高中数学等差数列教案3篇

合集下载

高三数学数列教案5篇

高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。

高中数学等差数列教案大全

高中数学等差数列教案大全

高中数学等差数列教案大全一、教学目标1.理解等差数列的基本概念和相关术语。

2.能够推导等差数列通项公式。

3.掌握等差数列求和公式及其应用。

二、教学内容1. 等差数列的概念和相关术语等差数列的定义等差数列是一种特殊的数列,它的每一项与前一项的差相等。

这个差值称为等差数列的公差,通常用字母d表示。

相关术语•首项:等差数列中的第一项。

•公差:等差数列中相邻项之间的差。

•通项公式:等差数列中第n项的通项公式。

•前n项和:等差数列中前n项的和。

2. 推导等差数列通项公式等差数列通项公式可以表示任意一项,只要已知它是等差数列中的第几项即可。

接下来介绍如何推导等差数列通项公式。

推导步骤假设等差数列的首项为a₁,公差为d,第n项为an。

推导通项公式的步骤如下:1.找规律:观察等差数列的前几项,列出它们之间的关系。

2.建立方程:将观察到的关系式写成一个方程。

3.解方程:解出通项公式。

例子若等差数列的首项为a₁,公差为d,第n项为an,则观察前几项可得:a₁, a₁+d, a₁+2d, a₁+3d, ...由此得出任意一项的通项公式为:an = a₁ + (n-1)d3. 掌握等差数列求和公式及其应用求和公式等差数列前n项和是一个关于n的二次函数,因此可以求出通项公式。

设等差数列的首项为a₁,公差为d,前n项和为Sn,则有:Sn = (a₁ + an) × n / 2将an代入上式,化简可得:Sn = n/2 ( 2a₁ + (n-1)d )应用等差数列求和公式的应用十分广泛,例如可以用来求某一个等差数列中的前n 项和,或者求某几项的和等问题。

三、教学方法在教学过程中,可以采用多种教学方法,例如板书演示、课堂讲解、课堂练习等,以帮助学生更好地掌握等差数列的概念和应用。

四、教学流程第一步:引入问题通过引入一些等差数列的实例,让学生感性理解等差数列的基本概念和相关术语。

第二步:讲解等差数列的定义和相关术语让学生了解等差数列的基本定义和相关术语。

高中数学等差数列说课稿(通用8篇)

高中数学等差数列说课稿(通用8篇)

高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。

同时等差数列也为今后学习等比数列提供了学习比照的根据。

2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。

b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。

c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。

3、教学重点和难点重点:①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。

学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

名师教学设计《等差数列》示范教学教案

名师教学设计《等差数列》示范教学教案

《等差数列》教学设计一、教材分析本节课是《普通高中课程标准实验教科书•数学5》(人教A版)第二章《数列》的第二节内容,即《等差数列》第一课时。

研究等差数列的定义和通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。

本节是第二章的基础,为以后学习等差数列求和、等比数列奠定基础,是本章的重点内容,也是高考重点考察的内容之一,它有着广泛的实际应用,而且起着承前启后的作用。

等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。

二、教学目标1、知识与技能:(1)能够准确的说出等差数列的特点;(2)能够推导出等差数列的通项公式,并可以利用等差数列解决些简单的实际问题。

2、过程与方法:通过实例展示,让学生能从具体实例中归纳出等差数列的概念,培养学生的观察能力和抽象概括能力3、情感态度价值观:通过对等差数列的研究,激发主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

三、教学重点难点:重点:等差数列的概念,等差数列的通项公式的推导过程及应用。

难点:等差数列通项公式的推导,用“数学建模"的思想解决实际问题。

四、教学过程(一)、情景导入:1896年,雅典举行第一届现代奥运会,到2008年的北京奥运会已经是第29届奥运会。

观察数据1896,1900,1904,…,2008,2012,()你能预测出第31届奥运会的时间吗?思考1:1、你能根据规律在()内填上合适的数吗?(1)1682,1758,1834,1910,1986,(2062).(2) 32, 25.5, 19, 12.5, 6, …, (-20).(3) 1,4,7,10,(),16,…(4)2, 0, -2, -4, -6,()…看下面几个例子:(1)我们课本的页码数从小到大依次为:1, 2,3, 4,……(2)某人贷款买房,需要月均等额还款。

