学生分成若干小组,每组分配一个讨论题目,如二次函数的性质、图像特点等。
二次函数大单元整体教学设计

二次函数大单元整体教学设计一、教学目标1. 理解二次函数的定义及其性质;2. 掌握二次函数的基本图像和性质;3. 掌握二次函数的解析式的表示和应用;4. 能够应用二次函数解决实际问题。
二、教学内容1. 二次函数的定义及表示;2. 二次函数的图像和性质;3. 二次函数的解析式及相关知识;4. 二次函数的应用。
三、教学步骤1. 引入引导学生回顾一元二次方程的知识,复习一元二次方程的解及其应用。
提问:一元二次方程的解的个数可能有几种情况?2. 讲授二次函数的定义及表示(1)介绍二次函数的定义和一般形式;(2)讲解二次函数图像的特征,包括顶点、对称轴、开口方向等;(3)通过练习引导学生理解二次函数图像的变化规律。
3. 探究二次函数的性质(1)求解二次函数的零点,了解零点和图像的关系;(2)探究二次函数的最值和变化趋势,引入二次函数的平面内几何表示;(3)通过实例分析二次函数图像的性质。
4. 学习二次函数的解析式及相关知识(1)引入二次函数的一般形式的解析式;(2)通过实例总结求解二次函数的方法和步骤;(3)引导学生探究二次函数解析式中的系数对图像的影响。
5. 进一步应用二次函数解决问题(1)通过实际问题引导学生应用二次函数解决实际问题;(2)引导学生分析实际问题,建立二次函数模型;(3)通过练习提高学生应用二次函数解决实际问题的能力。
6. 总结与拓展(1)对本节内容进行总结,强调二次函数的定义、图像、性质和解析式;(2)进行小结复习,巩固学生对二次函数的理解和掌握;(3)拓展学生对二次函数的应用领域的认识,引导学生进一步探究。
四、教学方法1. 探究教学法:通过引导学生进行探究,自主发现二次函数的定义、图像和性质;2. 演示教学法:通过示范、讲解,让学生掌握二次函数的解析式及应用方法;3. 实践教学法:通过实际问题的应用,培养学生运用二次函数解决实际问题的能力。
五、教学资源1. 教科书资料;2. 钢琴或相关乐器;3. 计算器;4. 多媒体教学设备。
初中数学《二次函数》大单元教学设计

次函数的草图;通过图象了解二次函数的性质,知道二次函数的系数与
图象形状和对称轴的关系。会根据二次函数的表达式求其图象与坐标轴
的交点坐标;会用配方法将数字系数的二次函数的表达式化为+k的形式,
能由此得出二次函数图象的顶点坐标,说出图象的开口方向,画出图象
要模型。因此,这部分对学生学习函数内容有着承上启下的作用,对培养和
提高学生用函数模型(函数思想)来解决实际问题,逐步提高分析问题,解
决问题的能力有着至关重要的作用。本主题分为二次函数概念、图象与性质
,二次函数与一元二次方程,二次函数的应用三个专题,其中二次函数的图
像与性质是重点,二次函数的应用是难点,采用数形结合以及类比的学习方
1
专题一
二次函数的图象和性质
(课内1课时,课外1课时)
专题学习目标
1.掌握二次函数的定义;
2.会用配方法将数字系数的二次函数的表达式化为 = ( − ) +k的形式;
3. 会利用一些特殊点画出二次函数的草图,通过图象掌握二次函数的性质;
4.掌握二次函数的系数和图象的关系
专题问题设计
1
复习二
技巧归纳:(1)求二次函数的图象的顶点坐标有两种方法:①配方法;②顶点公式法,顶
点坐标为(
−
− ,
).③求对称轴,然后代入函数解析式。
(2)画抛物线y=a +bx+c的草图,要确定五个方面,即①开口方向;②对称轴;③顶
点;④与y轴交点;⑤与x轴交点.
学习活动设计
典例精讲:
即为学生积累常见的基础模型,教学中增强题目的变式
训练,教学中引导学生积极探索、发散思维,教学中注
初中九年级数学上册《第二十二章 二次函数》大单元整体课时教学设计

初中九年级数学上册《第二十二章二次函数》大单元跨学科教学课时教学设计[2022课标]一、教学目标1.会用数学的眼光观察现实世界:通过本章《第二十二章二次函数》的学习,学生能够运用二次函数的知识观察体育与物理现象中的运动轨迹和变化规律,如铅球投掷的抛物线轨迹、竖直上抛运动中小球的高度变化等,从而发现数学与现实生活及学科的紧密联系。
2.会用数学的思维思考现实世界:学生能够运用二次函数的性质(如开口方向、顶点坐标、对称轴等)和解析式,分析体育和物理问题中的量化关系,如通过调整参数来优化运动效果或模拟实验现象,培养逻辑思维和问题解决能力。
3.会用数学的语言表达现实世界:学生能够将体育和物理中的问题抽象成二次函数模型,建立相应的数学表达式,并通过计算、推导和论证,用准确的数学语言描述和解释这些现象,最终得出科学结论。
二、教学内容分析本章主要探讨二次函数的定义、图象、性质以及应用,是初中数学知识体系中的重要组成部分。
从学科内部来看,二次函数的学习是在一次函数基础上的深化和拓展,通过本章的学习,学生能够理解并掌握二次函数的基本概念、图象特征以及增减性,为后续学习一元二次方程、二次不等式等内容打下坚实基础。
从跨学科角度来看,二次函数在体育、物理等领域有着广泛的应用。
在体育项目中,如投掷、跳跃等,运动员的运动轨迹往往可以抽象为二次函数图象,通过二次函数的解析式可以精确描述运动员的运动状态,为训练提供科学依据。
在物理学中,二次函数模型被广泛应用于描述抛体运动、振动等自然现象,有助于学生理解自然界中复杂运动的本质规律。
在本章的教学过程中,教师应注重引导学生将二次函数知识与实际问题相结合,通过跨学科的教学活动,激发学生的学习兴趣,培养学生的应用意识和实践能力。
结合体育、物理等学科的实例,让学生深刻体会到数学知识在解决实际问题中的重要作用,提升数学学习的价值和意义。
三、教学重点1.理解并掌握二次函数的定义、图像及基本性质。
二次函数单元备课(完整资料).doc

