人教版高中数学新课标必修1等差数列教案

合集下载

高三数学数列教案5篇

高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。

高中数学等差数列教案2篇

高中数学等差数列教案2篇

高中数学等差数列教案2篇高中数学等差数列教案一“等差数列”教学设计一、教学内容分析等差数列是《普通高中课程标准实验教科书数学》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,?数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

二、教学目标1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。

2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。

3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

三、教学重难点重点:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

四、学习者分析普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。

他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。

但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

五、教学策略选择与设计结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。

《等差数列》教案优秀3篇

《等差数列》教案优秀3篇

《等差数列》教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《等差数列》教案优秀3篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。

高中数学等差数列教案大全

高中数学等差数列教案大全

高中数学等差数列教案大全一、教学目标1.理解等差数列的基本概念和相关术语。

2.能够推导等差数列通项公式。

3.掌握等差数列求和公式及其应用。

二、教学内容1. 等差数列的概念和相关术语等差数列的定义等差数列是一种特殊的数列,它的每一项与前一项的差相等。

这个差值称为等差数列的公差,通常用字母d表示。

相关术语•首项:等差数列中的第一项。

•公差:等差数列中相邻项之间的差。

•通项公式:等差数列中第n项的通项公式。

•前n项和:等差数列中前n项的和。

2. 推导等差数列通项公式等差数列通项公式可以表示任意一项,只要已知它是等差数列中的第几项即可。

接下来介绍如何推导等差数列通项公式。

推导步骤假设等差数列的首项为a₁,公差为d,第n项为an。

推导通项公式的步骤如下:1.找规律:观察等差数列的前几项,列出它们之间的关系。

2.建立方程:将观察到的关系式写成一个方程。

3.解方程:解出通项公式。

例子若等差数列的首项为a₁,公差为d,第n项为an,则观察前几项可得:a₁, a₁+d, a₁+2d, a₁+3d, ...由此得出任意一项的通项公式为:an = a₁ + (n-1)d3. 掌握等差数列求和公式及其应用求和公式等差数列前n项和是一个关于n的二次函数,因此可以求出通项公式。

设等差数列的首项为a₁,公差为d,前n项和为Sn,则有:Sn = (a₁ + an) × n / 2将an代入上式,化简可得:Sn = n/2 ( 2a₁ + (n-1)d )应用等差数列求和公式的应用十分广泛,例如可以用来求某一个等差数列中的前n 项和,或者求某几项的和等问题。

三、教学方法在教学过程中,可以采用多种教学方法,例如板书演示、课堂讲解、课堂练习等,以帮助学生更好地掌握等差数列的概念和应用。

四、教学流程第一步:引入问题通过引入一些等差数列的实例,让学生感性理解等差数列的基本概念和相关术语。

第二步:讲解等差数列的定义和相关术语让学生了解等差数列的基本定义和相关术语。

高中教案数学等差数列

高中教案数学等差数列

高中教案数学等差数列
教学目标:学生能够理解等差数列的概念,掌握等差数列的性质、通项公式和求和公式,
能够解决相关问题。

教学重点:等差数列的概念和性质,通项公式和求和公式的运用。

教学难点:对等差数列通项公式和求和公式的理解和应用。

教学准备:教材《高中数学》,黑板、粉笔、教案PPT。

教学过程:
一、导入(5分钟)
1.引入等差数列的概念,简单介绍等差数列的性质。

2.通过一个例子,让学生理解等差数列的特点。

二、讲解等差数列的概念和性质(15分钟)
1.定义等差数列,并介绍等差数列的特点。

2.讲解等差数列的通项公式和求和公式,说明其推导过程和应用方法。

三、练习(20分钟)
1.进行一些简单的例题演练,让学生掌握等差数列的解题方法。

2.提供一些挑战性的题目,培养学生的解决问题的能力。

四、总结和拓展(10分钟)
1.总结等差数列的知识点和解题方法。

2.拓展讨论等比数列与等差数列之间的关系。

五、作业布置(5分钟)
布置相关的练习题,巩固等差数列的知识点。

教学反思:本节课主要讲解等差数列的概念、性质、通项公式和求和公式,让学生掌握解
题方法和应用技巧。

通过丰富的练习题目,培养学生的思维能力和解决问题的能力。

同时,通过拓展讨论等比数列与等差数列之间的关系,拓宽学生的数学视野,提高他们的学习兴趣。

等差数列前n项和公式教案

等差数列前n项和公式教案

《等差数列前n 项和公式》教学案例一、教材分析“等差数列前n 项和公式”这节课是人教版高中数学(必修)第一册(上)中的第三章第三节第一课时的内容,是上一节“等差数列”的后继内容。