高中教案数学等差数列

高中教案数学等差数列

高中教案数学等差数列
教学目标:学生能够理解等差数列的概念,掌握等差数列的性质、通项公式和求和公式,
能够解决相关问题。

教学重点:等差数列的概念和性质,通项公式和求和公式的运用。

教学难点:对等差数列通项公式和求和公式的理解和应用。

教学准备:教材《高中数学》,黑板、粉笔、教案PPT。

教学过程:
一、导入(5分钟)
1.引入等差数列的概念,简单介绍等差数列的性质。

2.通过一个例子,让学生理解等差数列的特点。

二、讲解等差数列的概念和性质(15分钟)
1.定义等差数列,并介绍等差数列的特点。

2.讲解等差数列的通项公式和求和公式,说明其推导过程和应用方法。

三、练习(20分钟)
1.进行一些简单的例题演练,让学生掌握等差数列的解题方法。

2.提供一些挑战性的题目,培养学生的解决问题的能力。

四、总结和拓展(10分钟)
1.总结等差数列的知识点和解题方法。

2.拓展讨论等比数列与等差数列之间的关系。

五、作业布置(5分钟)
布置相关的练习题,巩固等差数列的知识点。

教学反思:本节课主要讲解等差数列的概念、性质、通项公式和求和公式,让学生掌握解
题方法和应用技巧。

通过丰富的练习题目,培养学生的思维能力和解决问题的能力。

同时,通过拓展讨论等比数列与等差数列之间的关系,拓宽学生的数学视野,提高他们的学习兴趣。

数学等差数列教案

数学等差数列教案

数学等差数列教案数学等差数列教案「篇一」一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式(一)例题与练习通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。

由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二)新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调:① “从第二项起”满足条件; f②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1—an=d (n≥1) ;h4z+0"6vG同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1、 9 ,8,7,6,5,4,√ d=—12、2、2、2、2、2、2、2、2、2、74√ d=0。

013、3、3、3、3、3、3、√ d=04、4、4、4、4、4、4、×5、5、5、5、5、5、×其中第一个数列公差<0,>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。

给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。

通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。

整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d。

则据其定义可得:a2 — a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n—1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:a2 – a1 =da3 – a2 =da4 – a3 =dan+1 – an=d将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d 即 an= a1+(n—1) d (1)当n=1时,(1)也成立。

高中数学数列教案:等差数列精选4篇

高中数学数列教案:等差数列精选4篇

高中数学数列教案:等差数列精选4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高中数学数列教案:等差数列精选4篇教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

苏教版高中数学(必修5)2.2《等差数列》 教案5篇

苏教版高中数学(必修5)2.2《等差数列》 教案5篇

2.2 .1等差数列的概念七、教学过程(一)创设情景,引入概念(设计意图:通过对实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程)情景1:把班上学生学号从小到大排成一列:如:1,2,3,4,…,63,64.问题1:请学生归纳出上一个数列的通项公式),521(,+∈≤≤=N n n n a n 。

问题2:把上面的数列各项依次记为64321,,,,a a a a ,学生填空:()()()1,,1,163642312+=+=+=a a a a a a问题3:上面的数列有什么特点,你能用数学语言(符号)描述这些特点吗?(教师引导,学生完成)11+=-n n a a (2≥n ),或者写成 11=--n n a a (2≥n ).注:强调2≥n ,原因在于1-n 有意义。

问题4:提问学生,能用普通语言概括上面的规律吗?数列后一项等于前一项加“1”,或者 数列后一项与前一项的差为“1”. 上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。

情景2:看幻灯片上的实例(1)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg ): 48,53,58,63.(2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。

如果一个水库的水位18m ,自然放水每天水位下降2.5m ,最低降至5m 。

那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m ):18,15.5,13,10.5,8,5.5.(3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。

