概率论期末考试题型、知识点和公式复习

合集下载

概率论期末复习题及答案

概率论期末复习题及答案

概率论期末复习题及答案1. 随机事件的概率定义是什么?答:随机事件的概率是指该事件发生的可能性大小,用0到1之间的实数表示,其中0表示事件不可能发生,1表示事件必然发生。

2. 请解释条件概率的概念。

答:条件概率是指在已知某个事件A已经发生的条件下,另一个事件B 发生的概率,记作P(B|A),其计算公式为P(B|A) = P(A∩B) / P(A),其中P(A∩B)表示事件A和B同时发生的概率。

3. 什么是独立事件?答:如果两个事件A和B满足P(A∩B) = P(A) * P(B),则称事件A和B为独立事件,即一个事件的发生不影响另一个事件的发生概率。

4. 请列举至少三种随机变量的类型。

答:随机变量的类型包括离散型随机变量、连续型随机变量和混合型随机变量。

5. 描述期望值的定义。

答:随机变量X的期望值E(X)是所有可能取值乘以其对应概率的总和,即E(X) = ∑[xi * P(X = xi)],其中xi是随机变量X的可能取值,P(X = xi)是X取xi值的概率。

6. 什么是方差,它如何衡量随机变量的离散程度?答:方差是衡量随机变量X与其期望值E(X)之间差异的平方的期望值,记作Var(X) = E[(X - E(X))^2],它反映了随机变量取值的离散程度,方差越大,随机变量的取值越分散。

7. 请解释大数定律和中心极限定理。

答:大数定律指出,随着试验次数的增加,样本均值会趋近于总体均值;中心极限定理则表明,当样本量足够大时,样本均值的分布将趋近于正态分布,无论总体分布如何。

8. 如何计算二项分布的概率?答:二项分布的概率可以通过公式P(X = k) = C(n, k) * p^k * (1-p)^(n-k)计算,其中n是试验次数,k是成功次数,p是单次试验成功的概率,C(n, k)是组合数,表示从n个不同元素中取k个元素的组合方式数量。