主要内容:等差数列前n 项和公式的推导及运用。

(一)地位及作用数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。

数列是培养学生数学能力的良好题材。

学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。

(二)教学目标根据“等差数列前n 项和公式”这一节的教学大纲及它在高中数学中的地位和作用,项和公式”这一节的教学大纲及它在高中数学中的地位和作用,确定了确定了如下教学目标:1、知识与技能:① 掌握等差数列前n 项和公式的推导方法和公式的简单运用。

② 通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

2、过程与方法:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。

3、情感、态度价值观:① 公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

② 通过生动具体的现实问题,令人着迷的历史素材和数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

(三)教学重点与难点:重点:等差数列前n 项和的公式;依据:公式是解题的工具。

公式是解题的工具。

难点:获得推导等差数列前n 项和公式的思路及公式的灵活运用。

项和公式的思路及公式的灵活运用。

依据:公式探究过程中蕴含着重要的数学思想方法,由于学生认识水平的限制,第一次接触到这些公式,往往意识不到其作用,即使教师给予揭示,学生也多半拿着公式而无用武之地,因此我把它作为这一节的难点。

高中数学数列整章教案

高中数学数列整章教案

高中数学数列整章教案一、教学目标:1. 知识与技能:掌握等差数列、等比数列的概念、性质和常用公式,能够求解数列的通项公式和前n项和。

2. 过程与方法:培养学生分析问题、解决问题的能力,培养学生良好的思维习惯和解题方法。

3. 情感态度价值观:培养学生对数列的兴趣和好奇心,激发学生的数学学习兴趣。

二、教学重点与难点:重点:掌握等差数列、等比数列的性质和常用公式。

难点:能够灵活运用等差数列、等比数列的性质和公式解决问题。

三、教学内容:1. 等差数列的概念与性质2. 等差数列的通项公式和前n项和公式3. 等比数列的概念与性质4. 等比数列的通项公式和前n项和公式四、教学过程:1. 引入:通过举例引出等差数列和等比数列的概念和性质。

2. 学习与探究:分别介绍等差数列和等比数列的概念、性质和常用公式,让学生通过实例理解数列的特点。

3. 拓展与应用:通过练习加深学生对等差数列和等比数列的理解,培养学生解决实际问题的能力。

4. 总结与反思:总结本节课的内容,强调等差数列和等比数列在数学中的重要性和应用价值。

五、课堂练习:1. 已知等差数列前3项分别为2,5,8,求通项公式及第n项。

2. 某等比数列的前4项分别为1,2,4,8,求通项公式及第n项。

六、教学反馈:通过课堂练习,检查学生对等差数列和等比数列的掌握程度,及时纠正和辅导学生的错误,引导学生加强巩固。

七、作业布置:1. 完成课堂练习题目。

2. 练习册中相关练习题目。

八、教学反思:通过教学过程的反思,总结本节课的教学亮点和不足之处,及时调整教学方法,提高教学质量。

高中等差数列教案模板

高中等差数列教案模板

授课年级:高中一年级授课课时:2课时教学目标:1. 知识目标:(1)理解等差数列的定义,掌握等差数列的基本性质;(2)了解等差数列的通项公式,掌握等差数列前n项和公式;(3)能运用等差数列的知识解决实际问题。

2. 能力目标:(1)培养学生观察、分析、归纳能力,提高逻辑思维能力;(2)提高学生运用数学知识解决实际问题的能力。

3. 情感、态度与价值观目标:(1)激发学生对数学学习的兴趣,培养学生严谨的学术态度;(2)培养学生的团队协作精神,提高学生沟通与表达能力。

教学重点:1. 等差数列的定义及基本性质;2. 等差数列的通项公式及前n项和公式。

教学难点:1. 等差数列的通项公式的推导;2. 等差数列前n项和公式的推导。

教学过程:第一课时一、导入1. 回顾数列的定义,引导学生思考数列在生活中的应用;2. 提出问题:什么是等差数列?等差数列有哪些性质?二、新课讲授1. 等差数列的定义及基本性质:(1)介绍等差数列的定义;(2)举例说明等差数列的性质,如公差、首项、通项公式等;(3)引导学生观察等差数列的图像,加深对等差数列的理解。