按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。

如,按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和组成的数列是:10072, 10144, 10216, 10288, 10360.(4)全国统一鞋号中,成年女鞋的尺码最小的是21码,相邻两个鞋号间隔0.5码,最大的是25码,组成的数列:21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25.问题5:请学生写出上面的数列,观察这些数列的特点,并用数学语言(符号)描述这些特点:(1)51=--n n a a ,2≥n ,+∈N n ;(2)5.21-=--n n a a ,2≥n ,+∈N n(3)721=--n n a a ,2≥n ,+∈N n ;(4)5.01=--n n a a ,2≥n ,+∈N n 问题6:观察并归纳上面这些数列的共同特征,用数学语言(符号)描述这些特点:1n n a a d --=(d 是常数),(2≥n ,+∈N n )满足这种特征的数列很多,我们有必要为这样的数列取一个名字?)--等差数列。

数学等差数列教案(优秀5篇)

数学等差数列教案(优秀5篇)

数学等差数列教案(优秀5篇)高一数学等差数列教案篇一一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第二章数列第二节等差数列第一课时。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的`极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

二、学生学习情况分析教学内容针对的是高二的学生,经过高中一年的学习,大部分学生知识经验已较为丰富,具备了较强的抽象思维能力和演绎推理能力,但也可能有一部分学生的基础较弱,所以在授课时要从具体的生活实例出发,使学生产生学习的兴趣,注重引导、启发学生的积极主动的去学习数学,从而促进思维能力的进一步提高。

三、设计思想1.教法⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑴分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑴讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

用多种方法对等差数列的通项公式进行推导。

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学目标通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题;并在此过程中培养学生观察、分析、归纳、推理的能力,在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力。

高三数学必修五教案等差数列优秀4篇

高三数学必修五教案等差数列优秀4篇

高三数学必修五教案等差数列优秀4篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!高三数学必修五教案等差数列优秀4篇等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。

《等差数列》教学设计-经典教学教辅文档

《等差数列》教学设计-经典教学教辅文档

《等差数列》教学设计
教学目标:
1.知识与技能教学目标:
理解等差数列的概念,掌握等差数列的通项公式;初步培养先生观察、归纳、推理论证的逻辑思想能力;培养先生数学应意图识和言语表达能力;浸透分类讨论的数学思想,培养先生逻辑思想的严谨性,进步数学素养。

2.过程与方法教学目标:
由实践例子引发先生探求数学知识的愿望,师生共同探求知识的发生发展的过程,促进先生自主探求合作交流,使技能得以进步,充分发挥先生的主观能动性。

3.情感态度与价值观:
充分激发先生学习数学的兴味,让先生体验成功的快乐,培养先生严谨的科学态度和实事求是的精神,让先生建立正确的人生观和价值观,提升先生实践用用的能力。

重点:掌握等差数列的概念及其通项公式的推导过程和运用:
难点:①理解等差数列“等差”的特点及通项公式的含义;
②“数学建模”的思想方法。

五、板书设计:表现重点,难点,及知识结构。

设计如下:
3.2等差数列
一、等差数列的定义……………… 练习:……………
二、等差数列的本质……………… ……………
三、等差数列的通项公式………… 成绩:……………例1
例2。

高中数学教案(优秀4篇)

高中数学教案(优秀4篇)

高中数学教案(优秀4篇)高中数学教学设计篇一一、课程说明(一)教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。

辅导内容为第一章第二节等差数列。

前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。

以及了解到什么是递增数列,什么是递减数列。

通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。

而我也是在这些基础上为她讲解第二节等差数列。

(二)学生分析:此次所带学生是一名高二的学生。

聪明但是不踏实,做题浮躁。

基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。

每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。

遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。

就由略不会变成不会。

但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。

(三)教学目标:1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。

2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。

并且能够灵活运用。

3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。

4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。

耐心地解决问题。

5、让她在学习中发现数学的独特的美,能够爱上数学这门课。

并且认真对待,自主学习。

(四)教学重点:1、让学生正确掌握等差数列及其通项公式,以及其性质。

并能独立的推导。

2、能够灵活运用公式并且能把相应公式与题相结合。

(五)教学难点:1、让学生掌握公式的推导及其意义。

2、如何把所学知识运用到相应的题中。

二、课前准备(一)教学器材对于一对一教教采用传统讲课。

一张挂历。

(二)教学方法通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。

从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。

数列教案优秀3篇

数列教案优秀3篇

数列教案优秀3篇数列教案篇一在本节课教学设计中,以学生身边的一个事例为背景,创设一个数学情境,激发了学生的学习兴趣和探究热情,体现了“人人学有价值的数学”的教学理念。