9. 正态分布的特点是什么?答:正态分布是一种连续型概率分布,其特点是对称性,均值、中位数和众数重合,且以均值为中心,数据分布呈现钟形曲线。

概率论与数理统计期末复习

概率论与数理统计期末复习

概率统计期末知识点复习一、概率计算⒈事件的关系和运算⑴ 子事件(事件的包含)B A ⊂:若A 发生,则B 必然发生; ⑵ 相等事件A B =:B A ⊂且A B ⊃; ⑶ 并事件B A :“,A B 中至少发生一个”; ⑷ 交(积)事件AB :“,A B 都发生”; ⑸ 互不相容(互斥)事件:AB =∅; ⑹ 对立事件:若AB =Ω,且AB =∅,称B 为A 的对立事件,记为A B =.⑺ 差事件B A -:“A 发生,而B 不发生”. ⑻ 事件的运算律 ①交换律:A B B A =,AB BA =;②结合律:()()A B C A B C =,()()AB C A BC =; ③分配律:()A B C ACBC =,()()()AB C A C B C =;④摩根律:AB A B =,AB A B =.⒉概率计算的基本公式⑴非负性:设A 为任一随机事件,则0()1P A ≤≤. ⑵规范性:()1P Ω=,()0P ∅=. ⑶并事件概率计算公式:()()()()P AB P A P B P AB =+-;()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+.如果事件12,n A A A ,,两两互不相容,则1212()()()()n n P A A A P A P A P A =+++.⑷差事件概率计算公式:()()()()()P A B P AB P A AB P A P AB -==-=-; 若B A ⊂,则①()()()P A B P A P B -=-; ②()()P B P A ≤. ⑸对立事件概率计算公式:()1()P A P A =-.1A 2A 3A nA 21(|)P A A 1()P A 312(|)P A A A11(|)nnP A AA -B2A ∙1A nA 1()P A 2()P A ()n P A 1()P B A 2()P B A ()n P B A ⒊条件概率公式、乘法公式 ⑴条件概率:()P B A .①公式法:()(),()0()P AB P B A P A P A =>;②代入法:改变样本空间直接计算.⑵乘法公式:()0P A >,有()()()P AB P A P B A =. 设12()0n P A A A >,2n ≥,则12()n P A A A 12131211()(|)(|)(|)-=n n P A P A A P A A A P A A A .适用范围:链式结构⒋全概公式、逆概公式 ⑴全概率公式:1,,n A A 为一完备事件组,则1()()()ni i i P B P A P B A ==∑.适用范围:并列结构⑵贝叶斯公式(逆概公式):1()()()()()i i i nkkk P A P B A P A B P A P B A ==∑.⒌古典概型、几何概型、贝努里概型 ⑴古典概型:()A P A =事件所含样本点的个数所有样本点的个数.掌握简单的排列组合.⑵几何概型:()A P A =Ω的几何测度的几何测度,其中几何测度分别为长度或面积.对比均匀分布.⑶贝努里概型:在n 重贝努里试验中事件A 恰好发生k 次的概率为(1)kkn kn C p p --,其中0,1,2,,k n =,()p P A =,01p <<.对比二项分布.⒍事件的独立性⑴事件A 和B 相互独立的直观理解为事件A 和B 各自发生与否没有任何关系.并会根据实际问题判断事件A 和B 的独立性.⑵事件,A B 相互独立()()()P AB P A P B ⇔=(|)()(()0)P B A P B P A ⇔=>.⑶,,A B C 两两独立⇔()()(),()()(),()()().P AB P A P B P AC P A P C P BC P B P C =⎧⎪=⎨⎪=⎩⑷,,A B C 相互独立⇔,,()()()().A B C P ABC P A P B P C ⎧⎨=⎩两两独立,⑸独立性的有关结论:①设()0P B >,则事件A 和B 相互独立的充要条件为()()P A B P A =.②设,A B 为两个随机事件,如果A 和B 相互独立,则A 和B 相互独立;A 和B 相互独立; A 和B 也相互独立.③设,A B 为两个随机事件,且0()1P B <<,则A 和B 相互独立的充要条件为()()P A B P A B =.④如果随机事件12,,,n A A A 相互独立,则12,,,n A A A 的任一部分事件(至少两个事件)也相互独立.⑤如果随机事件12,,,n A A A 相互独立,则分别将i A 不变或换成i A 后所得事件仍相互独立.例如12,,,n A A A ,12,,,n A A A 等也分别相互独立.⑥如果随机事件1212,,,,,,,m n A A A B B B 相互独立,则由12,,,m A A A 组成的随机事件与由12,,,n B B B 组成的随机事件相互独立.⒎切比雪夫不等式(估计概率) 设μ=EX,2σ=DX ,则对任意的0ε>,有22{}1P X σμεε-<≥- 或22{}P X σμεε-≥≤.⒏利用分布计算概率⑴利用分布函数计算概率:①{}()()P a X b F b F a <≤=-,000{}()(0)P X x F x F x ==--等等. ②1212{,}<≤<≤P x X x y Y y 22211211(,)(,)(,)(,)F x y F x y F x y F x y =--+. ⑵利用分布律计算概率:①{}P X L ∈=i ix Lp ∈∑. ②(,){(,)}i j ij x y DP X Y D p ∈∈=∑.⑶利用密度函数计算概率:①{}{}P a X b P a X b <≤=≤≤{}P a X b =≤<{}P a X b =<<()b af x dx =⎰.②{(,)}(,)DP X Y D f x y dxdy ∈=⎰⎰.③00{}()X Y LP X L Y y f x y dx ∈==⎰;00{}()Y X LP Y L X x f y x dy ∈==⎰.二、随机变量的分布⒈分布函数及性质⑴一维随机变量的分布函数:(){},F x P X x x =≤-∞<<+∞. ⑵一维随机变量分布函数的性质:①0()1F x ≤≤; ②()0F -∞=,()1F +∞=; ③()F x 处处单调不减; ④()F x 处处右连续. ⑶二维随机变量的分布函数:(,){,}=≤≤F x y P X x Y y ,2(,)x y R ∈. ⑷二维随机变量分布函数的性质: ①0(,)1F x y ≤≤,其中2(,)x y R ∈;②(,)1,(,)(,)(,)0F F x F y F +∞+∞=-∞=-∞=-∞-∞=; ③(,)F x y 分别为关于变量x 和y 单调不减的函数; ④(,)F x y 分别关于变量x 和y 处处右连续. ⒉分布律及性质⑴一维离散型随机变量的分布律:{}i i P X x p ==,1,2,i =;或1212~i ix x x X p p p ⎛⎫⎪⎝⎭. ⑵一维离散型随机变量分布律的性质:①0i p ≥,1,2,i =; ②1iip=∑.⑶二维离散型随机变量的分布律:{,}i j ij P X x Y y p ===,1,2,,1,2,i j ==;或2j y121j p⑷二维离散型随机变量分布律的性质: ①0ij p ≥,1,2,,1,2,i j ==; ②1ijijp=∑∑.⒊密度函数及性质⑴一维连续型随机变量的密度()f x :()f x 满足()()x F x f t dt -∞=⎰,x -∞<<+∞.⑵一维连续型随机变量密度函数的性质: ①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.⑶二维连续型随机变量的密度(,)f x y :(,)f x y 满足(,)(,)x yF x y f u v dudv -∞-∞=⎰⎰,2(,)x y R ∈.⑷二维连续型随机变量密度函数的性质: ①(,)0≥f x y ,2(,)x y R ∈; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰.⒋常见分布及其数字特征⑴01-分布~(1,)X B p :1{}(1)k k P X k p p -==-,0,1;,k EX p DX pq ===. ⑵二项分布(,)B n p :{}(1),0,1,2,,,01kkn kn P X k C p p k n p -==-=<<;,EX np DX npq ==.应用背景..:记X 为n 重贝努利试验中A 发生的次数..,则(,)X B n p .⑶泊松分布()P λ:{},0,0,1,2,!kP X k e k k λλλ-==>=,EX DX λ==.⑷均匀分布~[,]X U a b :1,,()0,a x b f x b a ⎧<<⎪=-⎨⎪⎩其它.()2,212b a a b EX DX -+==. ⑸指数分布()E λ:,0,()00,0.x e x f x x λλλ-⎧>=>⎨≤⎩,211,EX DX λλ==.⑹正态分布X ~),(2σμN:22()2()x f x μσ--=,x -∞<<+∞;2,EX DX μσ==.5.常见分布的性质⑴(了解)设随机变量12,,,n X X X 相互独立,且~(,),1,2,,i i X B n p i n =,则11~(,)nnii i i XB n p ==∑∑.特别地,设随机变量12,,,n X X X 相互独立,且~(1,),1,2,,i X B p i n =,则1~(,)nii XB n p =∑.反之,服从二项分布(,)B n p 的随机变量X 可以分解为n 个相互独立,且均服从(1,)B p 的随机变量12,,n X X X 之和.⑵(了解)设随机变量12,,,n X X X 相互独立,且~(),1,2,,i i X P i n λ=,则11~()nnii i i XP λ==∑∑.⑶(了解)设随机变量12,,,n X X X 相互独立,且~(),1,2,,i i X E i n λ=,则121min{,,,}~()nn i i X X X E λ=∑.⑷(了解)设随机变量12~[,]X U θθ,则12~[,](0)aX b U a b a b a θθ+++>;21~[,](0)aX b U a b a b a θθ+++<.⑸(了解)设二维随机变量(,)X Y 服从均匀分布,,,U aX bY V cX dY =+⎧⎨=+⎩且0ad bc -≠,则(,)U V 也服从均匀分布.⑹设随机变量2~(,)X N μσ,则22~(,)Y aX b N a b a μσ=++,其中0a ≠.特别地,~(0,1)X N μσ-.⑺设随机变量12,,,n X X X 相互独立,且2~(,),1,2,,i i i X N i n μσ=,12,,,n a a a 是不全为零的常数,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.特别地,设随机变量12,,,n X X X 相互独立,且2~(,),1,2,,i X N i n μσ=,则211~(,)n i i X N n nσμ=∑. ⑻设二维随机变量(,)X Y 服从二维正态分布,,,U aX bY V cX dY =+⎧⎨=+⎩且0ad bc -≠,则(,)U V 也服从二维正态分布.⑼设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X 和Y 相互独立⇔0ρ=.⒌边缘分布 ⑴离散型{}i ij jP X x p ==∑,1,2,i =;{}j ijiP Y y p==∑,1,2,j =.关于X 的边缘分布律可对表中的i j p 进行纵向求和即得;关于Y 的边缘分布律可对表中的i j p 进行横向求和即得.⑵连续型()(,)X f x f x y dy +∞-∞=⎰,x -∞<<+∞;()(,)Y f y f x y dx +∞-∞=⎰,y -∞<<+∞.()X f x 可通过在给定点x 处,),(y x f 的纵向积分(对y 从-∞到+∞积分)求得,()Y f y 可通过在给定点y 处,),(y x f 的横向积分(对x 从-∞到+∞积分)求得.⒍条件分布 ⑴离散型1212()~i jj ij j jjjx x x p p p X Y y p pp⎛⎫⎪= ⎪ ⎪⎝⎭;1212()~j ij i i i iiiy y y p Y X x p p p p p ⎛⎫⎪= ⎪ ⎪⎝⎭. ⑵连续型(,)()()X Y Y f x y f x y f y =,x -∞<<+∞;(,)()()Y X X f x y f y x f x =,y -∞<<+∞.