电子商务数据分析 第1章 容大数据时代——电子商务与数据分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15
所谓直接观察法,是指利 用各种电商平台和工具对数据 的分析功能,直接观察出数据 的发展趋势,找出异常数据, 对消费者进行分群等。借助于 强大的数据分析工具,可以有 效提升信息处理的效率。
1.2.3 电商数据分析的常用方法
16
2. AB测试法
AB测试法的经典应用就是淘宝直通车创意设计,比如对直通车图片进行优化时,一般是对 当前图片进行分析,并提炼现有的创意要素,然后分析各要素的表现情况。如果发现某张图片 点击率较低,并认为可能是文案不理想而导致的结果时,可以测试另一种更好的文案效果;如 果发现图片点击率较低是拍摄问题,则可以测试另一种拍摄方案等。
1.2.2 不同电商岗位的数据分析意义
14
3. 采编类岗位的数据分析
在采编类岗位中,由于人的审美没有统一的标准,因此编辑在对排版和颜色等方面的新创意不 一定符合当前消费者的品味,而通过网页的浏览量、商品的销量等信息,能够对这些创意的效果好 坏进行较为直观的评估
1.2.3 电商数据分析的常用方法 1. 直接观察法
电子账户
1.1.1 电子商务的功能、模式与特点 2. 电子商务的模式
1
2
3
4
4
B2B
B2C
C2C
O2O
1.1.1 电子商务的功能、模式与特点 3. 电子商务的特点
5
以现代信息技术服务作为支撑体系 以电子虚拟市场为运作空间 以全球市场为市场范围 以全球消费者为服务范围 以高效的信息反馈为运营保证 以新的商务规则为安全保证
分类型数据 反映事物类别的数据,如商品类 型、地域区限、品牌类型和价格 区间等
1.1.3 认识电子商务数据
9
2. 数据的作用
数据的诊断作用
数据的预测作用
目录
CONTENTS
1.1 电子商务运营与数据基础 1.2 了解电商数据分析 1.3 如何做好电子商务数据分析 1.4 本章实训
1.2.1 分析电子商务数据的原因
在大数据的环境下,数据反映出来的就是市场、消费者和商品各方面的情况,这些在实体 市场只能通过市场调研等低效率的手段来进行收集和整理。因此,在大家都关注电商数据并进 行分析时,自己更应该利用好这些数据,以求在竞争激烈的电商市场站稳脚跟。
1.2.2 不同电商岗位的数据分析意义
12
1. 推广类岗位的数据分析
第1章
大数据时代—— 电商运营与数据分析
电子商务数据分析
目录
CONTENTS
1.1 电子商务运营与数据基础 1.2 了解电商数据分析 1.3 如何做好电子商务数据分析 1.4 本章实训
1.1.1 电子商务的功能、模式与特点
3
1. 电子商务的功能
广告宣传
咨询洽谈
网上订购
网上支付
交易管理
意见征询
服务传递
AB测试法的优点在于“可控”,它建立在原有基础之上,即便新方案不行,也会有旧方案 加持,直到新方案可取后才予以替换,不至于没有方案执行。
1.2.3 电商数据分析的常用方法 3. 对比分析法
17
对比分析法是指将两个或两个以上的数据进行比 较,来查看不同数据的差异,以了解各方面数据指标 的分析方法。
不同时期的对比 优化前后的对比
20
杜邦拆解法基于杜邦分 析法的原理,利用几种主要 的财务比率之间的关系来综 合分析企业财务状况,评价 企业盈利能力和股东权益回 报水平,其基本思想是将企 业净资产收益率逐级分解为 多项财务比率乘积,这样有 助于深入分析比较企业经营 业绩。
1.2.4 电商数据分析的常用指标
经营环境指标 网站运营指标
推广类岗位中的数据运用主要在于收集市场信息并进行整理与分析,提出可行的市场推广方案, 再跟据收集到的信息进行市场推广活动的效果评估,做好市场推广预算,控制活动成本,完善市场 推广方案。
1.2.2 不同电商岗位的数据分析意义
13
2. 客服类岗位的数据分析
客服类岗位对数据的运用主要是客服工作专员对消费者提出的疑问与建议做出响应,收集消费 者的需求和建议,并在销售中分析消费者购买信息,为消费者推荐相应价位的商品。
1.1.2 电子商务运营概述 1. 电商运营的核心目标
6
增加新消费者 留住老消费者 提升消费者活跃度
1.1.2 电子商务运营概述 2. 电商运营的分类
1
市场运营
2
消费者运营
3
内容运营
7
4
商品运营
1.1.3 认识电子商务数据 1. 数据的分类
8
数值型数据 由多个单独的数字组成的一串数 据,是直接使用自然数或度量衡 单位进行计量的具体的数值
11
电子商务企业除了关注商品的整体数据外,更需要关注各种数据所反映的问题,而进行数 据分析则是一项战略性的投资。这里的数据代表着很多含义,包括电子商务行业的整体数据、 网站运营数据、消费者数据、各种转化率数据及广告投放数据等,而最终反映的数据或许只有 企业账户里的数字,但如果没有前面这些数据,企业账户里的数据可能会越来越少或者增长会 越来越慢,以至于失去这个账户。
wk.baidu.com
与竞争对手或行业大盘 对比
活动前后对比
1.2.3 电商数据分析的常用方法
18
4. 转化漏斗法
转化漏斗法也是最常见和 最有效的数据分析方法之一, 无论是注册转化漏斗,还是电 商下单转化漏斗,应用都非常 普遍。
转化漏斗法的优势在于, 它可以从先到后还原消费者转 化的路径,并分析每一个转化 节点的效率。
营销活动指标
21
消费者价值指标 销售业绩指标
1.2.5 分析电商数据的步骤
22
1. 常规分析步骤
1.2.5 分析电商数据的步骤 2. 内外因素分解分析步骤
23
内外因素分解法善于处理 这类情况,它可以把问题拆分 为4个因素,通过四象限图的 结构,完成对内部因素、外部 因素、可控因素和不可控因素 范围下的数据分析工作,然后 再一步步解决每一个问题。
1.2.3 电商数据分析的常用方法
5. 七何分析法
何时(When) 何地(Where)
何人(Who) 何事(What) 何因(Why) 何做(How) 何价(How Much)
19
这种方法通过主动建立 问题,然后找到解决问 题的线索,进而设计思 路,有针对性地分析数 据,最终得到结果。
1.2.3 电商数据分析的常用方法 6. 杜邦拆解法
1.2.5 分析电商数据的步骤
24
2. 内外因素分解分析步骤
DOSS分析步骤是从一个具体问题拆分到整体影响,从单一的解决方案找到一个规模化 解决方案的数据分析思路。
相关文档
最新文档