教师引进著名数学家高斯十岁时所做的一道计算题,通过此题的解法让学生发现规律,从而探索出等差数列的前n项和公式的推导过程。

这个过程反映了数学思维方法的灵活性,从学生丰富多彩的解答中,我们看到了“不同的人在数学上得到不同的发展”。

【教学背景】所授班级为普通班,学生的数学认知水平高低不一,所以,教师在问题探究的设置上要体现出知识的层次,力求使所有学生都能参与各种问题的探究。

【教学设计】一、教材分析1.教学内容“等差数列的前n项和”为苏教版必修5第二章第二节的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。

2.地位与作用本节对“等差数列的前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其实学生已掌握等差数列的性质以及高斯求和法等相关知识。

对本节的研究,为学习数列求和提供了一种重要的思想方法――倒序相加求和法,具有承上启下的重要作用。

二、目标分析1.教学目标(1)掌握等差数列的前n项和公式及推导过程。

(2)会简单运用等差数列的前n项和公式。

(3)结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

2.教学重点、难点(1)重点:等差数列前n项和公式的推导和应用。

(2)难点:等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。

三、教学模式与教法、学法本课采用“探究―发现”教学模式。

教师的教法:突出活动的组织设计与方法的引导。

学生的学法:突出探究、发现与交流。

四、教学活动设计1.新课引入创设情境:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。

这个V形架上共放着多少支铅笔?问题就是(板书)“1+2+3+4+…+100=?”设计意图:利用实际,生活引入新课,形象直观。

高中数学等差数列教案

高中数学等差数列教案

高中数学等差数列教案一、教学目标:1. 了解等差数列的定义和性质;2. 熟练掌握等差数列的通项公式和前n项和公式;3. 能够应用等差数列的知识解决实际问题。

二、教学重点:1. 等差数列的定义和性质;2. 等差数列的通项公式和前n项和公式的推导和应用。

三、教学难点:1. 理解等差数列的通项公式和前n项和公式的推导过程;2. 能够运用等差数列的知识解决复杂问题。

四、教学内容:1. 等差数列的定义和性质;2. 等差数列的通项公式和前n项和公式;3. 等差数列的应用。

五、教学流程:1. 引入(5分钟):通过举例引入等差数列的概念,让学生了解等差数列的特点和性质。

2. 概念讲解(15分钟):介绍等差数列的定义和通项公式,帮助学生理解等差数列的基本概念。

3. 公式推导(20分钟):详细讲解等差数列通项公式和前n项和公式的推导过程,让学生掌握公式的推导方法。

4. 练习与应用(30分钟):让学生通过练习题和实际问题的应用来巩固所学知识,培养学生运用等差数列解决问题的能力。

5. 总结(5分钟):回顾本节课的重点内容,强调等差数列的应用和重要性。

六、教学手段:1. 教师讲解;2. 课堂练习;3. 小组讨论;4. 案例分析。

七、教学反馈:1. 师生互动,及时解答学生问题;2. 布置作业,巩固学生所学知识;3. 定期进行测试,检验学生掌握情况。

八、教学资源:1. 教材;2. 多媒体设备;3. 练习题。

以上是高中数学等差数列的教案范本,希望对您有帮助。

祝您教学顺利!。

《等差数列》教案

《等差数列》教案

等差数列(一)教材:高中数学必修5 1.2等差数列任教老师:肖美燕学习目标:1.明确等差数列的定义,探索并掌握等差数列的通项公式;2.会解决知道n d a a n ,,,1中的三个,求另外一个的问题;3.通过与一次函数的图像类比,探索等差数列的通项公式的图像特征与一次函数之间的联系。