⒎随机变量的独立性⑴随机变量X 和Y 相互独立的直观意义是指X 和Y 的各自取值情况没有任何关系. ⑵利用分布函数:(,)()()X Y F x y F x F y =. ⑶利用分布律:ij i j p p p =,1,2,,1,2,i j ==.⑷利用密度函数:(,)()()X Y f x y f x f y =. ⑸随机变量独立性的有关结论①设随机变量X 与Y 相互独立,则对任意实数集合12,L L ,有1212{,}{}{}P X L Y L P X L P Y L ∈∈=∈∈.②如果随机变量12(,,,)m X X X 和12(,,,)n Y Y Y 相互独立,,g h 分别为m 元连续函数和n 元连续函数,则随机变量12(,,,)m g X X X 与12(,,,)n h Y Y Y 也相互独立.特别地,设随机变量X 与Y 相互独立,(),()g x h y 是连续函数,则随机变量()g X 与()h Y 也相互独立.⒏随机变量函数的分布⑴离散型随机变量函数的分布可直接列表求得. ⑵连续型随机变量函数分布采用分布函数法①()Y g X =:先求()(){}{()}()Y X g x yF y P Y y P g X y f x dx ≤=≤=≤=⎰,②(,)Z g X Y =:先求(,)(){}{(,)}(,)Z g x y zF z P Z z P g X Y z f x y dxdy ≤=≤=≤=⎰⎰,然后对y 或z 进行讨论然后求导数.⑶熟记1max i i nM X ≤≤=和1min i i nN X ≤≤=的分布函数和密度函数公式.①若随机变量12,,,n X X X 相互独立,i X 的密度函数为()i f x ,分布函数为()i F x ,1,2,,i n =,则M 和N 的分布函数(),()M N F x F x 和密度函数(),()M N f x f x 分别为12(){}()()()M n F x P M x F x F x F x =≤=,()()M Mf x F x '=; ()()()12(){}1[1][1][1]N n F x P N x F x F x F x =≤=----,()()N Nf x F x '=. ②当12,,,n X X X 独立同分布时,()()i f x f x =,()()i F x F x =,1,2,,i n =,则 ()[()]n M F x F x =,1()[()]()n M f x n F x f x -=;()1[1()]n N F x F x =--,1()[1()]()n N f x n F x f x -=-.⒐数字特征计算⑴数学期望(均值):①一维随机变量函数的数学期望:1(),(())()().i i i g x p E g X g x f x dx ∞=+∞-∞⎧⎪=⎨⎪⎩∑⎰注: 2,()EX E X 为其特例.②二维随机变量函数的数学期望:11(,),((,))(,)(,).i j i j i j g x y p E g X Y g x y f x y dxdy ∞∞==+∞+∞-∞-∞⎧⎪⎪=⎨⎪⎪⎩∑∑⎰⎰注: 22,(),,(),()EX E X EY E Y E XY 为其特例.⑵方差:222()()()DX E X EX E X EX =-=-.⑶协方差:ov(,)[()()]()C X Y E X EX Y EY E XY EXEY =--=-.⑷相关系数:XY ρ=.⑸数字特征的性质(见教材). ⑹不相关:①若0XY ρ=,称X 与Y 不相关;X 与Y 不相关的直观意义指X 与Y 没有线性关系. ②X 与Y 不相关ov(,)0C X Y ⇔=()D X Y DX DY ⇔±=+()E XY EXEY ⇔=.③设221212(,)~(,,,,)X Y N μμσσρ,则X 与Y 的相关系数XY ρρ=.④设221212(,)~(,,,,)X Y N μμσσρ,则X 和Y 相互独立⇔0ρ=⇔X 与Y 不相关.⑤如果X 与Y 相互独立,且X 与Y 的相关系数XY ρ存在,则X 与Y 不相关.反之未必.⒑中心极限定理的应用 ⑴设12,,n X X X 独立同分布,且2,0i i EX DX μσ==≠(1,2,)i =,则当n 充分大(30n ≥)时,有21~(,)nii XN n n μσ=∑近似.⑵设~(,)X B n p ,则当n 充分大(30n ≥)时,~(,(1))X N np np p -近似.三、计算过程中需要分段讨论的几种类型与方法⒈已知X 的分布律,求X 的分布函数()F x .三个特征: ⑴分1n +段;⑵每段上,将概率逐次累加(初始值为0,终值为1); ⑶每个区间为左闭右开. ⒉已知X 的密度函数()f x (分段函数),求X 的分布函数()F x . ⑴分1n +段;⑵每段上,将()f x 在(,]x -∞上积分;⑶由于()F x 为连续函数,故每个区间为开闭均可.⒊已知(,)X Y 的密度函数(,)f x y (分段函数),求X 的分布函数(,)F x y . ⑴结合(,)F x y 的原理图和(,)f x y 特征图,将全平面分若干块; ⑵每块上,将(,)f x y 在区域(,](,]x y D -∞⨯-∞上积分.⒋连续型随机变量函数的分布⑴一维连续型随机变量函数()Y g X =的分布函数()Y F y :①先确定()Y g X =取值范围;例如m Y M ≤≤,其中,m M 为实数,则采用三段式讨论.②当y m <时,()0Y F y =.③当m y M <≤时,利用定积分()()()Y X g x yF y f x dx ≤=⎰计算.④当y M ≥时,()1Y F y =.⑤当m =-∞或M =+∞或其它情况时,还可能采用两段式或四段式讨论等. ⑥若Y 为连续型随机变量,则Y 的密度函数()()Y Y f y F y '=. ⑵二维连续型随机变量函数(,)Z g X Y =的分布函数()Z F z :①确定(,)Z g X Y =的取值范围;例如m Z M ≤≤,其中,m M 为实数,则采用三段式讨论.②当z m <时,()0Z F z =.③当m z M <≤时,利用二重积分(,)()(,)Z g x y zF z f x y dxdy ≤=⎰⎰计算.④当z M ≥时,()1Z F z =.⑤当m =-∞或M =+∞或其它情况时,还可能采用两段式或四段式讨论等. ⑥若Z 为连续型随机变量,则Z 的密度函数()()Z Z f z F z '=. ⒌二维连续型随机变量(,)X Y 的边缘密度 ⑴()(,)X f x f x y dy +∞-∞=⎰,x -∞<<+∞.①作出),(y x f 的特征图.②用垂直直线x m =和x M =将D 夹住. ③当x m <或x M >时,()0X f x =. ④当m x M ≤≤时,()(,)X f x f x y dy +∞-∞=⎰.⑤当m =-∞或M =+∞或其它情况时,也可能采用其它方式讨论. ⑵()(,)Y f y f x y dx +∞-∞=⎰,y -∞<<+∞.①作出),(y x f 的特征图.②用水平直线y m =和y M =将D 夹住. ③当y m <或y M >时,()0Y f y =. ④当m y M ≤≤时,()(,)Y f y f x y dx +∞-∞=⎰.⑤当m =-∞或M =+∞或其它情况时,也可能采用其它方式讨论.四、数理统计的基础知识⒈总体X ,样本12(,,,)n X X X 和观察值的概念.关注简单随机样本的独立性和代表性.⒉常用统计量:样本均值∑==n i i X n X 11,样本方差2211()1n i i S X X n ==--∑, 顺序统计量*11min i i nX X ≤≤=,*1max n i i nX X ≤≤=.⒊常见分布⑴正态分布:见概率论中的内容. ⑵2χ分布:设12(,,,)n X X X 为来自总体~(0,1)X N 的一个样本,就称统计量22222121ni ni X X X X ===+++∑χ服从自由度为n 的2χ分布,记作)(~22n χχ. ①设)(~22n χχ,则2()E n =χ,2()2D n =χ. ②设~(0,1)X N ,则22~(1)X χ.③设22~()i i n χχ,1,2i =,且2212,χχ相互独立,则2221212~()n n ++χχχ.⑶ t 分布:设随机变量~(0,1)X N ,2~()Y n χ,且X 与Y 相互独立,就称T =服从自由度为n 的t 分布,记作)(~n t T .⑷F 分布:设随机变量)(~12n X χ,)(~22n Y χ,且X 与Y 相互独立,就称21n Y n X F =服从第一自由度为1n ,第二自由度为2n 的F 分布,记作),(~21n n F F . ①如果~()T t n ,则2~(1,)T F n . ②如果12~(,)F F n n ,则211~(,)F n n F. ⒋上侧分位点p x :{},{}1p p P X x p P X x p ≥≥≤≥-. 如U α,2()t n α,21()n αχ-,2121(,)Fn n α-等等(下标为该点处右侧的面积). 注意:1U U αα-=-,1()()t n t n αα-=-,112211(,)(,)F n n F n n αα-=.⒌单正态总体2~(,)X N μσ中X 和2S 的分布(其中12(,,,)n X X X 为样本): ⑴2~(,)X N nσμ,或nX /σμ-~)1,0(N ;⑵nS X /μ-~)1(-n t ;⑶2212()()nii Xn μχσ=-∑;⑷222122()(1)(1)nii XX n Sn χσσ=--=-∑,且X 与2S 相互独立.五、参数估计⒈点估计 ⑴矩估计:①原理:用样本矩估计理论矩.②方法:建立方程(组)11()n rr i i X E X n ==∑,1,2,r =,解出θ,得θ的矩估计θ.⑵最大似然估计:①原理:概率最大的事件最有可能出现. ②方法:构造似然函数)(L θ=12)(,,,;n L x x x θ(似然函数体现了样本12(,,,)n X X X 出现的概率大小),求似然函数L 的最大值点,即为θ的极大使然估计θ. ③步骤:第一步:写出似然函数)(L θ.如果连续型总体X 的密度函数为(;)f x θ,则1()(;)n i i L f x θθ==∏.如果离散型总体X 的分布律为(;)p x θ,则1()(;)ni i L p x θθ==∏. 第二步:取对数ln )(L θ,并令ln 0)(d d L θθ=,或ln 0)(i L θθ∂=∂,1,2,,i k =,建立方程(组).如果从中解得惟一驻点θˆ,则θˆ即为θ的最大似然估计; 第三步:如果上述方程无解,则通过单调性的讨论,在某边界点处,求出θ的最大似然估计量θˆ. ⒉估计量的评价标准⑴无偏性:如果E θθ=,就称θ为θ的无偏估计.主要结论有:①如果总体X 的数学期望EX 存在,则X 是μ的无偏估计,即E X μ=. ②如果总体X 的方差DX 存在,则2S 是2σ的无偏估计,即22()E S σ=.③设估计量12ˆˆˆ,,m θθθ均为θ的无偏估计,12,,,m c c c 为常数,且11mi i c ==∑,则1ˆmi i i c θ=∑仍为θ的无偏估计.注意:即使ˆθ为θ的无偏估计,而ˆ()g θ未必为...()g θ的无偏估计. ⑵(较)有效性:设21ˆ,ˆθθ均为θ的无偏估计,如果12ˆˆD D θθ<,就称1ˆθ比2ˆθ有效.⑶一致性(相合性):设ˆθ为θ的估计量,如果对任意的0ε>,均有ˆl i m {}1n P θθε→∞-<=,就称θˆ为θ的一致估计量或相合估计量. ⒊单正态总体2(,)N μσ中2,σμ的区间估计⑴2σ已知,μ的置信度1α-的置信区间为22X u X u αα⎛⎫-+ ⎝. ⑵2σ未知,求μ的置信度为1α-的置信区间为2(X t n α⎛⎫±- ⎝. ⑶2σ的置信度为1α-的置信区间为2222122(1)(1),(1)(1)n Sn S n n ααχχ-⎛⎫-- ⎪ ⎪-- ⎪⎝⎭. 六、假设检验⒈假设检验的有关概念了解假设检验的背景,假设的提法,假设检验中的反证法思想,假设检验的基本原理,显著性检验,双侧检验和单侧检验等相关内容.⒉假设检验的两类错误⒊假设检验的四个步骤⑴根据给定的问题,建立假设检验问题01(,)H H . ⑵根据检验问题01(,)H H 及条件,选择检验统计量12(,,,)n g X X X .当0H 为成立时,确定该统计量12(,,,)n g X X X 的分布.⑶根据显著性水平α,确定临界值和原假设0H 的拒绝域W . ⑷通过样本值12(,,,)n x x x ,计算统计量12(,,,)n g X X X 的值12(,,,)n g x x x .若12(,,,)n g x x x W ∈,则拒绝0H ,否则接受0H .⒋单正态总体中均值和方差的假设检验。