2. 等差数列的通项公式:(1)介绍等差数列的通项公式;(2)推导等差数列的通项公式;(3)举例说明通项公式的应用。

三、课堂练习1. 完成课后练习题,巩固所学知识;2. 教师讲解典型题目,帮助学生掌握解题方法。

第二课时一、复习导入1. 回顾等差数列的定义、性质及通项公式;2. 提出问题:如何求解等差数列的前n项和?二、新课讲授1. 等差数列前n项和公式:(1)介绍等差数列前n项和公式;(2)推导等差数列前n项和公式;(3)举例说明前n项和公式的应用。

三、课堂练习1. 完成课后练习题,巩固所学知识;2. 教师讲解典型题目,帮助学生掌握解题方法。

四、总结1. 总结本节课所学内容,强调重点难点;2. 布置课后作业,巩固所学知识。

教学评价:1. 课堂表现:观察学生参与课堂讨论、回答问题的积极性;2. 作业完成情况:检查学生课后作业的完成质量;3. 测试成绩:通过课堂练习和测试评估学生对本节课知识掌握程度。

高中数学 等差数列说课课件 新人教A版必修1

高中数学 等差数列说课课件 新人教A版必修1
3.2 等 差 数 列
教材中的地位和作用:
• 数列是高中数学重要内容之一,它不仅有着广 泛的实际应用,而且起着承前启后的作用。一 方面, 数列作为一种特殊的函数与函数思想密 不可分;另一方面,学习数列也为进一步学习数 列的极限等内容做好准备。而等差数列是在学 生学习了数列的有关概念和给出数列的两种方 法——通项公式和递推公式的基础上,对数列 的知识进一步深入和拓广。同时等差数列也为 今后学习等比数列提供了学习对比的依据。
练习:判断下列数列是否为 等差数列,如果是请写出公 差
• (1)3,9,15,21,27 • (2)2,2,2,2,2 ( 3 ) 9,8,7,6,5,… • ( 4 )1.02,1.03, 1.05,1.07, 1.09
2、通项公式的推导和掌握
• 讲解两种推导方法 (1)不完全归纳法 (2)迭加法 练习:如果一个等差数列的首项a1是1,公 差是2,那么它的通项公式为 an=1+(n-1)*2,即an=2n-1
节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求 知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教 师的指导下发现、分析和解决问题。
• 采用讲练结合的教学方法学法指导在引
导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学 生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

• (1) 100,98,96,94,92 • (2) 5,10,15,20,25
观察并提问:数列(1), (2),有何规律,引导学生得出结 论“从第二项起,每一项与前一项的 差都是同一个常数”,我们把这样的 数列叫等差数数列(板书课题)
二、进入新课的教学
• 1、概念的理解和掌握 等差数列的定义:一般地,如果一个数列从 第二项起,每一项与它的前一项的差等于同一个 常数,那么这个数列叫做等差数列,这个常数叫 做等差数列的公差,公差通常用字母d表示 强调:(1)从“第二项起”(这是为了使 每一项与它的前一项都存在). (2)每一项与它的前一项的差必须 是同一个常数(因为“同一个常数”体现了等差 数列的基本特征) (3)公差可以是正数,负数,也可 以是0

等差数列教案(多篇)

等差数列教案(多篇)

一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。

2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。

4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。

二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。

2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。

4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。

三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。

2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。

3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。

4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。

四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。

2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。

3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。

4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。

五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。

2. 针对学生的练习情况,进行讲解和解答疑惑。

3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。

高中数学等差数列教案

高中数学等差数列教案

高中数学等差数列教案一、教学目标1.了解等差数列的概念、性质和常用公式;2.能够求等差数列的通项公式和部分和公式;3.能够利用等差数列的公式解决实际问题;4.提高学生的推导能力和解题能力。

二、教学内容1. 等差数列概念•定义等差数列的概念,引导学生通过找规律发现等差数列的特点;•解释等差数列中首项、公差、项数等概念;•通过例题的讲解,让学生领会等差数列的概念和基本性质。