【最新整理,下载后即可编辑】二次函数单元备课一、教材分析:二次函数是描述现实世界变量之间关系的重要数学模型。
著名的自由落体运动公式就是二次函数刻画物体运动的最好例证,是最重要的物理学公式。
二次函数也是某些单变量最优化的数学模型。
如本章所提及的求最大利润、最大面积等实际问题。
二次函数的图像——抛物线,也是人们最为熟悉的曲线之一。
喷泉的水流、标枪的投掷等都形成抛物线路径。
同时,抛物线形状在建筑上也有着广泛的应用,如抛物线拱桥、抛物线型隧道等。
二次函数还是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数,进而体会函数的思想奠定基础、积累经验。
1、通过分析具体问题及实例,引出对应观点下的函数概念及函数值的概念,使学生进一步理解函数的定义。
2、通过分析实际问题(如探究橙子的数量与橙子树之间的关系),以及用关系式表示这一关系的过程,引出二次函数的概念。
3、对二次函数性质的研究,采用的是利用图像的、直观的、非形式化的研究方法,通过学生自己的探索活动(联系、对比、概括和反思等),达到对抛物线自身特点的认识和对二次函数性质的理解。
4、对二次函数图像的研究,经历了从简单到复杂、从特殊到一般的过程5、在研究图像的过程当中,也穿插了实际应用问题,如函数图像与刹车距离、函数图像与桥梁钢缆等,把图像直观与实际意义相联系。
6、用表格、表达式、图像等多种方法表示二次函数,使学生体会函数的各种表示方法之间的联系和特点。
7、设计了大量可以表示为二次函数或利用二次函数知识加以解决的问题,发展学生的数学应用能力。
8、建立一元二次方程的求解问题与二次函数之间的联系,利用二次函数的图像求一元二次方程的近似根。
二、教学目标:1、经历建立两个变量之间的函数关系的过程,进一步理解函数的意义,并会求简单函数的自变量的取值范围及函数值。
2、经历探索、分析和建立两个变量之间的二次函数关系的过程, 进一步体验如何用数学的方法描叙变量之间的数量关系。
二次函数单元集体备课

九年级下册第二章《二次函数》单元备课【单元分析】课标要求:1.通过对实际问题的分析,体会二次函数的意义。
2.会用描点法画出二次函数的图象,通过图象了解二次函数的性质。
3. 会用配方法将数字系数的二次函数的表达式化为k=2)(-ahxy+的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题。
4.会利用二次函数的图象求一元二次方程的近似解。
5.知道给定不共线三点的坐标可以确定一个二次函数。
教材分析:“二次函数”这章主要要求学生在掌握好原来的一次函数、正比例函数、反比例函数的基础上,进一步学习二次函数的初步知识。
本章采用由简入繁的方式对各种形式的二次函数进行了系统的学习。
尤其与旧教材不同的是,加入了函数的平移,从而对函数的图像进行了更深入的理解。
对二次函数的表达式问题中,要求了三种形式,而且对二次函数表达式的确定要求的也非常具体。
对二次函数与一元二次方程的关系中,也与旧教材有鲜明的对比。
在这一节中,一直采用探究的形式对一元二次方程的根的情况和二次函数进行对比、研究。
最后,对二次函数的应用部分,题目的设计充分体现了“数学源于生活又服务于生活”的这一原则。
【学情分析】学生知识与技能基础:学生在之前已经学习过变量、自变量、因变量、函数等概念,对一次函数、反比例函数的相关知识如:各种变量、函数的一般形式、图像、增减性等知识有一定基础,相关应用也较常见,学生在学二次函数前具备了一定函数方面的基础知识、基本技能。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些解决实际问题活动,感受到了函数反映的是变化过程,并可通过列表、解析式、图像了解变化过程,对各种函数的表达方法的特点有所了解,获得了探究学习新函数知识的基础;同时在以前的学习中学生经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
【单元目标】1.知识与技能:要让学生掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。
《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
北师大版初中九年级数学下册第二章集体备课教案教学设计含教学反思