教学重点:等差数列的概念,等差数列的通项公式教学难点:等差数列的性质教学方法:探究、交流、实验、观察、分析内容分析:本节是等差数列这一部分,在讲等差数列的概念时,突出了它与一次函数的联系,这样就便于利用所学过的一次函数的知识来认识等差数列的性质:从图象上看,为什么表示等差数列的各点都均匀地分布在一条直线上,为什么两项可以决定一个等差数列(从几何上看两点可以决定一条直线)教学过程:一、复习引入:上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式法、递推公式法、图象法和前n 项和公式……这些方法从不同的角度反映了数列的特点。

现在我们先看下面这些问题:1.回忆数列的概念,数列有哪几种表示方法?2.(1)小明觉得自己英语成绩很差,目前他的单词量只有 yes 、no 、you 、me 、he 5个,他决定从今天起每天背记10个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,…问:多少天后他的单词量达到3000?(2)小芳觉得自己英语成绩很棒,她目前的单词量多达3000她打算从今天起不再背单词了,结果不知不觉地每天忘掉5个单词,那么从今天开始,她的单词量逐日递减,依次为:3000,2995,2990,2985,…问:多少天后她那3000个单词全部忘光?从上面两例中,我们分别得到两个数列:① 5,15,25,35,…② 3000,2995,2990,2985,…观察以上两个数列,看看它们有什么共同特征?3.根据以上两个数列,每人能举出2个与其特征相同的数列吗?4.什么是等差数列?这样理解等差数列?其中的关键字词是什么?5.以上两个数列存在通项公式吗?如果存在,分别是什么?6.怎样推导等差数列的通项公式?学生讨论、分析以上几个问题引导学生观察相邻两项间的关系,得到:对于数列①,从第2项起,每一项与前一项的差都等于_ 10_ ;对于数列②,从第2项起,每一项与前一项的差都等于 -5 ;·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(PS.每相邻两项的差相等——应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列二、讲解新课:1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)注意:⑴.名称:等差数列,首项 )(1a , 公差 )(d ,若0=d 则该数列为常数列⑵.公差d 一定是由后项减前项所得,而不能用前项减后项来求;(3).对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列是等差数列,d 为公差那么对于以上两组等差数列,它们的首相分别是5和3000,公差分别是10和-10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学等差数列教案3篇教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

下面是为大家收集等差数列教案,希望你们能喜欢。

等差数列教案一【教学目标】1. 知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。

2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。

在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.【学情分析】我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金(1+利率存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?教师:以上三个问题中的数蕴涵着三列数.学生:1:0,5,10,15,20,25,….2:18,15.5,13,10.5,8,5.5.3:10072,10144,10216,10288,10360.(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①0,5,10,15,20,25,….②18,15.5,13,10.5,8,5.5.③10072,10144,10216,10288,10360.思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,-1,-2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.等差数列教案二教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学重难点掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学过程等比数列性质请同学们类比得出.【方法规律】1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c 均不为0)3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决.等差数列教案三【示范举例】例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.【篇二】教学准备教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用教学过程由_《红高粱》主题曲“酒神曲”引入等差数列定义问题:多媒体演示,观察----发现?一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

这个常数叫做等差数列的公差,通常用字母d表示。

例1:观察下面数列是否是等差数列:….二、等差数列通项公式:已知等差数列{an}的首项是a1,公差是d。

则由定义可得:a2-a1=da3-a2=da4-a3=d……an-an-1=d即可得:an=a1+(n-1)d例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。

分析:知道a1,d,求an。

代入通项公式解:∵a1=3,d=2an=a1+(n-1)d=3+(n-1)2=2n+1例3求等差数列10,8,6,4…的第20项。

分析:根据a1=10,d=-2,先求出通项公式an,再求出a20 解:∵a1=10,d=8-10=-2,n=20由an=a1+(n-1)d得a20=a1+(n-1)d=10+(20-1)(-2)=-28例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。

分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n-1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。