2. 等差数列通项公式的推导•介绍等差数列通项公式的定义,并通过例题引导学生发现通项公式的规律;•带领学生通过数学归纳法推导出等差数列通项公式;•引导学生运用同样的方法推导等差数列前n项和公式。

3. 等差数列的常用公式•介绍等差数列的前n项和公式、公差和项数之间的关系等常用公式;•结合例题,讲解常用公式的应用方法;•让学生掌握常用公式的推导和运用。

4. 等差数列的应用•引导学生通过例题发现等差数列在实际生活中的应用;•通过综合实例,让学生掌握等差数列的应用技巧;•提高学生的解决问题的能力和思考能力。

三、教学方法1.讲授法:通过演示、讲解等方式,引导学生掌握等差数列的概念和基本性质;2.练习法:通过例题和练习,巩固学生对等差数列的理解,并提高其解题能力;3.探究法:通过引导学生发现规律和推导公式,提高学生的推导能力和自主学习能力;4.实践法:通过实际问题的讲解,让学生掌握等差数列的应用方法和技巧。

四、教学重点与难点1. 教学重点•等差数列的概念、性质、推导方法和常用公式;•等差数列在实际生活中的应用。

2. 教学难点•等差数列的前n项和公式和通项公式的推导;•等差数列在实际应用中的解题方法和技巧。

五、教学过程1. 等差数列概念的讲解教师通过图示等方法,向学生阐述等差数列的概念,并引导学生通过例题,发现等差数列的特点和性质。

2. 等差数列通项公式推导的讲解教师介绍等差数列通项公式的定义,带领学生通过数学归纳法,推导出等差数列通项公式,并解释常用公式。

等差数列教学设计(一课时)

等差数列教学设计(一课时)

2.2.1《等差数列》教案设计教材分析1.教案内容分析本节课是《普通高中课程规范实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

主要内容是等差数列定义和等差数列的通项公式。

2.地位与作用数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.教案目标知识目标1.理解并掌握等差数列的定义,能用定义判断一个数列是否为等差数列;2.掌握等差数列的通项公式.能力目标1.通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力。

2.培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识.情感目标通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.教案重难点重点1.等差数列的概念;2.等差数列的通项公式的推导过程及应用.难点理解等差数列“等差”的特点及通项公式的含义.教案设想本课教案,重点是等差数列的概念,在讲概念时,通过创设情境引导学生理解概念,进一步引导学生通过概念来判断一个数列是否是等差数列。

整个过程以学生自主思考、合作探究、教师适时点拨为主,真正体现课堂教案中学生的主体作用。

教案过程教案环节教师活动学生活动设计意图环节一环节1 创设情境,提出问题在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:(1)1682,1758,1834,1910,1986,()你能预测出下一次的大致时间吗?主持人问: 最近的时间什么时候可以看到哈雷慧星?天文学家陈丹说: 2062年左右。

通常情况下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗学生活动通过情景引出数列,观察发现其规律,并通过规律填写内容。

高中等差数列教案

高中等差数列教案

高中等差数列教案教学目标:1. 理解等差数列的概念和基本性质;2. 掌握等差数列的通项公式和求和公式;3. 能够应用等差数列解决实际问题。

教学重点:1. 理解等差数列的概念;2. 掌握等差数列的通项公式;3. 能够应用等差数列解决实际问题。

教学难点:1. 掌握等差数列的求和公式;2. 能够独立解决复杂的等差数列问题。

教学准备:1. 教材:高中数学教材;2. 教具:黑板、粉笔、计算器等。

教学过程:一、导入(5分钟)老师简要介绍等差数列的概念,引发学生对等差数列的兴趣。

二、概念讲解(10分钟)1. 老师通过实际生活中的例子,引导学生理解等差数列的概念;2. 老师提出等差数列的递推关系式,并引导学生进行推理、总结;3. 学生以小组讨论的方式,归纳等差数列的特点和性质。

三、公式推导(15分钟)1. 老师提出等差数列的通项公式,并讲解推导过程;2. 学生在黑板上推导等差数列的通项公式;3. 学生通过例题验证通项公式的正确性。

四、例题练习(15分钟)老师出示一些等差数列的问题,让学生自主解决。

鼓励学生积极思考,勇于表达自己的解题思路。

五、求和公式(15分钟)1. 老师引导学生思考等差数列的前n项和的求和公式;2. 老师讲解求和公式的推导过程,并借助具体例子进行解释;3. 学生通过例题练习,巩固求和公式的运用。