第二章二次函数1 二次函数【知识与技能】使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围. 【过程与方法】复习旧知识,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.【情感态度】通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.【教学重点】对二次函数概念的理解.【教学难点】由实际问题确定函数解析式.一、情景导入,初步认知1.什么叫函数?它有几种表示方法?2.什么叫一次函数?(y=kx+b)自变量是什么?函数是什么?常量是什么?为什么要有的条件?k值对函数性质有什么影响?【教学说明】复习这些问题是为引入一元二次函数做铺垫,帮助学生加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a 进行比较.二、思考探究,获取新知问题1某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些树,以提高产量.但是树种多了,那么树之间的距离和每棵树接收的阳光就会减少.根据经验,估计每多种一棵树,平均每棵树就会少结5个橙子.①哪些是变量?哪些是自变量?哪些是因变量?②如果设多种x棵树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?③如果果园橙子的总产量为y,请你写出y与x之间的关系式.问题2教材29页的“做一做”设年利率为x,本息和为y.请你写出y与 x之间的关系式.教师提问:以上两个例子所列出的函数有什么特点,学生观察并讨论. 【教学说明】通过具体事例,让学生列出关系式,启发学生观察、思考、对比一次函数,归纳出二次函数的定义.【归纳结论】我们把形如y=ax2 +bx + c (其中a,b,c是常数,a ≠0)的函数叫做二次函数.其中x是自变量,a为二次项系数,b为一次项系数,c为常数项.三、运用新知,深化理解下列关系式中,一定属于二次函数的是(x为自变量)()解析:紧抓二次函数的概念.答案:A2.m取哪些值时,函数y=(m2-m)x2 + mx + (m+1)是以x为自变量的二次函数?分析:若函数 y=(m2-m)x2+mx+(m+1)是二次函数,须满足的条件是m2-m≠0.解:若函数 y=(m2-m)x2+mx+(m+1)是二次函数,则m2-m≠0.解得m≠0,且m≠1.因此,当m≠0,且m≠1时,函数y=(m2-m)x2+mx+(m+1)是二次函数.3.(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm) 之间的函数关系.分析:(1)根据正方体表面积公式可得.(2)面积与半径有关,所以根据周长表示出半径就可求出面积.解:(1)S=6a2(a>0);2x(2)(0)y=x>4【教学说明】学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中.四、师生互动,课堂小结叙述二次函数的定义.二次函数定义:形如y=ax2+bx+c(a、b、c 是常数,a≠0)的函数叫做x的二次函数,a叫做二次项的系数,b叫做一次项的系数,叫作常数项.1.布置作业:教材“习题2.1”中第3、题.2.完成练习册中本课时的练习.本节课通过简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数. 通过复习类比,大部分同学对于二次函数的理解都比较好,会找自变量,会列简单的函数关系式,总体效果良好!第1课时二次函数y=ax2的图象与性质【知识与技能】1.能够利用描点法作出y=x2的图象,并能根据图象认识和理解二次函数y=x2的性质.2.能作出二次函数y=x2的图象,并能够比较与y=x2的图象的异同,初步建立二次函数表达式与图象之间的联系.【过程与方法】经历画二次函数y=x2的图象和探索性质的过程,获得利用图象研究函数性质的经验.【情感态度】培养学生数形结合的思想,积累数学经验,为后续学习服务.【教学重点】会画y=ax2的图象,理解其性质.【教学难点】结合图象理解拋物线开口方向、对称轴、顶点坐标及基本性质,并归纳总结出来.一、情景导入,初步认知(k≠0)图象是什么形状?有哪些一次函数y=kx+b和反比例函数xy=k性质呢?那么二次函数y=ax2+bx+c(a≠0)的图象会是什么样?通常怎样画一个函数的图象呢?——引入课题【教学说明】通过创设问题情景,引导学生复习描点法,复习借助图象分析性质的过程中注意分类讨论、由特殊到一般的解决问题的方法,为学习二次函数的图象奠定基础.二、思考探究,获取新知(1)试着画出y=x2的图象【教学说明】让学生自己经历画y=x2的图象的过程,进一步了解用描点法的方法画图象的基本步骤,为将来画其他函数的图象奠定基础,同时也培养了学生动手操作能力,经历了知识的形成过程.(2)探究y=x2的性质【教学说明】让学生自己去观察去分析,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的.【归纳结论】它有一条对称轴,且对称轴和图象有一个交点.拋物线顶点概念:拋物线与它的对称轴的交点叫做拋物线的顶点.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?【归纳结论】1.抛物线y=ax2(a≠0)的对称轴是狔轴,顶点是原点;a>0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小;a<0时,抛物线y=ax2的开口向下.顶点是抛物线的最高点,a越大,抛物线的开口越大.三、运用新知,深化理解1.已知函数()27=-是二次函数且开口向下,则m=_____.2my m x-解析:它是二次函数,所以m2-7=2,得m=±3,且开口向下,所以m- 2<0,得m<2. 即:m=-3 答案:-3.2.已知拋物线y=ax2经过点A(-2,-8).(1)求此拋物线的函数解析式;(2)判断点B(-1,-4)是否在此拋物线上.分析:(1)把a的值求出即可;(2)把B的坐标代入,等式成立则在此抛物线上,否则不在.解:(1)把(-2,-8 )代入y=ax2中得:a=-2.∴解析式为:y=-2x2(2)把(-1,-4)代入y=-2x2中得-2×(-1)2=-2≠-4,∴等式不成立•点B(-1,-4)不在此拋物线上.【教学说明】学生独立完成以后,让他们发表自己的看法,教师更正、强调.四、师生互动,课堂小结1.拋物线y= ax2(a≠0)的对称轴是y轴,顶点是原点;2.a>0时,拋物线y = ax2的开口向上,顶点是拋物线的最低点a越大,拋物线的开口越小;3.a<0时,拋物线y = ax2的开口向下,顶点是拋物线的最高点a越大,拋物线的开口越大.1.布置作业:教材“习题2.2”中第1、2题.2.成练习册中本课时的练习.本节课的教学过程的设计符合新课程标准和课程改革的要求,通过教学情景创设和优化课堂教学设计,体现了在活动中学习数学,在活动中“做数学”,并利用教具使教学内容形象、直观并具有亲和力,极大地调动了学生的学习积极性和热情,培养了学生学习数学的兴趣.教学过程始终坚持让学生自己去动脑、动手、动口,在分析、练习基础上掌握知识.整个教学过程都较好地落实了“学生的主体地位和教师的主导作用”,让学生体会到学习成功的乐趣.第2课时二次函数y=ax2+c的图象与性质【知识与技能】1.使学生能利用描点法正确作出函数y=x2+2与y=x2-2的图象.2.理解二次函数y=ax2+c的性质及它与函数y=ax2的关系.【过程与方法】让学生经历二次函数y=ax2+c性质探究及性质应用的过程.【情感态度】培养学生动手操作的能力及归纳总结与灵活应用知识的能力.【教学重点】理解二次函数y=ax2+c的性质及它与函数y=ax2的关系【教学难点】理解二次函数y=ax2+c的性质及它与函数y=ax2的关系一、情景导入,初步认知1.二次函数y=x2的图象是,它的开口向,顶点坐标是;对称轴是,在对称轴的左侧y 随x的增大而,在对称轴的右侧y随工的增大而,函数y=x2在x= 时,取最值,其最值是 .2.二次函数y=x2十2的图象与二次函数y=x2的图象开口方向、对称轴和顶点坐标是否相同?【教学说明】巩固旧知,引出新知识.二、思考探究,获取新知问题1对于前面提出的第2个问题,你将采取什么方法加以研究?问题2你能在同一直角坐标系中,画出函数y=x2与y=x2+2的图象吗?【教学说明】先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数图象.观察所画图象,有什么异同?它们的开口方向、对称轴、顶点坐标是什么?【归纳结论】函数y=x2+2的图象上的点都是由函数y=x2的图象上的相应点向上移动了两个单位.完成下表:三、运用新知,深化理解1.(1)函数y=4x2+5的图象可由y=4x2的图象向平移单位得到;(2)y=4x2-11的图象向平移个单位得到.2.将函数y=-3x2+4的图象向平移个单位可得y=-3x2的图象;将y=2x2-7的图象向平移个单位得到可y=2x2的图象;将y=x2-7的图象向平移个单位可得到y=x2+2的图象.3.拋物线y=-3x2+5的开口向,对称轴是,顶点坐标是,在对称轴的左侧,y随x的增大而,在对称轴的右侧y随x的增大而,当x= 时,取得最值,这个值等于 .4.拋物线y=7x2-3的开口向,对称轴是,顶点坐标是,在对称轴的左侧y随x的增大而,在对称轴的右侧,y随x的增大而,当x = 时,取得最值,这个值等于 .5.拋物线y =ax2+c与y=3x2的形状相同,且其顶点坐标是(0,1),则其表达式为 .解:1.(1)上 5 (2)下 112.下 4 上 7 上 93.下 y轴(0,5)增大减小 0 大 54.上 y轴(0,-3)减小增大 0 小 -35.y=3x2+1【教学说明】以上5题,是对本节课的知识点的复习巩固,让学生自主完成,教师做强调.四.师生互动,课堂小结本节课你有何收获?本节课你有何疑问1.布置作业:教材“习题2.3”中第1、2题.2.完成练习册中本课时的练习.函数的教学,尤其二次函数是学生普遍感觉较为抽象难懂的知识.在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外,更重要的是让学生参与到函数图象和性质的探索中去.要利用一切可以利用的材料来帮助学生理解所学的知识.本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象,普遍能较好的掌握图象的平移规律.第3课时 二次函数y=a (x-h )2的图象与性质【知识与技能】会画出y=a(x-h)2这类函数的图象,掌握这类函数的性质.【过程与方法】学生能通过图象的观察,对比分析发现规律,从而归纳性质.【情感态度】锻炼学生的观察、分析、归纳能力.【教学重点】掌握y=a(x-h)2的性质.【教学难点】掌握y=a(x-h)2的性质.一、情景导入,初步认知我们已经了解到,函数y=ax 2+c 的图象, 可以由函数y=ax 2的图象上下平移所得,那么函数2122y x =-()的图象,是否也可以由函数212y x = 平移而得到呢? y=a(x-h)2的图象是如何得到的呢?画图试一试,你能从中发现什么规律吗?【教学说明】小组代表阐述本组的观点,全班交流,并提出本组的疑难问题,小组互助讨论.教师在学生发言的基础上补充并展示.二、思考探究,获取新知探究1:在同一直角坐标系中,画出下列函数的图象.212y x =,21+12y x =(),21-12y x =()并指出它们的开口方向、对称轴和顶点坐标.观察并归纳,它们的图象有什么规律?【归纳结论】由抛物线212y x =向左、向右平移一个单位得到的抛物线分别是21+12y x =(),21-12y x =() 【教学说明】通过作图,训练学生动手操作的能力.通过观察、讨论、交流,培养学生的观察能力、思维能力、归纳能力等.三、运用新知,深化理解1.函数y=ax 2与y=a(x —2)(a <0)函数在同一坐标系里的图象大致是 .解析:根据a 的正负性确定它们的性质.答案:D2.二次函数y=2(x —1)2的图象可由y=2x 2的图象( )得到A.向左平移1个单位长度B.向左平移2个单位长度C.向右平移1个单位长度D.向右平移2个单位长度解析:左右平移是A的值发生改变.答案:C【教学说明】应用所学,加深理解,巩固新知.四、师生互动,课堂小结1.二次函数y=a(x-h)2的图象与性质.2.平移的方法.1.布置作业:教材“习题2. 4”中第1题(2)、(6)2.完成练习册中本课时的练习.本节课主要是通过让学生自主学习,动手操作获取经验,并从中获得知识,本节课教师主要处于引导地位,让学生充当学习的主人,较好地体现了学生学习的主动性.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】会画出y=a(x-h)2+k这类函数的图象,掌握这类函数的性质.【过程与方法】学生能通过图象的观察,对比分析发现规律,从而归纳性质.【情感态度】锻炼学生的观察、分析、归纳能力.【教学重点】掌握y=a(x-h)2+k 的性质.【教学难点】掌握y=a(x-h)2+k 的性质.一、情景导入,初步认知上一节课,我们已经了解到,函数y=a(x-h)2的图象,可以由函数y=ax 2的图象左右平移所得,那么y=a(x-2)2+2的图象,是否也可以由函数y=ax 2平移得到呢?y=a(x-h)2+k 的图象是如何得到的呢?画图试一试, 你能从中发现什么规律?【教学说明】小组代表阐述本组的观点,全班交流,并提出本组的疑难问题,小组互助讨论.教师在学生发言的基础上补充并展示.二、思考探究,获取新知探究1在同一直角坐标系中,画出下列函数的图象.212y x =,21-12y x =(),21-1-22y x =(),并指出它们的开口方向、对称轴和顶点坐标.观察三个图象之间的关系.【归纳结论】由抛物线212y x =向右平移一个单位可得到抛物线21-12y x =(),再向下平移2个单位可得到21-1-22y x =(). 探究2:请依据探究1中的发现,说说拋物线y=a(x-h)2+h 是由拋物线y=ax 2通过怎样的平移得到的?并说说它的对称轴和顶点坐标.【归纳结论】 二次函数的图象的上下平移,只影响二次函数y=a(x-h)2+h 中k 的值;左右平移,只影响h 的值.在y=a(x-h)2+h 中:(1)当a >0时,开口向上;当a <0时,开口向下;(2)对称轴是直线x=h ;(3)顶点坐标为(h ,k ).【教学说明】通过作图,训练学生动手操作的能力.通过观察、讨论、交流,培养学生的观察能力、思维能力、归纳能力等.三、运用新知,深化理解1.拋物线y=-3(x-2)2+4的开口方向、对称轴、顶点坐标分别为( )A.开口向下,对称轴为x=-2,顶点坐标为(-2,4)B.开口向上,对称轴为x=2,顶点坐标为(2,4)C.开口向上,对称轴为x=2,顶点坐标为(2,-4)D.开口向下,对称轴为x=2,顶点坐标为(2,-4)解析:根据y=a(x-h)2+k 的性质可得出结果.答案:D2.把拋物线212y x 向左平移1个单位长度,再向下平移1个单位,得拋物线为( )解析:二次函数的图象的上下平移,只影响二次函数y=a(x-h)2+k 中k的值;左右平移,只影响h的值.答案:B【教学说明】应用所学,加深理解,巩固新知.四、师生互动,课堂小结1.二次函数y=a(x-h)2+k的图象与性质.2.平移的方法.1.布置作业:教材“习题2.4”中第1题的(1)、(3)、(4)、(5)小题和第3题.2.完成练习册中本课时的练习.本节课主要是通过让学生自主学习,动手操作获取经验,并从中获得知识,本节课教师主要处于引导地位,让学生充当学习的主人,较好地体现了学生学习的主动性.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.使学生掌握用描点法画出函数y=ax2+bx+c的图象.2.使学生掌握用图象法或配方法确定拋物线的开口方向、对称轴和顶点坐标.【过程与方法】让学生通过绘画观察二次函数y=ax2+bx+c的图象,理解二次函数y=ax2+bx+c的开口方向、对称轴和顶点坐标以及性质.【情感态度】通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生运用数学的意识.【教学重点】通过配方确定拋物线的对称轴、顶点坐标.【教学难点】理解二次函数y=ax2+bx+c(a≠0)的性质.一、情景导入,初步认知由前面的知识,我们知道函数y=2x2的图象,向上平移2个单位,可以得到函数y=2x2+2的图象;函数y=2x2的图象,向右平移3个单位,可以得到函数y=2(x-3)2的图象,那么函数y=2x2的图象,如何平移,才能得到函数y=2(x-3)2+2的图象呢?函数y=2(x-3)2+2具有哪些性质?【教学说明】通过这些练习题,使学生对以前的知识加以复习巩固,以便这节课的应用. 这几个问题可找层次较低的学生回答,由其它同学给予评价.二、思考探究,获取新知探究:你能确定y=-2x 2+4x+6的开口方向、对称轴、顶点坐标吗?具有哪些性质?学生讨论得到:通过配方把二次函数y=ax 2+bx+c 转化成y=a (x-h )2+c 的形式,确定拋物线y=-2x 2+4x+6的开口方向、对称轴和顶点坐标,再描点画图.解:y=-2x 2+4x+6=-2(x 2—2x)+6=-2(x 2-2x+1-1)+6=-[2(x-1)2—2]+6=-2(x —1)2+8因此,拋物线开口向下,对称轴是直线x=1,顶点坐标为(1,8). 你能从上图中总结出二次函数y=ax 2+bx+c(a ≠0)的性质吗?【归纳结论】 二次函数y=ax 2+bx+c(a ≠0)的对称轴是2b x a=-,顶点坐标是24(24b ac b a a --,)【教学说明】让学生仔细观察所画图形,相互交流得出结论.三、运用新知,深化理解1.函数y=x 2-2x+3的图象的顶点坐标是( )A.(1,-4)B.(-1,2)C.(1,2)D.(0,3)解析:方法一,直接用二次函数顶点坐标公式求.方法二:将二次函数解析式由一般形式转换为顶点式,即y=a(x- h)2+k 的形式,顶点坐标即为(h ,k ),y = x 2 - 2x + 3=(x-1)2+2,所以顶点坐标为(1,2).答案:C.2.抛物线2144y x x =-+-的对称轴是( )A. x=-2B. x=2C. x=-4D. x=4解析:直接利用公式.答案:B3.已知二次函数y=ax2+bx+c 的图象如图所示,则下列结论中,正确的是( )A. ab >0,c >0B. ab <0,c <0C. ab <0,c >0D. ab <0,c <0解析:由图象知,抛物线开口向下,∴a <0,抛物线对称轴在y 轴右侧,∴2b a- >0,又∵a <0,∴b >0,∴ab <0,抛物线与y 轴交点坐标为(0,c )点,由图知,该点在x 轴上方,∴c >0. 答案选C.4.把拋物线y=-2x 2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A. y=-2(x-1)2+6B. y=-2(x-1)2-6C. y=-2(x+1)2+6D. y=-2(x+1)2-6解析:二次函数图象的变化.抛物线y=-2x 2+4x+1=-2(x-1)2+3的图象向左平移2个单位得到y=-2(x+1)2+3,再向上平移3个单位得到y=-2(x+1)2+ 6.答案 选C.【教学说明】应用所学,加深理解,巩固新知四、师生互动,课堂小结二次函数y=ax 2+bx+c(a ≠0)的对称轴是2b x a=-,顶点坐标是24(24b ac b a a --,).1.布置作业:教材“习题2.5”中第1、2题.2.完成练习册中本课时的练习.本节课的重点是用配方法确定拋物线的顶点和对称轴.为了学生能在较复杂的题中顺利应用配方法,教师首先出示了几个较简单的练习由学生完成,并来讨论做题思路.这样这个重点和难点也就得到了自然地突破.3 确定二次函数的表达式【知识与技能】经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识.【过程与方法】会用待定系数法求二次函数的表达式.【情感态度】逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.【教学重点】求二次函数的解析式.【教学难点】求二次函数的解析式.一、情景导入,初步认知问题1如何求一次函数的解析式?至少需要几个点的坐标?问题2 你能求二次函数的解析式吗?如果要求二次函数的解析式需要几个点的坐标?【教学说明】通过类比的思想,猜想求二次函数的解析式需要坐标点的个数.二、思考探究,获取新知问题已知二次函数的图象的顶点坐标为(1,-3),且与y轴交于点(0,1),求该二次函数的表达式.分析:根据已知抛物线的顶点坐标,可设函数关系式为y=a(x-h) 2+k,再根据抛物线与y轴的交点可求出a的值.【归纳结论】这种求二次函数表达式的方法称为顶点式.三、运用新知,深化理解1.已知二次函数y=x2+bx+c的顶点坐标为〖JP〗(1,-3),则二次函数对应的表达式为()A.y=x2-2x+2B.y=x2-2x-2C.y=-x2-2x+1D.y=x2-2x+1答案:B2.已知二次函数的图象经过点(1,10),顶点坐标为(-1,-2),求这个二次函数的表达式.分析:根据二次函数的顶点坐标设二次函数的表达式为y=a(x+1)2-2,再把(1,10)代入,求出a的值,即可得出二次函数的表达式.解:设二次函数的表达式为:y=a(x+1)2-2,把(1,10)代入表达式得10=4a-2,解得a=3,则二次函数的表达式为:y=3(x+1)2-2=3x2+6x+1.3.已知二次函数图象的顶点坐标是(2,-4),它与y轴的一个交点的纵坐标为4,求二次函数的表达式.分析:根据顶点坐标公式可列出两个方程.解法1:设所求的函数表达式为y=a(x-h)2+k,依题意,得y=a(x-2)2-4因为二次函数图象与y轴的一个交点的纵坐标为4,所以二次函数图象过点(0,4),于是a(0-2)2-4=4,解得a=2.所以,所求二次函数的表达式为y=2(x-2)2-4,即y=2x2-8x +4.【教学说明】凡是能用“顶点式”确定的,一定可用“一般式”确定,进一步明确两种表达式只是形式的不同而没有本质的区别;在做题时,不仅会使用已知条件,同时要养成挖掘和运用隐含条件的习惯.四、师生互动,课堂小结二次函数y=ax2+bx+c可化成y=a(x-h)2+k,顶点坐标是(h,k).如果已知顶点坐标,那么再知道图象上另一点的坐标,就可以确定这个二次函数的表达式.1.布置作业:教材“习题2.6”中第1题.2.完成练习册中本课时的练习.本课时从确定二次函数的表达式需要几个条件这个问题展开讨论,类比确定一次函数表达式的方法,引导学生思考、归纳确定二次函数表达式的方法.3 确定二次函数的表达式【知识与技能】学会运用待定系数法求二次函数表达式,熟练应用已知图象上三个点确定二次函数表达式.【过程与方法】进一步讨论确定二次函数表达式的方法,总结、归纳确定二次函数表达式的条件.【情感态度】培养学生合作学习、大胆创新的意识.【教学重点】求二次函数的解析式.【教学难点】求二次函数的解析式.一、情景导入,初步认知问题已知二次函数y=ax2+bx+c图象上的三个点,可以确定这个二次函数的表达式吗?【教学说明】采用启发性教学模式引导学生思考.二、思考探究,获取新知问题1.已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2),求这个二次函数的表达式分析:可设函数关系式为y=ax2+bx+c,根据二次函数的图象经过三个已知点,可得出一个关于a,b,c的三元一次方程组,从而可以求出a,b,c的值.【归纳结论】求二次函数y=ax2+bx+c的表达式,关键是确定a、b、c的值.由已知条件可列出三个方程,解此方程组,求出三个待定系数a,b,c.这种方法称为待定系数法.2.若二次函数的图象经过(0,1)、(-1,0)、(1,0)三点,求此二次函数的表达式.分析:由于已知二次函数的图象与x轴的交点坐标,则可设交点式y=a(x+1)(x-1),然后把(0,1)代入求出a的值即可解:设二次函数表达式为y=a(x+1)(x-1),把(0,1)代入得a×1×(-1)=1,解得a=-1,所以二次函数表达式为y=-(x+1)(x-1),即y=-x2+1.三、运用新知,深化理解1.已知二次函数的图象过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则二次函数的表达式为A.y=x2-x-2B.y=-x2+x+2C.y=x2-2-2或y=-x2+x+2D.y=-x2-x-2或y=x2+x+2答案:C2.已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A 点坐标为(-1,0),点B(0,5),另外二次函数的图象经过点(1,8),求二次函数的表达式.分析:应用待定系数法求出a,b,c的值.解:依题意:二次函数的表达式为y=-x2+4x+53.已知二次函数图象的对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的表达式.分析:可设二次函数表达式为y=ax2+bx+c,已知两点的坐标,可列两个方程,再根据对称轴x=2,列出一个方程,则可求出a,b,c的值.因已知对称轴,故也可直接设二次函数表达式为y=a(x-2)2+k,再代入两点,即可求出a、b、c的值.解法1:设所求二次函数的解析式是y=ax2+bx+c,因为二次函数的图象过点(0,5),可求得c=-5,又由于二次函数的图象过点(3,1),且对称轴是直线x=2,可以得解法2:设所求二次函数的关系式为y=a(x-2)2+k,由于二次函数的图象经过(3,1)和(0,-5)两点,可以得到所以,所求二次函数的关系式为y=-2(x-2)2+3,即y=-2x2+8x-5.四、师生互动,课堂小结求二次函数y=ax2+bx+c的表达式,关键是确定a、b、c的值.由已知条件可列出三个方程,解此方程组,求出三个待定系数a,b,c.1.布置作业:教材“习题2.7”中第1、2题.2.完成练习册中本课时的练习.确定二次函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.4二次函数的应用第1课时利用二次函数解决面积问题和抛物线形问题【知识与技能】经历探究解决图形的最大面积问题与抛物线形问题的过程,进一步获得利用数学方法解决实际问题的经验.【过程与方法】经历探索问题的过程,获得利用数学方法解决实际问题的经验,感受数学模型和数学应用的价值,通过观察、比较、推理、交流等过程,获得一些研究问题与合作交流的方法与经验.【情感态度】通过动手实践及同学之间的合作与交流,让学生积累经验,发展学习动力.【教学重点】。
二次函数教案