概率论期末复习知识点

概率论期末复习知识点

概率论期末复习知识点第一章 随机事件与概率概率论期末复习知识点1.**事件的关系及运算(1) A B ⊂(或B A ⊃).(2) 和事件: A B ⋃; 12n A A A ⋃⋃⋃(简记为1ni i A =). (3) 积事件: AB , 12n A A A ⋂⋂⋂(简记为12n A A A 或1n i i A =).(4) 互不相容:若事件A 和B 不能同时发生,即AB φ=(5) 对立事件: A .(6) 差事件:若事件A 发生且事件B 不发生,记作A B -(或AB ) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.2. **古典概率的定义古典概型:()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数.几何概率()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·3.**概率的性质(1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,n A A A 两两互不相容,则有121()()n n i i P A A A P A =⋃⋃⋃=∑.(3)()1()P A P A =-.(4) 若事件A,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) ()1P A ≤.(6) (加法公式) 对于任意两个事件A,B,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,n A A A ,有111111()()()()(1)()n n n i i i j i j k n i i j n i j k n i P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑. 4.**条件概率与乘法公式()(|)()P AB P A B P B =.乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:()()()P AB P A P B =,事件A 与B 相互独立的充分必要条件二:(|)()P A B P A =.对于任意n 个事件1,2,,n A A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,n A A A 总满足11()()()k k i i i i P A A P A P A =, 则称事件1,2,,n A A A 相互独立.这里实际上包含了21n n --个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k n k -⎛⎫=-= ⎪⎝⎭, 7.**全概率公式与贝叶斯公式贝叶斯公式:如果事件1,2,,n A A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则 1()(|)(|),1,2,,()(|)k k k n i ii P A P B A P A B k nP A P B A ===∑.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布.1.**离散型随机变量及其分布律(),1,2,,,.i i p P X a i n ===分布律也可用下列表格形式表示:2.*概率函数的性质(1) 0i p ≥, 1,2,,,;i n =(2) 11i i p ∞==∑.3.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4)** 泊松分布()P λ,它的概率函数为()!i P X i e i λλ-==, 其中,0,1,2,,,i n =,0λ>..4.*二维离散型随机变量及联合概率二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ==== 其中,0,,1,2,,1ij ij i j p i j p≥==∑∑.5.*二维离散型随机变量的边缘概率设(,)X Y 为二维离散型随机变量,ij p 为其联合概率(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘分布律,记为i p 并有.(),1,2,i i ij j p P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘分布率,记为.j p ,并有.j p =(),1,2,j ij i P Y b p j ===∑.6.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为12p p p 则随机变量函数()X 的概率函数可由下表求得但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算.1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数()F x 的性质(1) 0()1;F x ≤≤(2) ()0,()1lim lim x x F x F x →-∞→+∞==; 由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率. 3.联合分布函数二维随机变量(,)X Y 的联合分布函数. 4.联合分布函数的性质(1) 0(,)1F x y ≤≤;(2) (,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==;(3) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+.5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<()()xF x f x dx -∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度.6.**概率密度()f x 及连续型随机变量的性质(1)()0;f x ≥(2)()1f x dx +∞-∞=⎰;(3)()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c,()0P X c ==;(5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()ba f x dx ⎰.7.**常用的连续型随机变量的分布(1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a ⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()2(),x f x x μσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为22(),xf x x -=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即22()t xx dt -Φ=⎰, 当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有 ()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xy F x y f s t dtds -∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度.9.**二维连续型随机变量及联合概率密度的性质(1) (,)0,,f x y x y ≥-∞<<+∞;(2) (,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;’(3) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(4) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)D P X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy +∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx +∞-∞=⎰.11.常用的二维连续型随机变量(1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212221121()()()()1(,)22(1)x x y x f x y μμμμρρσσσσ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为 221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布.12.**随机变量的相互独立性 .(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=. 第四章 随机变量的数字特征本章重点:随机变量的期望。

概率论与数理统计期末考试复习资料

概率论与数理统计期末考试复习资料
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn

m! (m n)!
C
n m

m! n!(m n)!
从 m 个人中挑出 n 个人进行排列的可能数。 从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加 法和乘 法原理
某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由 m 种方法完成,第二个步
率。分布函数F(x) 表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° 0 F(x) 1, x ;
2° F(x) 是单调不减的函数,即x1 x2 时,有 F(x1) F(x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
设F(x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意 实数x ,有
F (x) x f (x)dx ,
则称 X 为连续型随机变量。f (x) 称为 X 的概率密度函数或密度函 数,简称概率密度。 密度函数具有下面 4 个性质: 1° f (x) 0 。
2° f (x)dx 1。
X
| x1, x2,, xk, 。
P( X xk) p1, p2,, pk,
显然分布律应满足下列条件:
(1) pk 0 ,k 1,2,, (2) pk 1。 k 1
(2)连 续型随 机变量 的分布 密度

概率论期末考试题型、知识点和公式复习

概率论期末考试题型、知识点和公式复习

概率论期末复习知识点第一章(A 卷 20 分, B 卷 22 分) 2. 二维连续型随机向量的联合概率密度、性质1. 事件的表式及其应用2. 事件的关系与运算3. 二维连续型随机向量的分布函数3. 概率性质及其应用4. 均匀分布4. 古典概型5. 二维正态分布5. 条件概率6. 边缘概率密度6. 全概率公式7. 随机变量的独立性7. 贝叶斯公式8. 二维随机向量的相关概率计算:O联合概率密度8. 事件的独立性重点重点:条件概率,全概率公式,贝叶斯公式O边缘概率密度第二章(A 卷 22 分, B 卷 20 分)O随机变量的独立性1. 离散型随机变量的概率分布第四章(A 卷 21 分, B 卷 26 分)2. 两点分布 1. 离散型随机变量的期望3. 二项分布 2. 连续型随机变量的期望4. 泊松分布 3. 随机变量函数的期望5. 概率密度函数及其性质 4. 方差6. 连续型随机变量的分布函数 5. 方差的性质7. 均匀分布 6. 协方差、协方差的性质8. 指数分布7. 相关系数O数学期望(随机变量及函数的数学期望)9. 标准正态分布、正态分布重点:O方差(离散型随机变量的方差)10. 随机变量相关的概率计算11. 离散型随机变量函数的概率分布O协方差和相关系数重点:O正态分布,二项分布第五章(A 卷 14 分, B 卷 12 分)O离散型随机变量及函数的概率分布1. 雪比切夫不等式的应用第三章(A卷23分,B卷20分)1. 离散型随机向量联合概率分布及分布函数2. 棣莫弗——拉普拉斯中心极限定理的应用重点:棣莫弗 ----- 拉普拉斯中心极限定理概率论期末公式复习对偶律:厂B AB , AB A B ; 概率的性质 1. P (? )=0;2. A,A,…,A n 两两互斥时: RAU AU …U A)= P (A)+…+P (A),3. P(A) 1P(A)( A 是 A 不发生)(D)4. 若 AB 则有:P (A ) w P( B ), P (AB = P (A ),RBA )=RB- RA> , RAU E )= R E ).5.P(A B) P(A) P(B) P(AB)(D), P ( B A )=P ( B )- P (AB )。

概率论与数理统计期末考试考点总结

概率论与数理统计期末考试考点总结

概率论与数理统计期末考点总结
第一章
事件的运算;概率的性质;古典概型(不包括难题);条件概率;乘法公式;全概率公式;贝叶斯公式;事件独立性。

(第一章的内容是全书的基础,必须熟练掌握)
第二章、第三章
一、二维随机变量的定义;一维分布函数、密度函数、分布列;二维联合分布和边际分布所对应的分布函数、密度函数(以上内容知道即可)
随机变量的独立性(条件分布不考)
常见分布:二项分布、泊松分布、几何分布、正态分布、均匀分布、指数分布;一元、二元函数的分布。

(以上内容要求掌握)
第四章
期望、方差的定义与性质(要求熟练掌握);
函数的期望(掌握即可);
斜方差与相关系数(了解即可);
第五章
本章不考。

第六章
总体、样本的统计量(知道即可);
三种常用统计量分布的定义与性质;抽样分布定理(掌握)
第七章
矩估计、极大自然数分布两种方法(熟练掌握)
第八章
区间估计(单总体);假设检验(双侧)
(双总体和单侧不考)。

概率论与数理统计期末复习重要知识点及公式整理讲解

概率论与数理统计期末复习重要知识点及公式整理讲解

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论与数理统计期末复习提纲

概率论与数理统计期末复习提纲

推论: P( B A) P( B) P( AB ) 4) P( A) 1 5) P( A) 1 P( A ) 6) P( A B) P( A) P( B) P( AB)
第二章 一维随机变量及其分布

一维随机变量


离散型随机变量
随机变量的分布函数 连续性随机变量 随机变量函数的分布
pij P{X xi , Y y j }, i, j 1, 2,
满足规范性条件 pij 1 ,则称 ( X , Y ) 为二维离散型
i , j 1
随机变量。
定义
设 ( X ,Y ) 为二维离散型随机变量,其所有可 能取值为 ( xi , yi )(i, j 1, 2,) ,则称 pij (i, j 1, 2,) 为 ( X , Y )的联合分布律。
3 x p ( x ) dx 1 ke dx 1 , 解:(1) , 0
ke 3 x , p( x ) 0,
x0
x 0,
1 3x k e 3
0
1,
k 3,

3e 3 x , p( x ) 0,

0
0
数学期望的性质
1. 设C是常数,则E(C)=C; 请注意: 2. 若k是常数,则E(kX)=kE(X); 由E(XY)=E(X)E(Y) 不一定能推出X,Y 3. E(X+Y) = E(X)+E(Y); 独立 n n 推广 : E[ X i ] EX i
i 1 i 1
4. 设X、Y 相互独立,则 E(XY)=E(X)E(Y);
0 1
0 1
x
1 2 x 2x 1 2