六、综合应用(15分钟)1. 老师出示一些实际问题,让学生运用等差数列解决;2. 学生以小组合作的形式,解决实际问题,并进行展示和讨论;3. 老师对学生的解决思路和方法进行总结和评价。

七、课堂总结(5分钟)老师对本节课的重点内容进行总结,并引导学生思考如何运用等差数列解决更复杂的问题。

拓展延伸:1. 学生可以自行寻找更多的实际问题,并运用等差数列进行求解;2. 学生可以通过观察数列的规律,发现其他与等差数列相关的性质和公式。

高中数学等差数列教案

高中数学等差数列教案

高中数学等差数列教案一、教学目标:1. 了解等差数列的定义和性质;2. 熟练掌握等差数列的通项公式和前n项和公式;3. 能够应用等差数列的知识解决实际问题。

二、教学重点:1. 等差数列的定义和性质;2. 等差数列的通项公式和前n项和公式的推导和应用。

三、教学难点:1. 理解等差数列的通项公式和前n项和公式的推导过程;2. 能够运用等差数列的知识解决复杂问题。

四、教学内容:1. 等差数列的定义和性质;2. 等差数列的通项公式和前n项和公式;3. 等差数列的应用。

五、教学流程:1. 引入(5分钟):通过举例引入等差数列的概念,让学生了解等差数列的特点和性质。

2. 概念讲解(15分钟):介绍等差数列的定义和通项公式,帮助学生理解等差数列的基本概念。

3. 公式推导(20分钟):详细讲解等差数列通项公式和前n项和公式的推导过程,让学生掌握公式的推导方法。

4. 练习与应用(30分钟):让学生通过练习题和实际问题的应用来巩固所学知识,培养学生运用等差数列解决问题的能力。

5. 总结(5分钟):回顾本节课的重点内容,强调等差数列的应用和重要性。

六、教学手段:1. 教师讲解;2. 课堂练习;3. 小组讨论;4. 案例分析。

七、教学反馈:1. 师生互动,及时解答学生问题;2. 布置作业,巩固学生所学知识;3. 定期进行测试,检验学生掌握情况。

八、教学资源:1. 教材;2. 多媒体设备;3. 练习题。

以上是高中数学等差数列的教案范本,希望对您有帮助。

祝您教学顺利!。

高中数学新人教版A版精品教案《等差数列教学设计》

高中数学新人教版A版精品教案《等差数列教学设计》

等差数列第一课时教学设计一、设计理念随着科学技术的不断发展,数学已经不仅仅是学习后继课程和解决科技问题的工具,而且是培养理性思维的重要载体,成为科技人员科技水平的重要组成部分。

但数学要跟上时代发展的步伐,满足社会发展的需要,就应该从传统的教学模式转变为以问题为中心,以探索为主线,以培养学生思维能力和创新意识为核心的数学素质教育的实践模式。

课堂上采用学生“自主、合作、探索”的教学方式,教师是学生学习的组织者、合作者和服务者,以背景问题激发学生的学习兴趣及好奇心。

以探索问题引导学生对数学问题进行自主观察、比较、分析、综合、抽象和概括。

在这个过程中,学生在课堂上的主体地位得到充分发挥,极大的激发了学生的学习兴趣,这正是新课程所倡导的数学理念。

二、教材分析本节课主要研究等差数列的概念、通项公式及其应用,是本章的重点内容之一。

而所处章节《数列》又是高中数学的重要内容,并且在实际生活中有着广泛的应用,它起着承前启后的作用。

一方面,数列与前面学习的函数等知识有密切的联系;另一方面,学习数列又为进一步学习数列的极限等内容作好了准备。

同时也是培养学生数学能力的良好题材。

学习数列要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题。

等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

三、教学目标知识目标:理解等差数列的定义,掌握等差数列的通项公式。

能力目标:1培养学生观察能力2进一步提高学生推理、归纳能力情感目标:1.体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神;2.渗透函数、方程、化归的数学思想;3.培养学生数学的应用意识,参与意识和创新意识。

四、教学重点1、等差数列概念的理解与掌握;2、等差数列通项公式的推导与应用。

五、教学难点等差数列“等差”特点的理解、把握和应用六、教学方法启发式教学启发学生逐步发现和认识等差数列“等差”特点及探索出等差数列的通项公式。

等差数列教案(5篇)