二次函数教案1. 课程标准本单元主要是讲解二次函数,通过本单元的学习,让学生了解二次函数的定义、图像、性质,以及二次函数的几何意义和应用。
2. 教学目标知识与技能:1. 掌握二次函数概念,能够对二次函数进行定义和分类;2. 能够画出二次函数的图象,并根据函数的式子解读图象;3. 能够判断二次函数的对称轴和顶点;4. 能够解二次方程,特别是关于二次函数的应用题,例如二次函数的最值等问题。
过程与方法:1. 能够灵活使用因式分解、配方法、公式法等方法解决二次方程;2. 能够运用判断对称性的方法快速找到二次函数的对称轴和顶点;3. 能够结合实际问题理解二次函数的应用,并解决相关问题。
情感、态度与价值观:1. 培养学生的逻辑思维能力和数学建模能力;2. 提高学生的自主学习和独立思考能力;3. 培养学生良好的数学态度,懂得乐于思考、勇于探索的重要性。
3. 教学重点和难点重点:1. 二次函数的概念、图像和性质;2. 二次函数的最值及其应用;4. 教学策略1. 采用启发式教学法,引导学生通过自己的思考,由简单问题逐步引导到复杂问题的解决,学生在解决问题中培养探究的兴趣和自我发现的能力。
2. 采用巧妙的教学比喻,帮助学生易于理解记忆。
3. 通过具体的例子和实际问题,使学生对于二次函数的应用有更深层次的理解,增加学生的学习兴趣和积极性。
4. 采用交互式教学,通过小组合作和大家讨论等方式,提高学生在讨论中思考和解决问题的能力,增加课堂氛围,促进教与学的互动。
5. 教学过程第一步:导入学生了解过函数与方程的概念。
让学生回忆函数与方程的区别,并根据课本上单调性的定义谈对单调性的理解。
第二步:概念阐释以前一讲的一次函数为例,让学生了解一次函数的基本形式是y=kx+b,并分析它的图像、对称轴等性质,并挖掘其几何意义与实际应用。
介绍一下二次函数的基本形式及图像,并结合实际问题谈谈它的应用和解决问题的方法。
第三步:图像分析引导学生尝试画出各种二次函数的图像,并分析它们的关系,找出特征和规律,了解二次函数的几何性质,如对称轴、顶点等。
二次函数单元教学设计教案