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

概率论期末试题及解析答案

概率论期末试题及解析答案

概率论期末试题及解析答案1. 简答题(每题10分)1.1 什么是概率?概率是描述随机事件发生可能性的数值。

它可以用来衡量某一事件在多次重复试验中出现的频率。

1.2 什么是样本空间?样本空间是指一个随机试验中所有可能结果的集合。

1.3 什么是事件?事件是样本空间中包含的一组可能结果的子集。

1.4 什么是互斥事件?互斥事件是指两个事件不能同时发生。

1.5 什么是独立事件?独立事件是指两个事件的发生与不发生互不影响。

2. 计算题(每题20分)2.1 设一枚硬币抛掷3次,计算至少出现两次正面的概率。

解析:样本空间:{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}至少出现两次正面的事件:{HHH, HHT, HTH, THH}概率 = 事件发生的次数 / 样本空间的次数 = 4 / 8 = 1/22.2 设A、B两个事件相互独立,且P(A) = 0.4,P(B) = 0.6,计算P(A∪B)。

解析:由于A、B事件相互独立,所以P(A∩B) = P(A) * P(B) = 0.4 * 0.6 = 0.24P(A∪B) = P(A) + P(B) - P(A∩B) = 0.4 + 0.6 - 0.24 = 0.763. 应用题(每题30分)3.1 甲乙两个备胎分别拥有10个和15个备用轮胎,轮胎坏掉时甲用2个备用轮胎的概率为0.2,乙用3个备用轮胎的概率为0.15。

现在从甲、乙两个备胎中随机挑选一个备用轮胎,请计算此备用轮胎坏掉的概率。

解析:设事件A为甲备胎的备用轮胎坏掉,事件B为乙备胎的备用轮胎坏掉。

P(A) = 0.2 * 10 / (0.2 * 10 + 0.15 * 15) = 0.2 * 10 / (2 + 2.25) ≈ 0.6667 P(B) = 0.15 * 15 / (0.2 * 10 + 0.15 * 15) = 0.15 * 15 / (2 + 2.25) ≈0.3333由于只能选择甲或乙中的一个备用轮胎,所以备用轮胎坏掉的概率为P(A) + P(B) ≈ 13.2 水果篮子中有5个橙子、3个苹果和2个香蕉,现从篮子中随机挑选两个水果,请计算挑选出的两个水果中至少有一个是橙子的概率。

概率论题型基础知识点总结

概率论题型基础知识点总结

概率论题型基础知识点总结概率论题型基础知识点总结概率论是概率分析与运算的理论基础,常用于研究随机现象的规律。

掌握概率论的基础知识点对于理解概率问题的本质和解题过程至关重要。

本文将对概率论题型的基础知识点进行总结和归纳。

一、概念理解1. 随机现象:具有多种可能结果的现象,每种可能发生的结果称为随机事件。

2. 样本空间:随机现象所有可能结果的集合。

3. 随机事件:样本空间的子集,可以是一个结果,也可以有多个结果。

用大写字母表示,如A、B。

4. 必然事件:必然发生的事件,其对应的集合是样本空间的子集合。

5. 不可能事件:不可能发生的事件,其对应的集合是空集。

二、概率公式1. 相对频率定义:假设某一事件发生的频率稳定下来,那么事件发生的概率就等于这个事件发生的相对频率。

2. 等可能性定义:在所有可能结果等可能的情况下,某一事件发生的概率等于该事件包含的结果数与样本空间结果数的比值。

3. 事件的互斥与独立:若两个事件不可能同时发生,则称其为互斥事件;若两个事件的发生与否没有相互影响,则称其为独立事件。

4. 概率公式:已知随机事件A和B,有概率公式P(A) + P(A') = 1(A'为事件A的补事件);P(AUB) = P(A) + P(B) -P(AnB)(U为并集,n为交集)。

三、常见题型1. 组合问题:指定事件A、B、C的情况下,求A或B或C至少一个事件发生的概率。

解题思路:使用容斥原理,P(AuBuC) = P(A) + P(B) + P(C) - P(AnB) - P(AnC) - P(BnC) + P(AnBnC)。

2. 逆概率问题:已知概率P(A),求其对立事件A'的概率P(A')。

解题思路:P(A') = 1 - P(A)。

3. 条件概率问题:在已知事件B发生的条件下,求事件A发生的概率P(A|B)。

解题思路:P(A|B) = P(AnB) / P(B)。

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理2010-2011学年第一学期期末复习资料概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量XP{X x1}p,P{X x2}1p只有两个可能取值,且其分布为(0p1),则称X服从x1,x2处参数为p的两点分布。

两点分布的概率分布:两点分布的期望:(2)二项分布:P{X x1}p,P{X x2}1p(0p1) E(X)p;两点分布的方差:D(X)p(1p)若一个随机变量X的概率分布由式给出,则称X服从参数为n,p的二项分布。

记为X~b(n,p)(或B(n,p)).两点分布的概率分布:二项分布的期望:(3)泊松分布:P{x k}Cnp(1p)kkn kkkn k,k0,1,...,n. P{x k}Cnp(1p),k0,1,...,n. E(X)np;二项分布的方差:D(X)np(1p)kP{X k} e若一个随机变量X的概率分布为数为的泊松分布,记为X~P () k!,0,k0,1,2,...,则称X服从参P{X k} e泊松分布的概率分布:泊松分布的期望:4.连续型随机变量:kk!,0,k0,1,2,... E(X);泊松分布的方差:D(X)如果对随机变量X的分布函数F(x),存在非负可积函数F(x)P{X x}f(x),使得对于任意实数x,有xf(t)dt,则称X为连续型随机变量,称f(x)为X的概率密度函数,简称为概率密度函数。

2010-2011学年第一学期期末复习资料5.常用的连续型分布:(1)均匀分布:1,若连续型随机变量X的概率密度为f(x)b a 0,a x b其它,则称X在区间(a,b)上服从均匀分布,记为X~U(a,b)1,均匀分布的概率密度:f(x)b a0,a b2a xb 其它均匀分布的期望:(2)指数分布:E(X);均匀分布的方差:D(X)(b a)122e xf(x)0若连续型随机变量X的概率密度为x00,则称X服从参数为的指数分布,记为X~e ()x0e xf(x)0指数分布的概率密度:指数分布的期望:(3)正态分布:E(X)1;指数分布的方差:D(X)2f(x)(x)222x若连续型随机变量X的概率密度为则称X服从参数为和22的正态分布,记为X~N(,)(x)222f(x)正态分布的概率密度:正态分布的期望:E(X)xD(X)x22;正态分布的方差:(4)标准正态分布:0,21(x),2(x)xet22标准正态分布表的使用:(1)x0(x)1(x)2010-2011学年第一学期期末复习资料X~N(0,1)P{a x b}P{a x b}P{a x b}P{a x b}(b)(a)X~N(,),Y2(2)X(3)P{a X b}P{a~N(0,1),F(x)P{X x}P{X故b}(b)(a)x(x) Y2Y定理1:设X~N(,),则X~N(0,1)6.随机变量的分布函数:设X是一个随机变量,称分布函数的重要性质:0F(x) 1P{x1X x2}P{X x2}P{X x1}F(x2)F(x1)x1x2F(x1)F(x2)F()1,F()0F(x)P{X x}为X的分布函数。

概率论与数理统计期末考试题型

概率论与数理统计期末考试题型

概率论与数理统计总共八道大题,题型如下:1.掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式(1)已知,5.0)(,4.0)(,3.0)(===B A P B P A P 求:P(AB); P(A U B);)|(B A B P U .(2)事件A 与B 相互独立,且P(A)=0.5,P(B)=0.6,求:P(AB),P(A -B),P(A U B)解:P(AB)= P(A)P(B)=0.3,P(A -B)= P(A)-P(AB)=0.2,P(A U B)= P(A)+P(B)-P(AB)=0.8(3)若P(A)=0.4,P(B)=0.7,P(AB)=0.3,求: P(A -B),P(A U B),)|(B A P ,)|(B A P ,)|(B A P解:P(A -B)=0.1,P(A B)=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,)|(B A P =)(1)()()(B P B A P B P B A P -=U =2/3 2.古典概型,(1)今有甲乙两盒乒乓球,各装10只,已知甲盒中有7只新的,乙盒中有6只新的,现从甲乙两盒中各取一只。