等差数列教案(5篇)

等差数列教案(5篇)第一篇:等差数列教案等差数列教案教学目的1.理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题.(1)了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列,了解等差中项的概念;(2)正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题.2.通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想.3.通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点.关于等差数列的教学建议(1)知识结构(2)重点、难点分析①教学重点是等差数列的定义和对通项公式的认识与应用,等差数列是特殊的数列,定义恰恰是其特殊性、也是本质属性的准确反映和高度概括,准确把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具,等差数列的通项公式的结构与一次函数的解析式密切相关,通过函数图象研究数列性质成为可能.②通过不完全归纳法得出等差数列的通项公式,所以是教学中的一个难点;另外,出现在一个等式中,运用方程的思想,已知三个量可以求出第四个量.由于一个公式中字母较多,学生应用时会有一定的困难,通项公式的灵活运用是教学的有一难点.(3)教法建议①本节内容分为两课时,一节为等差数列的定义与表示法,一节为等差数列通项公式的应用.②等差数列定义的引出可先给出几组等差数列,让学生观察、比较,概括共同规律,再由学生尝试说出等差数列的定义,对程度差的学生可以提示定义的结构:“……的数列叫做等差数列”,由学生把限定条件一一列举出来,为等比数列的定义作准备.如果学生给出的定义不准确,可让学生研究讨论,用符合学生的定义但不是等差数列的数列作为反例,再由学生修改其定义,逐步完善定义.③等差数列的定义归纳出来后,由学生举一些等差数列的例子,以此让学生思考确定一个等差数列的条件.④由学生根据一般数列的表示法尝试表示等差数列,前提条件是已知数列的首项与公差.明确指出其图像是一条直线上的一些点,根据图像观察项随项数的变化规律;再看通项公式,项其图像的形状相对应.可看作项数的一次型()函数,这与⑤有穷等差数列的末项与通项是有区别的,数列的通项公式是数列第项与项数之间的函数关系式,有穷等差数列的项数未必是,即其末项未必是该数列的第项,在教学中一定要强调这一点.⑥等差数列前项和的公式推导离不开等差数列的性质,所以在本节课应补充一些重要的性质;另外可让学生研究等差数列的子数列,有规律的子数列会引起学生的兴趣.⑦等差数列是现实生活中广泛存在的数列的数学模型,如教材中的例题、习题等,还可让学生去搜集,然后彼此交流,提出相关问题,自己尝试解决,为学生提供相互学习的机会,创设相互研讨的课堂环境.等差数列通项公式的教学设计示例教学目标1.通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;2.利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;3.通过参与编题解题,激发学生学习的兴趣.教学重点,难点教学重点是通项公式的认识;教学难点是对公式的灵活运用.教学用具实物投影仪,多媒体软件,电脑.教学方法研探式.教学过程一.复习提问前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用.二.主体设计通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求,求).找学生试举一例如:“已知等差数列中,首项,公差.”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上.1.方程思想的运用(1)已知等差数列的第______项.中,首项,公差,则-397是该数列(2)已知等差数列中,首项,则公差(3)已知等差数列中,公差,则首项这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量.2.基本量方法的使用(1)已知等差数列中,求的值.(2)已知等差数列中,求.若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于的,由和和的二元方程组,所以这些等差数列是确定写出通项公式,便可归结为前一类问题.解决这类问题只需把两个和的二元方程组,以求得和,和称作基条件(等式)化为关于本量.教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于这是一个和和的二元方程,的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定).如:已知等差数列中,…由条件可得即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题(3)已知等差数列中,求;;;;….类似的还有(4)已知等差数列中,求的值.以上属于对数列的项进行定量的研究,有无定性的判断?引出 3.研究等差数列的单调性,考察随项数的变化规律.着重考虑的符号,由学生叙的情况.此时是的一次函数,其单调性取决于述结果.这个结果与考察相邻两项的差所得结果是一致的.4.研究项的符号这是为研究等差数列前项和的最值所做的准备工作.可配备的题目如(1)已知数列始小于0?的通项公式为,问数列从第几项开(2)等差数列三.小结从第________项起以后每项均为负数.1.用方程思想认识等差数列通项公式;2.用函数思想解决等差数列问题.第二篇:等差数列教案(精选)等差数列教案一、教材分析从教材的编写顺序上来看,等差数列是必修五第二章的第二节的内容,一方面它是数列中最基础的一种类型、与前面学习的函数等知识也有着密切的联系,另一方面它又为进一步学习等比数列及数列的极限等内容作准备.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,对其在性质的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.依据课标“等差数列”这部分内容授课时间3课时,本节课为第2课时,重在研究等差数列的性质及简单应用,教学中注重性质的形成、推导过程并让学生进一步熟悉等差数列的通项公式。