二次函数单元教学设计教案一、教学背景二次函数作为高中数学的重要内容之一,是建模、求解问题的重要工具。
掌握二次函数的基本概念、性质和应用,对于学生进一步提高数学水平具有重要意义。
本教学设计针对高中二年级学生,通过灵活的教学组织形式,旨在提高学生的数学思维能力和解决实际问题的能力。
二、教学目标1. 知识与技能目标:a) 掌握二次函数的基本概念和性质;b) 理解二次函数的图像特征和变化规律;c) 掌握二次函数与实际问题的应用。
2. 过程与方法目标:a) 培养学生的数学思维和逻辑推理能力;b) 利用课堂讨论和小组合作等形式,培养学生的问题解决能力;c) 引导学生主动参与课堂活动,发展思维能力。
3. 情感、态度与价值观目标:a) 培养学生对数学学习的兴趣和自信心;b) 注重培养学生的团队合作能力和互助意识;c) 培养学生对数学在实际生活中的应用意识。
三、教学重点与难点教学重点:掌握二次函数的基本概念、性质和应用。
教学难点:理解二次函数的图像特征和变化规律。
四、教学内容与过程安排第一课时:二次函数的基本概念与性质1. 导入(5分钟)a) 引入二次函数的概念,通过问题导入,激发学生的学习兴趣。
2. 二次函数的定义与解释(10分钟)a) 解释二次函数的含义,明确一次项、常数项和二次项的含义和作用。
b) 通过实例,帮助学生理解二次函数的具体表达形式。
3. 二次函数的性质(15分钟)a) 介绍二次函数的对称轴、顶点和开口方向等基本性质。
b) 引导学生通过观察图像和公式的关系,掌握二次函数的性质。
第二课时:二次函数的图像特征与变化规律1. 导入(5分钟)a) 复习上节课所学的二次函数的基本概念和性质。
2. 二次函数图像的特征(15分钟)a) 通过具体实例和图像,引导学生观察二次函数的图像特征和规律。
b) 引导学生发现二次函数图像的对称性和顶点的位置关系等。
3. 二次函数图像的变化规律(15分钟)a) 引导学生通过更改二次函数的参数,观察图像的变化规律。
《二次函数》单元目标分析教案