试求:1、取到两只都是新球的概率;2、取到2只都是旧球的概率;3、取到2球是一新一旧的概率。

(2)书12页例1.63.能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。

(1)设某仓库有一批产品,已知其中15%、80%、5%依次是甲、乙、丙厂生产的,且甲、乙、丙厂生产的次品率分别为0.02, 0.01, 0.03. 求 ①现从这批产品中任取一件,求取到次品的概率?②若从这批产品中取出一件产品,发现是次品,问这件产品由哪个厂家生产的可能性最大? (2) 4.一维连续已知X 的概率密度为⎩⎨⎧<<+=其它010)21()(x x A x f ,求: (1)常数A ; (2)}22.0{<<X P ; (3)分布函数F (x ); (4)数学期望E (X ); (5)方差D (X )5.二维离散设随机变量(X ,Y )的联合分布律为YX1 2 0 0.2 0.2 0.1 10.10.10.3(1)求边缘分布律P (X =k ) k =0,1 和P (Y =k ) k =0,1,2(2)求条件分布律P (X =k |Y =2) k =0,1和P (Y =k |X =1) k =0,1,2(3)求期望E (X ),E (Y ) (4)求方差D (X ),D (Y ) (5)求协方差 cov(X ,Y )6.会用中心极限定理解题(1)某计算机系统有120个终端, 每个终端有5%时间在使用, 若各个终端使用与否是相互独立的, 试求有10个或更多终端在使用的概率.Φ(1.67)=0.9525, Φ(1.68)=0.9535(2)每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.7.统计量的判断,掌握无偏性与有效性的判断方法(1)设321,,X X X 是总体),(~2σμN X 的一个样本,其中μ,0>σ未知,则以下的函数: 1. 321X X X ++; 2. μ33+X ; 3. 1X ; 4. 22X μ; 5.321ii Xσ=∑; 6. }max{i X ; 7. 3X +σ 中哪些为统计量?为什么?(2)设321,,X X X 是来自总体X 的一个样本,且,,2σμ==DX EX 则在估计量32112110351ˆX X X ++=μ;32121254131ˆX X X ++=μ; 32131214331ˆX X X ++=μ;3214313131ˆX X X ++=μ中,指出μ的无偏估计量,求出其中方差最小的估计量.(3)设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计,并求出方差,比较哪个更有效。

概率论与数理统计期末复习20题及解答

概率论与数理统计期末复习20题及解答

概率论与数理统计期末复习20题及解答【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(1)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E .11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x 求:(1)常数A ;(2))(X E 和)(X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相关系数),(Y X R .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t XX X X X k T +++=.16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P .【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量.18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值.(1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).解答部分【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.【解】设A 表示“从甲袋移往乙袋的是白球”,B 表示“从乙袋返还甲袋的是黑球”,C 表示“经此换球过程后甲袋中黑球数增加”,则AB C =, 又2163)(,74)(===A B P A P ,于是由概率乘法定理得所求概率为 )()(AB P C P =)()(A B P A P ==722174=⋅.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.【解】 设i A 表示“此人第i 次拨号能拨通所需电话” )2,1(=i ,A 表示“此人拨号不超过两次而接通所需电话”,则211A A A A +=,由概率加法定理与乘法定理得所求概率为)()()()(211211A A P A P A A A P A P +=+=)()()(1211A A P A P A P +=2.091109101=⋅+=.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.【解】设:1A 输入的是“101”,:2A 输入的是“010”,:B 输出的是“000”,则2/1)(1=A P ,2/1)(2=A P ,αα21)1()(-=A B P ,)1()(22αα-=A B P ,从而由全概率公式得)()()()()(2211A B P A P A B P A P B P +=)1(21)1(2122αααα-+-=)1(21αα-=.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【解】设A 表示“该考生会解这道题”,B 表示“该考生选出正确答案”,则85.0)(=A P ,2.0)(=A P ,1)(=A B P ,25.0)(=A B P .(1)由全概率公式得)()()()()(A B P A P A B P A P B P +=25.02.0185.0⨯+⨯=9.0=.(2)由贝叶斯公式得944.018179.0185.0)()()()(≈=⨯==B P A B P A P B A P .【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.【解】(1)由分布函数的性质可知0)2()(lim )(=-⋅+==-∞-∞→πB A x F F x ,12)(lim )(=⋅+==+∞+∞→πB A x F F x ,由此解得 π1,21==B A . (2)X 的分布函数为)(arctan 121)(+∞<<-∞+=x x x F π, 于是所求概率为21))1arctan(121()1arctan 121()1()1()11(=-+-+=--=<<-ππF F X P .(3)X 的概率密度为)1(1)()(2x x F x f +='=π.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .【解】(1)由概率密度的性质可知⎰∞+∞-dx x f )(121===⎰aaxdx , 由此得2=a .(2) )5.15.0(<<X P 75.000212/122/3112/1=+=+=⎰⎰x dx xdx .(3)当0<x 时,有00)(==⎰∞-xdx x F ;当10<≤x 时,有20020)(x xdx dx x F x=+=⎰⎰∞-;当1≥x 时,有1020)(1100=++=⎰⎰⎰∞-xdx xdx dx x F .所以,X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2x x x x x F7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.【解】(1)由联合概率密度的性质可知=⎰⎰+∞∞-+∞∞-dxdy y x f ),(14)1(1111==+⎰⎰--A dy xy A dx ,由此得41=A . (2)当11<<-x 时,有=)(x f X =⎰+∞∞-dy y x f ),(214111=+⎰-dy xy ; 当1-≤x 或1≥x 时,显然有0)(=x f X .所以X 的边缘概率密度⎩⎨⎧<<-=.,0;11,2/1)(其它x x f X(3))(2X Y P ≤⎰⎰≤=2),(x y dxdy y x f dy xy dx x ⎰⎰--+=211141dx x x x )1221(412511+-+=⎰-32=.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.【解】(1)当10<<x 时,有x dy dy y x f x f xX 2),()(20⎰⎰===+∞∞-;当0≤x 或1≥x 时,显然有0)(=x f X .于是X 的边缘概率密度为⎩⎨⎧<<=.,0;10,2)(其它x x x f X 当20<<y 时,有⎰⎰-===+∞∞-1221),()(y Y ydx dx y x f y f ; 当0≤y 或2≥y 时,显然有0)(=y f Y .于是Y 的边缘概率密度为⎪⎩⎪⎨⎧<<-=.,0;20,21)(其它y y y f Y(2)⎰⎰⎰⎰===≤≤∞-∞2/12/102/11-41),()}1,21{(y dx dy dx y x f dy Y X P .(3)容易验证)()(),(y f x f y x f Y X ≠,故X 与Y 不独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(2)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【解】(1)由题意知,X 的概率密度函数为⎩⎨⎧<<=.,0;2.00,5)(其它x x f X因为X 和Y 相互独立,故X 和Y 的联合概率密度⎩⎨⎧><<==-.,0;0,2.00,25)()(),(5其它y x e y f x f y x f y Y X(2)12.005052.00)1(525),()(---≤=-===≤⎰⎰⎰⎰⎰e dx e dy e dx dxdy y x f X Y P x x y xy .【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E . 【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(12)2(])[(2110=+=-++-⎰⎰ba dx x a dxb x b a ; 又dx x xf X E ⎰∞+∞-=)()(.216)2(])[(2110=+=-++-=⎰⎰b a dx x x a xdx b x b a联立方程组⎪⎩⎪⎨⎧=+=+,216,12b a b a 解得41=a ,23=b . (2) 由数学期望的性质,有432123)(2)32(=+⋅=+=+X E X E . 11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x求:(1)常数A ;(2))(X E 和)(X D .【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(122==⎰∞+-Adx Ae x , 由此得2=A .(2)由数学期望公式得⎰⎰∞++∞-=-=⋅=0022212)(dt te dx ex X E t tx x21)2(Γ21==. 由于⎰∞+-⋅=02222)(dx ex X E xdt e t t tx ⎰+∞-==0224121!241)3(Γ41=⋅==,故利用方差计算公式得41)21(21)]([)()(222=-=-=X E X E X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相 关系数),(Y X R .【解】 由),(Y X 的联合概率分布知Y X ,服从"10"-分布:4/1)0(==X P ,4/3)1(==X P , 2/1)0(==Y P ,2/1)1(==Y P ,由"10"-分布的期望与方差公式得16/3)4/11(4/3)(,4/3)(=-⨯==X D X E , 4/1)2/11(2/1)(,2/1)(=-⨯==Y D Y E ,由),(Y X 的联合概率分布知2/14/1114/1010104/100)(=⨯⨯+⨯⨯+⨯⨯+⨯⨯=XY E ,从而8/12/14/32/1)()()(),cov(=⨯-=-=Y E X E XY E Y X ,=),(Y X R 334/116/38/1)()(),cov(==Y D X D Y X .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]【解】 由题意,可设X 近似服从正态分布),75(2σN .已知%3.2)95(=≥X P ,即%3.2)20(1)7595(1)95(1)95(=-=--=<-=≥σΦσΦX P X P ,由此得977.0)20(=σΦ,于是220≈σ,10≈σ,从而近似有)10,75(~2N X .(1)0668.09332.01)5.1(1)5.1()107560()60(=-≈-=-=-=<ΦΦΦX P , 由此可知,本次考试的不及格率约为%68.6.(2))107565()107585()8565(---=≤≤ΦΦX P 6826.018413.021)1(2)1()1(=-⨯≈-=--=ΦΦΦ,由此可知,成绩在65分至85分之间的考生人数约占考生总数的%26.68.14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【解】 设X Y Z -=,由X 与Y 的独立性及独立正态变量的线性组合的性质可知,)4.03.0,5052(~22+--=N X Y Z , 即)5.0,2(~2N Z .于是所求概率为)2()2()5.021()5.023()31(--=---=≤≤ΦΦΦΦZ P .9544.019772.021)2(2=-⨯≈-=Φ【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t X X X X X k T +++=.【解】 由)1,0(~N X 知)5,0(~221N X X +,于是)1,0(~5221N X X +,又由2χ分布的定义知)3(~2252423χX X X ++,所以)3(~2533/)(5/)2(2524232125242321t X X X X X X X X X X T +++⋅=+++=,比较可得53=k .16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P . 【解】 由题设40=μ,5=σ,64=n ,于是)1,0(~8540N X nX u -=-=σμ从而)58|8/540(|)1|40(|<-=<-X P X P .8904.019452.021)6.1(2)58|(|=-⨯≈-=<=Φu P【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量. 【解】(1)21)2(),()(02)2(2+=+===-+∞=---+∞+∞∞-⎰⎰⎰λλλλλλdt e t dx ex dx x xf X E t tx x ,令)(X E X =,即21+=λX ,解得参数λ的矩估计量为21-=∧X λ. (2)样本似然函数为∑====--=--=∏∏ni i i n x nni x n i i eex f L 1)2(1)2(1),()(λλλλλλ,上式两边取对数得∑--==ni i n X n L 1)2(ln )(ln λλλ,上式两边对λ求导并令导数为零得=λλd L d )(ln 0)2(1=∑--=n i i n x nλ, 解得2121-=∑-==x nx nni i λ,从而参数λ的最大似然估计量为 21-=∧X λ. 18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值. (1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由. 【解】(1)样本似然函数为,e1e1),()(1121211∏∏∏=-=-=∑⋅====n i x inni x i n i i ni iixx x f L λλλλλλ上式两边取对数得∑∑==-+-=ni i ni i x x n L 111ln ln 2)(ln λλλ, 求导数得∑=+-=ni i x n L d d 1212)(ln λλλλ, 令0)(ln =λλL d d解得2211x x n n i i==∑=λ,于是参数λ的极大似然估计量为 221ˆ1X X n n i i ==∑=λ. (2)dx x X E x λλ/202e 1)(-+∞⎰=dx x x λλ/20e )(-+∞⎰=dx t t t x -∞+=⎰=e 02λλλΓλ2)3(==, λλλ=⋅====221)(21)(21)2()ˆ(X E X E X E E , 于是221ˆ1X X n ni i ==∑=λ是λ的无偏估计.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?【解】由题意,待检验的假设为0H : 618.00==μμ; 1H : 618.0≠μ.因为σ未知,所以检验统计量为)24(~)618.0(525/618.0/0t S X S X n S X t -=-=-=μ, 关于0H 的拒绝域为 06.2)24()1(||025.02/==->t n t t α. 现在646.0=x ,093.0=s ,所以统计量t 的观测值为505.1093.0)618.0646.0(5=-=t . 因为)24(06.2505.1||025.0t t =<=,即t 的观测值不在拒绝域内,从而接受..原假设,即可以认为这批产品是合格品.20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).【解】由题意,待检验的假设为0H : 220==μμ; 1H : 22<μ.因为σ未知,所以取统计量)15(~)22(4/0t S X nS X t -=-=μ, 且关于0H 的拒绝域为 753.1)15()1(05.0-=-=--<t n t t α. 现在5.19=x ,2.5=s ,所以统计量t 的观测值为923.12.5)225.19(4-≈-=t . 因为)15(753.1923.105.0t t -=-<-≈,即t 的观测值在拒绝域内,从而拒绝..原假设,即认为这次试验支持“新的替代药品比原药品副作用小”这一结论.。