解:由题意可得a1+5d=12a1+17d=36d=2a1=2an=2+(n-1)2=2n练习1.判断下列数列是否为等差数列:①23,25,26,27,28,29,30;②0,0,0,0,0,0,…③52,50,48,46,44,42,40,35;④-1,-8,-15,-22,-29;答案:①不是②是①不是②是等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a等于()A.1B.-1C.-1/3D.5/11提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)3.在数列{an}中a1=1,an=an+1+4,则a10=.提示:d=an+1-an=-4教师继续提出问题已知数列{an}前n项和为……等差数列教案三整体设计教学分析本节课将探究一类特殊的数列——等差数列.本节课安排2课时,第1课时是在生活中具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.第2课时主要是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质.让学生明白一个数列的通项公式是关于正整数n的一次型函数,使学生学会用图象与通项公式的关系解决某些问题.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在问题探索过程中,先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.其中例1是巩固定义,例2到例5是等差数列通项公式的灵活运用.在教学过程中,应遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.数列在整个中学数学内容中处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与函数的极限等内容作了铺垫.教材采取将代数、几何打通的混编体系的主要目的是强化数学知识的内在联系,而数列正是在将各知识沟通方面发挥了重要作用.因此本节内容是培养学生观察问题、启发学生思考问题的好素材.三维目标1.通过实例理解等差数列的概念,通过生活中的实例抽象出等差数列模型,让学生认识到这一类数列是现实世界中大量存在的数列模型.同时经历由发现几个具体数列的等差关系,归纳出等差数列的定义的过程.2.探索并掌握等差数列的通项公式,由等差数列的概念,通过归纳或迭加或迭代的方式探索等差数列的通项公式.通过与一次函数的图象类比,探索等差数列的通项公式的图象特征与一次函数之间的联系.3.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.重点难点教学重点:等差数列的概念,等差数列的通项公式,等差中项及性质,会用公式解决一些简单的问题.教学难点:概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式,并会解决一些相关的问题.课时安排2课时教学过程第1课时导入新课思路1.(直接导入)教师引导学生先复习上节课学过的数列的概念以及通项公式,可有意识地在黑板上(或课件中)出示几个数列,如:数列1,2,3,…,数列0,0,0,…,数列0,2,4,6,…等,然后直接引导学生阅读教材中的实例,不知不觉中就已经进入了新课.思路2.(类比导入)教师首先引导学生复习上节课所学的数列的概念及通项公式,使学生明了我们现在要研究的就是一列数.由此我们联想:在初中我们学习了实数,研究了它的一些运算与性质,那么我们能不能也像研究实数一样,来研究它的项与项之间的关系、运算和性质呢?由此导入新课.推进新课新知探究提出问题1回忆数列的概念,数列都有哪几种表示方法?2阅读教科书本节内容中的①②③3个背景实例,熟悉生活中常见现象,写出由3个实例所得到的数列.3观察数列①②③,它们有什么共同特点?4根据数列①②③的特征,每人能再举出2个与其特征相同的数列吗?5什么是等差数列?怎样理解等差数列?其中的关键字词是什么?6数列①②③存在通项公式吗?如果存在,分别是什么?7等差数列的通项公式是什么?怎样推导?活动:教师引导学生回忆上节课所学的数列及其简单表示法——列表法、通项公式、递推公式、图象法,这些方法从不同角度反映了数列的特点.然后引导学生阅读教材中的实例模型,指导学生写出这3个模型的数列:①22,22.5,23,23.5,24,24.5,…;②2,9,16,23,30;③89,83,77,71,65,59,53,47.这是由日常生活中经常遇到的实际问题中得到的数列.观察这3个数列发现,每个数列中相邻的后项减前项都等于同一个常数.当然这里我们是拿后项减前项,其实前项减后项也是一个常数,为了后面内容的学习方便,这个顺序不能颠倒.