《二次函数》单元目标分析教案《《二次函数》单元目标分析教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、在教材中的地位和作用二次函数是最基本的一类初等函数,也是初中数学的主要内容之一,起着承上启下的作用,是函数知识螺旋上升的一个重要环节。
二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些单变量最优化问题的数学模型。
二次函数的图像是抛物线既是人们最为熟悉的曲线之一,同时抛物线形状在建筑上也有着广泛的应用。
为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
二、知识结构框图生活是数学的源头,从实际问题入手,将问题中的变量关系转化成二次函数后,利用二次函数的图象和性质求解,再引导学生回到熟悉的生活中去,这样的安排体现了数学来源于生活,又服务于生活,同时让学生体验到用数学知识解决实际生活问题的乐趣。
三、课时安排本章共安排了3个小节,教学时间约需12课时(供参考):1二次函数6课时2用函数的观点看一元二次方程1课时.3实际问题与二次函数3课时4本章复习2课时四、课程学习目标¡知识与能力1.了解二次函数的概念,并能判断二次函数,以及能够表示出简单变量之间的二次函数关系。
2.能用描点法画二次函数的图像,从而发现和研究其性质。
3.能利用配方法对二次函数的表达式进行转化,达到迅速判断其性质的目的。
4.能够对解决问题的基本策略进行反思,形成个人的解决问题风格。
情感态度价值观1.经历观察、推理、交流等过程,获得研究问题与合作交流的方法与经验。
2.积极参与探索活动,体验二次函数是描述现在是生活的重要数学模型。
五、本章的重点、难点重点1.二次函数的概念及其关系式2.二次函数的图象.用描点法画出二次函数的图像,要注意它是一条光滑的曲线,即抛物线。
根据图像认识和了解二次函数的性质,注意它与一次函数、反比例函数的异同点。
3.通过配方法把二次函数一般式化成顶点式得到二次函数的最大值或最小值。
二次函数单元整体教学设计