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

概率论与数理统计期末复习知识点

概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n

Ai Ai
Ai Ai
i 1

概率论期末复习重点

概率论期末复习重点

概率论期末总复习第一章 随机事件 1、 事件的关系与运算 2、 古典概率3、 条件概率的概念与性质,乘法公式4、 事件的独立性5、主要公式(1)()()()()P A B P A P B P AB ⋃=+- (2))()()(AB P A P B A P -=- (3)()()1P A P A =- (4)()()()|P AB P B A P A =(5)()()()()()||P AB P A P B A P B P A B ==(6)n 重贝努利试验中,事件A 发生k 次的概率为 6、 主要例题:P10例1.3.3、例; 7、主要习题:P23习题、、、例1、已知8.0)(,5.0)(,3.0)(===B A P B P A P Y ,求(1)P(AB);(2)P (A -B );(3))(____B A P 解:(1)由)()()()(AB P B P A P B A P -+=Y得()()()()P AB P A P B P A B =+-⋃ (2)3.003.0)()()(=-=-=-AB P A P B A P(3)2.08.01)(1)()(___________=-=-==B A P B A P B A P Y Y 第二章随机变量 1、离散型分布列()i i P X x P ==,i =1,2,……(1)0≥iP (2)11=∑∞=i i P2、分布函数)()(x X P x F ≤=3、连续型概率密度函数)(x f (1)0)(≥x f (2)()1f x dx ∞-∞=⎰ (3)⎰-==≤<b a a F b F dx x f b X a P )()()()((4))()('x F x f = 4、常用离散型(1)两点(0-1)分布E (x )=P ,D (x )=P (1-P ) (2)二项分布X ~B (n ,p ) E (x )=np ,D (x )=np (1-p ) (3)泊松分布X ~)(λP!)(K e K X P K λλ-==,K =0,1,2,……0>λE (x )=D (x )=λ 5、常用连续型 (1)均匀分布],[~b a U X (2)指数分布][~λE X (3)正态分布),(~2σu N X(4)标准正态分布X ~N (0,1) 6、重要例题:P39例2.3.3、; 7、重要习题:P48习题、、、、 例1、设随机变量X 的密度函数为求:(1)常数K ;(2)分布函数F (x )(3)P (<X<2)(4)E (x ),D (x )解:(1)⎰⎰∞∞-====101022|2)(1Kx K Kxdx dx x f ,K =2(2)⎰⎰∞-===≤xxdt dt t f x F x 000)()(0时, (3)43|2)()25.0(15.0215.025.0====<<⎰⎰x xdx dx x f X P (4)32|322)()(10310====⎰⎰∞∞-x xdx x dx x xf x E 第三章 多维随机变量 一、二维离散型随机变量(x,y ) 1、联合分布律()i i ij P X x y P ===,Y性质:(1)0≥ij P (2)111=∑∑∞-∞=j i ij P2、边缘分布11() ()i i ij j j ij j i P P X x P P P Y y P ∞∞⋅⋅========∑∑、()(),X f x f x y dy +∞-∞=⎰,()(),Y f x f x y dx +∞-∞=⎰3、独立性X 与Y 独立j i ij P P P ⋅⋅=⇔4、条件分布()()(),|i j ij i j jj P X x Y y P P X x Y y P P Y y ⋅=======二、重要例题:P53例3.2.1 三、重要习题:P79习题、、、、、 例1、设随机变量X 和Y 的分布律为问(1)βα,为何值时,X 与Y 独立?(2)()(),E X E Y (3)()1|1P X Y == 解:(x ,y )的边缘分布如上表,由独立特性得 第四章随机变量的数字特征 一、数学期望(1)1 ()() i i i x P E X xf x dx ∞=∞∞⎧⎪=⎨⎪⎩∑⎰-离散连续(2)设Y =g (x ),则1()()()()i ii g x P E Y g x f x dx ∞=∞-∞⎧⎪=⎨⎪⎩∑⎰(3)性质:E (C )=C ,E (ax+b )=aE (x )+b 二、方差(1)2()[()]D X E X E X =-(2)简化公式:22()()(())D X E X E X =- (3)性质:D (C )=0,2()()D aX b a D X += 三、重要例题:P89例4.1.7;P94例; 四、重要习题:P104习题、、 1、设总体X 的概率密度为()10xe f x θθ-⎧⎪=⎨⎪⎩00<≥x x (0θ>,未知),n X X X ,,,21Λ是来自总体X 的样本,求未知参数θ的极大似然估计量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论期末复习知识点第一章(A 卷20分,B 卷22分) 1. 事件的表式2. 事件的关系与运算3. 概率性质及其应用4. 古典概型5. 条件概率6. 全概率公式7. 贝叶斯公式8. 事件的独立性 重点:条件概率,全概率公式,贝叶斯公式 第二章(A 卷22分,B 卷20分) 1. 离散型随机变量的概率分布 2. 两点分布 3. 二项分布 4. 泊松分布5. 概率密度函数及其性质6. 连续型随机变量的分布函数7. 均匀分布8. 指数分布9. 标准正态分布、正态分布 10. 随机变量相关的概率计算11. 离散型随机变量函数的概率分布重点:○1正态分布,二项分布 ○2离散型随机变量及函数的概率分布 第三章(A 卷23分,B 卷20分)1. 离散型随机向量联合概率分布及分布函数2. 二维连续型随机向量的联合概率密度、性质及其应用3. 二维连续型随机向量的分布函数4. 均匀分布5. 二维正态分布6. 边缘概率密度7. 随机变量的独立性8. 二维随机向量的相关概率计算重点:○1联合概率密度 ○2边缘概率密度 ○3随机变量的独立性 第四章(A 卷21分,B 卷26分) 1. 离散型随机变量的期望 2. 连续型随机变量的期望 3. 随机变量函数的期望 4. 方差5. 方差的性质6. 协方差、协方差的性质7. 相关系数重点:○1数学期望(随机变量及函数的数学期望) ○2方差(离散型随机变量的方差) ○3协方差和相关系数第五章(A 卷14分,B 卷12分) 1. 雪比切夫不等式的应用2. 棣莫弗——拉普拉斯中心极限定理的应用重点:棣莫弗——拉普拉斯中心极限定理概率论期末公式复习对偶律: ,B A B A = ; B A AB = 概率的性质 1. P (Ø)=0;2. A 1,A 2,…, A n 两两互斥时:P (A 1∪A 2∪…∪A n )=P (A 1)+…+P (A n ),3.)(1)(A P A P -=(A 是 A 不发生)(D )4.若A ⊂B , 则有: P (A )≤ P(B ),P (AB ) = P (A ),P (B -A )=P (B )-P (A ),P (A ∪B )=P (B ).5.)()()()(AB P B P A P B A P -+=⋃(D ), P (B -A )=P (B )-P (AB )。