至此学生会认识到,具备这个特征的数列模型在生活中有很多,如上节提到的堆放钢管的数列为100,99,98,97,…,某体育场一角的看台的座位排列:第一排15个座位,向后依次为17,19,21,23,…,等等.以上这些数列的共同特征是:从第2项起,每一项与它前面一项的差等于同一个常数(即等差).这就是我们这节课要研究的主要内容.教师先让学生试着用自己的语言描述其特征,然后给出等差数列的定义.等差数列的定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.教师引导学生理解这个定义:这里公差d一定是由后项减前项所得,若前项减后项则为-d,这就是为什么前面3个模型的分析中总是说后项减前项而不说前项减后项的原因.显然3个模型数列都是等差数列,公差依次为0.5,7,-6.教师进一步引导学生分析等差数列定义中的关键字是什么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确、深入地理解和掌握概念的重要条件,这是学好数学及其他学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力) 这里“从第二项起”和“同一个常数”是等差数列定义中的核心部分.用递推公式可以这样描述等差数列的定义:对于数列{an},若an-an-1=d(d是与n无关的常数或字母),n2,nN_,则此数列是等差数列.这是证明一个数列是等差数列的常用方法.点拨学生注意这里的“n2”,若n包括1,则数列是从第1项向前减,显然无从减起.若n从3开始,则会漏掉a2-a1的差,这也不符合定义,如数列1,3 ,4,5,6,显然不是等差数列,因此要从意义上深刻理解等差数列的定义.教师进一步引导学生探究数列①②③的通项公式,学生根据已经学过的数列通项公式的定义,观察每一数列的项与序号之间的关系会很快写出:①an=21.5+0.5n,②an=7n-5,③an=-6n+95.以上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性.教师点拨学生探求,对任意等差数列a1,a2,a3,…,an,…,根据等差数列的定义都有:a2-a1=d,a3-a2=d,a4-a3=d,……所以a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d.学生很容易猜想出等差数列的通项公式an= a1+(n-1)d后,教师适时点明:我们归纳出的公式只是一个猜想,严格的证明需要用到后面的其他知识.教师可就此进一步点拨学生:数学猜想在数学领域中是很重要的思考方法,后面还要专门探究它.数学中有很多著名的猜想,如哥德巴赫猜想常被称为数学皇冠上的明珠,对于它的证明中国已处于世界领先地位.很多著名的数学结论都是从猜想开始的.但要注意,数学猜想仅是一种数学想象,在未得到严格的证明前不能当作正确的结论来用.这里我们归纳猜想的等差数列的通项公式an=a1+(n-1)d是经过严格证明了的,只是现在我们知识受限,无法证明,所以说我们先承认它.鼓励学生只要创新探究,独立思考,也会有自己的新奇发现.教师根据教学实际情况,也可引导学生得出等差数列通项公式的其他推导方法.例如:方法一(叠加法):∵{an}是等差数列,an-an-1=d,an-1-an-2=d,an-2-an-3=d,……a2-a1=d.两边分别相加得an-a1=(n-1)d,所以an=a1+(n-1)d,方法二(迭代法):{an}是等差数列,则有an=an-1+d,=an-2+d+d=an-2+2d=an-3+d+2d=an-3+3d……=a1+(n-1)d.所以an=a1+(n-1)d.讨论结果:(1)~(4)略.(5)如果一个数列从第2 项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.其中关键词为“从第2项起”、“等于同一个常数”.(6)三个数列都有通项公式,它们分别是:an=21.5+0.5n,an=7n-5,an=-6n+95.(7)可用叠加法和迭代法推导等差数列的通项公式:an=a1+(n-1)d.应用示例例1(教材本节例2)活动:本例的目的是让学生熟悉公式,使学生从中体会公式与方程之间的联系.教学时要使学生认识到等差数列的通项公式其实就是一个关于an、a1、d、n(独立的量有3个)的方程,以便于学生能把方程思想和通项公式相结合,解决等差数列问题.本例中的(2)是判断一个数是否是某等差数列的项.这个问题可以看作(1)的逆问题.需要向学生说明的是,求出的项数为正整数,所给数就是已知数列中的项,否则,就不是已知数列中的项.本例可由学生自己独立解决,也可做板演之用,教师只是对有困难的学生给予恰当点拨.点评:在数列中,要让学生明确解方程的思路.变式训练(1)100是不是等差数列2,9,16,…的项,如果是,是第几项?如果不是,请说明理由;。

相关文档
最新文档