二次函数单元整体教学设计一、教学目标:1.了解二次函数的定义,形状以及特点;2.学会求二次函数的图象及相关性质;3.掌握二次函数的基本运算,包括二次函数的加减乘除运算;4.能够应用二次函数解决实际问题。
二、教学重点与难点:1.教学重点:二次函数的定义、图象及相关性质;2.教学难点:二次函数的基本运算。
三、教学内容及安排:(一)认识二次函数(1课时)1.通过引入导入二次函数的定义,例如:物理实验中的抛物线规律等;2.分组讨论,解决二次函数的定义;3.小组展示解决定义的思路。
(二)二次函数的图象与性质(3课时)1.绘制二次函数的图象:通过指导学生掌握二次函数图象的绘制方法;2.图象的平移与伸缩:引导学生观察图象变化规律,并介绍相关概念;3.图象的对称性:讲解二次函数的对称轴,通过示例让学生理解对称性;4.图象的最值与零点:讲解最值与零点的概念,引导学生思考如何求解;5.练习:带领学生做相关练习,加强对图象的理解。
(三)二次函数的基本运算(3课时)1.加减法运算:介绍二次函数的加法和减法运算方法,并通过例题进行讲解;2.乘法运算:讲解二次函数的乘法运算,引导学生发现乘法运算与图象的变化规律;3.除法运算:讲解二次函数的除法运算,引导学生掌握除法运算的步骤与技巧;4.练习:组织学生进行练习,巩固运算方法。
(四)实际问题的应用(2课时)1.示例分析:通过实际问题的示例,引导学生思考如何建立模型;2.解决问题:引导学生运用二次函数的相关知识解决实际问题;3.思考讨论:让学生分享解决问题的思路与方法。
(五)复习与总结(1课时)1.复习:对前面所学知识进行复习,检查学生掌握情况;2.总结:让学生总结二次函数的定义、图象及运算方法;3.展示:鼓励学生展示他们的学习成果,分享学习心得。
四、教学方法与手段:1.引导式探究法:通过引入实际问题等方式,引导学生思考和发现知识;2.小组合作学习法:通过小组讨论和展示,促进学生之间的互动与合作;3.板书法:抓住重点,将要点清晰简明地写在黑板上,方便学生注意和复习。
二次函数单元教学设计

二次函数单元教学设计二次函数是中学数学中的重要内容,它是一种特殊的二次多项式函数,具有很广泛的应用。
在对二次函数进行单元教学设计时,需要围绕二次函数的定义、性质和应用展开,通过多样化的教学方法和活动,激发学生的学习兴趣和提高他们的学习效果。
下面是一个关于二次函数单元的教学设计。
一、教学目标:1.理解二次函数的定义,能够正确描绘二次函数的图象。
2.掌握二次函数的基本性质,包括顶点、对称轴、零点等。
3.能够解二次方程,并用二次函数解决实际问题。
4.能够应用二次函数解决实际问题。
二、教学内容和教学步骤:1.二次函数的定义和性质(2课时)a.通过观察实例,引导学生认识二次函数的定义,并让学生总结二次函数的一般式和标准式。
b.讲解二次函数的性质,包括顶点、对称轴、零点等,并通过图像演示的方式让学生理解这些性质。
c.练习题让学生巩固二次函数的定义和性质。
2.描述二次函数的图象(2课时)a.运用判断象限和变量取值范围的方法,让学生理解二次函数图像的特点和变化规律。
b.引导学生通过确定顶点、对称轴等方法描绘二次函数的图象。
c.练习题让学生进一步巩固描绘二次函数图象的方法。
3.解二次方程(2课时)a.提醒学生二次方程的定义,并用图像的方式解释二次方程的解与二次函数的零点之间的关系。
b.通过实例解题的方式,引导学生掌握解二次方程的基本方法。
c.练习题让学生进一步巩固解二次方程的方法。
4.应用二次函数(2课时)a.引导学生从实际问题中抽象出二次函数模型,并通过图像和方程的方式解决实际问题。
b.提供多种实际问题的例子,让学生运用二次函数解决实际问题。
c.练习题让学生进一步巩固应用二次函数解决实际问题的方法。
5.教学反思和讨论(1课时)a.鼓励学生展示自己的解题方法和思路,并进行比较和讨论。
b.总结二次函数的重要知识点和解题方法。
c.回顾学习过程,检查学生的学习效果。
三、教学方法和手段:1.案例引入法:通过实际问题引导学生理解二次函数的概念和性质。
初中数学《二次函数》单元教学设计以及思维导图

类比出二次函数概念。
1.正方体六个面是全等的正方形,设正方体棱长为 x ,表面积为 y ,则 y
关于 x 的关系式为是
。
2.多边形的对角线数 d 与边数 n 的关系是
。
提示:n 边形有 个顶点,从一个顶点出发,连接与这点不相邻的各顶点,
可作
条对角线。因此,n 边形的对角线总数 d =
。
3.某工厂一种产品现在年产量是 20 件,计划今后两年增加产量,如果每年
数 。其中 x 是自变量,a 为二次项系数, b 为一次项系数,c 为常数项。
活动三 运用新知,深化理解。通过学生讨论、交流加深学生对二次函数概
念的理解。
1、分别指出上述三个函数解析式中各项的系数
活动 2:自主探究,构建新知 引导学生画二次函数 y=x2 的图象.
【提示:画图象的一般步骤:①列表(取几组 x、y 的对应值;②描点(表
中 x、y 的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】
列表:
x „ -3 -2 -1 0 1 并连线
认真观察你所画的图象,讨论交流得出二次函数 y=x2 的性质:
1.二次函数 y=x2 是一条曲线,把这条曲线叫做______________.
2.二次函数 y=x2 中,二次项系数 a=_______,抛物线 y=x2
(5)理解一元二次方程与二次函数的关系,并能利用二次函数的图象求 一元二次方程的近似根。
(6)会用待定系数法求二次函数的解析式。 (7)能利用二次函数解决实际问题,积累应用函数解决问题的经验。 过程与方法: (1)通过分析实际问题引出二次函数的概念,培养学生分析问题能力。 (2)通过对抛物线特点的认识和对二次函数性质的理解培养学生数形结 合的数学思想方法,运用图象进行联系、对比、概括和反思。 (3)对二次函数图象的研究,先是从 y=x2 开始,然后是 y=ax2,y=ax2+c, 最后是 y=a(x-h)2, y=a(x-h)2+k, y=ax2+bx+c,使学生经历从简单到复杂、从 特殊到一般的过程。 (4) 在研究图象的过程中,穿插实际应用问题,把图象直观与实际意义相 联系。设计可以表示为二次函数或利用二次函数知识可以解决的实际问题, 发展学生的数学应用能力。 情感态度与价值观: (1)培养学生发现规律的积极性及勇于探索的精神。 (2)培养学生合作交流的意识和能力。 (3)使学生感受事物间互相联系,以及运动、变化的辩证唯物主义思想。 (4)经历实践和探索二次函数在实际问题中的应用,增加学生的应用意 识,体会数学知识的应用价值。 对应课标 (1)通过对实际问题的分析,体会二次函数的意义。 (2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。 (3)会用配方法将数字系数的二次函数的表达式化为 y=a(x-h)2+k,的形式,
二次函数大单元教学设计优秀案例