古典概率模型中,事件A 的概率基本事件总数中包含基本事件数A A P =)(从n 件商品中取出k 商品,共有)!(!!k n k n C kn -=[即⎪⎪⎭⎫ ⎝⎛k n ]种取法[12)1(!⋅⋅⋅-⋅= n n n ]。

D 1- P (B )>0,称下式为事件B 发生条件下,事件A 的条件概率, )()()|(B P AB P B A P =乘法公式:若P (B )>0,则 P (AB )=P (B )P (A |B ) ;若P (A )>0,则P (AB )=P (A )P (B |A )。

设A 1, A 2,…,A n 是两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0, i =1, 2,…, n ; 另有一事件B , 它总是与A 1, A 2,…, A n 之一同时发生,则全概率公式:∑==ni i i A B P A P B P 1)()()(|贝叶斯公式:. ,,2 ,1 , )()()()()|(1n i A B P A P A B P A P B A P nj j j i i i ==∑=||(D 1) 定义:称 A , B 独立,如果P (AB )= P (A )P (B )(D )。

定理. 若事件A , B 独立相互独立,则A 与B 、A 与B 、A 与B 也相互独立。

随机变量 X 的分布函数:F (x )= P (X ≤x ), -∞< x <∞。

性质:P (a 1<X ≤b 1)=F (b 1)-F (a 1).D 2- 定义 :设离散型随机变量 X 所有可能取的值为,,,21 x x 且有。

,2,1,)( ===k p x X P k k 则称p 1 , p 2, …为离散型随机变量 X 的概率分布或分布律。

其中 p 1 , p 2, …满足;,2,1 ,0)1( =≥k p k.1(2))n(1i =∑∞=k p离散型随机变量的分布函数(累计频率): ==≤=∑≤xx k k p x X P x F )()(⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<≤<+∞x x x x x x x x x x p p p n )(322112111)()(1--=k k k x F x F p ,;,2,1 =kk k n k p x X E )(1)(∞=∑=,kk n k p x X E 2)(12)(∞=∑=,22)]([)()(X E X E X D -=(D 2)。

D 3- X ~ B (n , p )-参数为(n , p )的二项分布:用X 表示 n 重贝努里试验中事件A 发生的次数,则:n k p p C k X P k n k kn , ,1 ,0 ,)1()( =-==-(D 3). np X E =)(,)1()(p np X D -=.X ~P (λ)-参数为λ的泊松分布:. ,2 ,1 ,0 ,!)();( ====-k k ek X P k p kλλλ其中λ>0 是常数,λ=)(X E ,λ=)(X D 。

X 为连续型随机变量:有密度函数 0)(≥x f 使: , )()(1111⎰=≤<b a dx x f b X a P设其它bx a x h x f <≤⎩⎨⎧=0)()( ,密度函数的性质: 1 )(⎰∞∞-=dx x f 1 )(⎰=b a dx x h 或(D ) 分布函数=≤=)()(x X P x F x b b x a a x dt t h xa ≤<≤<⎪⎩⎪⎨⎧⎰1)(0(常用到的不定积分公式:vdu uv udv x arctg x dx x xdx e dx e k x dx x x xk k⎰-=⎰=+⎰-=⎰-=⎰+=⎰--+,1,cos sin ,,1221αααααα等). 在 f (x )的连续点,有:. )()(x f x F ='⎰=badx x h x X E , )()(⎰=badx x h x X E , )()(2222)]([)()(X E X E X D -=D 4- ),(~2σμN X :参数为常数μ和σ>0的正态分布:密度函数为∞<<∞-=--x ex f x ,21)(222)(σμσπ,μ=)(X E ,2)(σ=X D 。

标准正态分布,记作)1,0(~N X ,0)(=X E ,1)(=X D :).( d 21)( 21)(2/2/22可查表得出分布函数:,,密度函数:t e x x e x x t x ⎰∞---=Φ∞<<∞-=ππϕ ,,若) (~ 2σμN X )1,0(~N X σμ-,}{11b X a P <<. 11⎪⎭⎫ ⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=σμσμa b }{1b X P <.1⎪⎭⎫⎝⎛-Φ=σμb )(1)( 0 x x x Φ-=-Φ>时,当(D 4) X ~U(a , b )-均匀分布,密度函数:⎪⎩⎪⎨⎧≤≤-=.,0, ,1)(其他b x a ab x f 2/)()(b a X E +=,12/)()(2a b X D -=. X ~E(λ)-参数为λ的指数分布, 密度函数:0)( .0 , 0 , 0 , )(>⎩⎨⎧<≥=-λλλx x e x f x ,λ/1)(=X E ,2/1)(λ=X D .X 1,X 2独立,.2,1),,(~2=i N X i i i σμ a X 1+b X 2+c ~N (a μ1+b μ2+c ,a 2σ12+b 2σ22) E (aX +b )= a E (X )+b ,D (aX +b )= a 2D (X ),E (aX +bY +c )= a E (X )+ b E (X )+c , X ,Y 独立,D (aX +bY +c )= a 2D (X )+b 2D (X ). 二维离散型随机变量(X ,Y ): p ij ),(j i y Y x X P ===≥0,1)(1)(1=∑∑∞=∞=ij m i n j p ,ij n j i p p )(1∞=⋅∑=,ij m i j p p )(1∞=⋅∑=, 分布函数=),(y x F ij y Y x X p ji ≤≤∑∑,2,1.,2,1,===⋅⋅j i p p p j i ij 独立:。

ijj i m i n j p y x g Z E Y X g Z ),()(),,()(1)(1∞=∞=∑∑== ),()()()()(,,,,,2222Y E X E XY E Y E X E Y X XY Y X Z ,,,,可计算:时=)()()(),(Y E X E XY E Y X Cov -=等。

独立→不相关:0),(=Y X Cov ,或)()()(Y E X E XY E =。

二维连续型随机变量(X ,Y )密度函数),(),(),(⎩⎨⎧∈=其它D y x y x h y x f [均匀分布时,d y x h 1),(=,d 为D 的面积], D 是矩形(含正方形)、全部区域、三角形(含大三角形)、圆盘、直线与抛物线所围区域等。

D 5- )),((),(),(),(1)()()()(2121dx y x h dy dy y x h dx dxdy y x h dxdy y x f y y dc x x b a Dϕϕψψ⎰⎰=⎰⎰=⎰⎰=⎰⎰=+∞∞-+∞∞-或 (a 是区域D 左边界的最小值,b 是区域D 右边界的最大值,ψ1(x )是区域D 的下边界函数,ψ2(x )是区域D 的上边界函数;c 是区域D 下边界的最小值,d 是区域D 上边界的最大值,φ1(x )是区域D 的左边界函数,φ2(x )是区域D 的右边界函数)。

=⎰⎰=⎰⎰=∈⋂dxdy y x h dxdy y x f S Y X P SD S),(),(]),[(( D ∩S 是矩形、三角形等)⎩⎨⎧><≤≤⎰=⎰=∞+∞-b x a x b x a dy y x h dy y x f x f x x x 或0),(),()()()(21ψψ, ⎩⎨⎧><≤≤⎰=⎰=∞+∞-d y c y d y c dx y x h dx y x f y f y y y 或0),(),()()()(21ϕϕ (X ,Y )独立: )()(),(y f x f y x f y x =(D 5))),(),((),(),(),(),(),(),()(),,()()()()(62121dx y x h y x g dy dy y x h y x g dx dxdyy x h y x g dxdy y x f y x g Z E Y X g Z D y y d cx x baDϕϕψψ⎰⎰=⎰⎰=⎰⎰=⎰⎰==-+∞∞-+∞∞-或).()()()()(,,,,,2222Y E X E XY E Y E X E Y X XY Y X Z ,,,,可计算:时= )()()(),(Y E X E XY E Y X Cov -=,)()(/),(Y D X D Y X Cov xy =ρ(D 6).),(2)()()(Y X Cov Y D X D Y X D ++=+.22)]([)()(X E X E X D -=,22)]([)()(Y E Y E Y D -=. 独立→不相关:0),(=Y X Cov ,或)()()(Y E X E XY E =。

相关文档
最新文档