人教版高中数学新课标必修1等差数列教案

人教版高中数学新课标必修1等差数列教案

第三章 数列(§3.2 等差数列)教学时间: 第一课时课 题: §3.2.1 等差数列教学目标:1.明确等差数列的定义.2.掌握等差数列的通项公式,会解决知道n d a a n ,,,1中的三个,求另外一个的问题3.培养学生观察、归纳能力.教学重点:1.等差数列的概念;2.等差数列的通项公式教学难点:等差数列“等差”特点的理解、把握和应用教学方法 :启发式数学教具准备:投影片1张(内容见下面)教学过程:(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6; ①10,8,6,4,2,…; ②;,1,54;53;52;51 ③生:积极思考,找上述数列共同特点。

对于数列①n a n =(1≤n ≤6);11=--n n a a (2≤n ≤6)对于数列②12=n a -2n (n ≥1)21-=--n n a a (n ≥2)对于数列③5n a n =(n ≥1) 511=--n n a a (n ≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2,51 。

二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:⎪⎩⎪⎨⎧=-=-=---d a a d a a d a a n n n12312)1(个等式若将这n-1个等式相加,则可得:d a a =-12即:d a a +=12d a a =-23即:d a d a a 2123+=+=d a a =-34即:d a d a a 3134+=+=……由此可得:d n a a n )1(1-+=师:看来,若已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 数列(§3.2 等差数列)
教学时间: 第一课时
课 题: §3.2.1 等差数列
教学目标:
1.明确等差数列的定义.
2.掌握等差数列的通项公式,会解决知道n d a a n ,,,1中的三个,求另外一个的问题
3.培养学生观察、归纳能力.
教学重点:
1.等差数列的概念;
2.等差数列的通项公式
教学难点:
等差数列“等差”特点的理解、把握和应用
教学方法 :
启发式数学
教具准备:
投影片1张(内容见下面)
教学过程:
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
生:积极思考,找上述数列共同特点。

对于数列①n a n =(1≤n ≤6);11=--n n a a (2≤n ≤6)
对于数列②12=n a -2n (n ≥1)
21-=--n n a a (n ≥2) 对于数列③5
n a n =(n ≥1) 5
11=--n n a a (n ≥2) 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2,5
1 。

二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:
⎪⎩⎪⎨⎧=-=-=---d a a d a a d a a n n n
12312)1(个等式
若将这n-1个等式相加,则可得:
d a a =-12即:d a a +=12
d a a =-23即:d a d a a 2123+=+=
d a a =-34即:d a d a a 3134+=+=
……
由此可得:d n a a n )1(1-+=
师:看来,若已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a 。

如数列①n n a n =⨯-+=1)1(1(1≤n ≤6)
数列②:n n a n 212)2()1(10-=-⨯-+=(n ≥1) 数列③:5
51)1(51n n a n =⨯-+=(n ≥1) 由上述关系还可得:d m a a m )1(1-+=
即:d m a a m )1(1--=
则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+--
如:d a d a d a d a a 43212345+=+=+=+=
三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项? 解:(1)由35285,81-=-=-==d a
n=20,得49)3()120(820-=-⨯-+=a
(2)由4)5(9,51-=---=-=d a
得数列通项公式为:)1(45---=n a n
由题意可知,本题是要回答是否存在正整数n ,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习
生:(口答)课本P 114练习3; (书面练习)课本P 113练习1 师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。

即d a a n n =--1(n ≥2)
②等差数列通项公式 =n a d n a )1(1-+(n ≥1)
推导出公式:d m n a a m n )(-+=
(V )课后作业
一、课本P 114习题3.2 1,2
二、1.预习内容:课本P 112例2—P 113例4
2.预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题? ②等差数列有哪些性质?
板书设计:
教学后记:。

相关文档
最新文档