二次函数大单元教学设计优秀案例一、概述在数学教学中,二次函数是一个重要的内容,涉及到数学中的很多重要概念和方法,如函数的图像、半径、焦点等等。
如何设计一个优秀的二次函数大单元教学案例,对于学生的数学学习至关重要。
本文将针对二次函数大单元的教学设计,为您提供一些优秀的案例。
二、案例一:二次函数的图像与性质在这个案例中,教师可以设计一些有趣的活动来帮助学生深入理解二次函数的图像与性质。
可以设计一个小组活动,让学生利用纸和笔,画出不同参数下的二次函数图像,并讨论它们的特点和性质。
教师可以引导学生发现二次函数的开口方向、顶点位置以及与坐标轴的交点等重要性质,并帮助学生建立对二次函数的直观认识。
三、案例二:二次函数的应用在这个案例中,教师可以设计一些实际生活中的问题,让学生利用二次函数来解决。
可以设计一个关于抛物线轨迹的问题,让学生分析并求解。
通过这样的案例,学生不仅可以学习到二次函数的具体应用,还能培养他们的问题解决能力和数学建模能力。
四、案例三:二次函数的推广与拓展在这个案例中,教师可以设计一些拓展性的问题,让学生通过对二次函数的推广来深化对数学知识的理解。
可以设计一个关于二次函数的相关不等式问题,让学生通过对二次函数的研究来解决。
通过这样的案例,学生不仅可以理解二次函数的概念,还能够将二次函数的相关知识运用到实际问题中。
五、总结通过以上三个案例的介绍,我们可以看出,一个优秀的二次函数大单元教学案例应该具备以下几个特点:能够引导学生利用实际的问题来理解数学知识;能够帮助学生将数学知识与实际问题相结合,培养学生的数学思维和解决问题的能力;能够通过案例的设计,让学生在实践中深化对数学知识的理解,拓展数学的应用领域。
六、个人观点作为一名数学教师,我认为一个优秀的二次函数大单元教学案例应该能够真正地引导学生去思考、去实践,并在实践中去深化对数学知识的理解。
只有这样,学生才能在学习中获得更多的收获,并能够将数学知识运用到实际生活中。
八年级数学二次函数单元备课

二次函数单元备课一、教学目标:(1)正确理解二次函数的概念,了解函数产生的背景,在原有的函数知识的基础上学习和掌握二次函数的概念和性质,能利用二次函数刻画事物的变化规律.。
(2)理解二次函数的意义,掌握二次函数的概念、图象和性质,知道二次函数是描述客观世界变化规律的重要数学模型。
(3)了解二次函数与二次方程之间的关系,会利用函数图象求一些简单二次方程的近似解,了解二次函数模型及其意义,能准确、清晰、有条理地表述问题,会用二次函数知识分析问题,解决问题,使学生了解函数与方程是研究事物变化的重要工具。
(4)培养学生的理性思维能力,辩证思维能力,分析问题和解决问题的能力,创新意识与探究能力,数学建模能力以及数学交流能力。
二、教学内容本章知识结构分析框图:三、本章教学重点和难点重点:二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题.难点:体会二次函数学习过程中所蕴涵的数学思想方法,函数图象的特征和变换以及二次函数性质的灵活应用.四、学情分析本章是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习的函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型,二次函数的曲线——抛物线,也是人们最为熟悉的曲线之一,二次函数也是某些单变量最优化问题的数学模型,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
五、本章教学建议(1)注意由浅入深、循序渐进地理解二次函数的概念.二次函数的解析式是函数形式化、符号化的重要特征,教材中二次函数的概念是直接用形式化的方式给出的,这种表述简洁明了,便于学生理解和掌握,二次函数的解析式不仅形式简单,而且可以加深学生对二次函数本质的理解,对二次函数的概念有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则,分三步来展开这部分的内容。
本章中,实际问题情境贯穿于教科书的始终,无论是对几种不同增长的函数模型的研究,还是对函数模型的应用举例的学习,都是在解决实际问题的过程中进行的,本章大多数内容都是围绕实际问题的讨论而展开的,反映了函数与现实之间的关系,能提高学生对函数是解决现实问题的一种重要数学模型的认识。
《二次函数》单元备课

3.4 y=ax2+bx+c的图象与性质 4课时
①探究形如y=ax2 +k的图象与性质以及与y=ax2的二次函数图 象的关系 ②探究形如y=a(x-h)2的图象与性质以及与y=ax2的二次函 数图象的关系 ③探究形如y=a(x-h)2 +k的图象与性质以及与y=ax2的二次函 数图象的关系 ④推导二次函数y=ax2+bx+c的图象的对称轴和顶点坐标公式, 并解决一些问题
定义
概念、一般形式、自变量的取值范围
函数 学习
性质
通过图像研究:形状、对称性 单调性、连续性、最值、奇偶性、 周期性
应用
延迟符
1.二次函数与经济问题,利润最大化问题 2.二次函数与面积问题,求面积最值。 3.拟二次函数问题,如拱桥问题,运动轨迹 4.二次函数与代数综合 5.二次函数与几何综合
第二部分
教材中对二次函数性质的研究,采用的是利用图象直观的、 非形式化的研究方法,通过学生自己的探究活动(操作、 观察、对比、归纳和反添加思标题等),达到对抛物线自身特点的 认识和对二次函数性质的理解,逐步积累研究一般函数性 质的经验。
充分利用数形结合的思想方法,从多方位角度观察二 次函数的图象、观察图形运动后的变化情况,并用数学抽 象、概括的语言去刻画图象的特征,并理性的分析阐述图 形运动后两个图象之间的关系。
有那些性质吗?
那些性质吗?
探究y=ax2、y=ax2+k、y=a(x-h)2图象与
二、探索y=a(x-h)2 的图像和性质 性质的学习一条主线就是类比思想
1.自己画出函数图像
从表达式入手,列表,描点,连线,观
2.图像的对称轴和顶点坐标是什么? 察图象得出性质,本节课最大特点:结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元备课
一、单元名称:二次函数
二、单元教学内容及教材分析
“二次函数”这章主要要求学生在掌握好原来的一次函数、正比例函数的基础上,进一步学习二次函数的初步知识。
本章采用由简入繁的方式对各种形式的二次函数进行了系统的学习。
尤其与旧教材不同的是,加入了函数的平移,从而对函数的图像进行了更深入的理解。
对二次函数的表达式问题中,要求了三种形式,而且对二次函数表达式的确定要求的也非常具体。
对二次函数与一元二次方程的关系中,也与旧教材有鲜明的对比。
在这一节中,一直采用探究的形式对一元二次方程的根的情况和二次函数进行对比、研究。
最后,对二次函数的应用部分,教材中大胆采用了前几年的部分中考题,让人感到紧跟中考方向。
另外,从题目的难度看,虽然比旧教材的题目减少了,但是题目的难度却有增无减,这给教师的教和同学们的学都是一个大的考验。
三、单元教学重点难点
重点:1.掌握各种形式的二次函数的图像和性质,并会求解二次函数的表达式。
2.学会分析简单的二次函数的有关问题。
难点1、二次函数与一元二次方程的关系。
2、二次函数的应用题。
四、单元教学目标
1.知识与技能:让学生掌握各种形式的二次函数的图像和性质,并会
求解二次函数的表达式。
2.过程与方法:通过学习和探究会分析简单的二次函数的有关问题。
3.情感态度价值观:要让学生认识到轴对称图形的美感,并理解二次函数的应用之广泛。
五、主要教学方法、手段、选用的教学媒体
本章主要采用讨论探索和类比学习的方法,对教材内容让学生先学后教,让学生首先有一个基本的认识,然后指导学生先对基本的题目进行自学、讨论,然后总结规律,最后教师进行点评。
选用班班通媒体辅助教学。
六、单元课时安排
22.1 二次函数的图象和性质7课时
22.2 二次函数与一元二次方程2课时
22.3 实际问题与二次函3课时
小结1课时
第二十二章单元测试题选讲2课时。