数字图像处理2数字图像基础-4,5,6

合集下载

数字图像处理(第二版)章 (2)

数字图像处理(第二版)章 (2)
(4) 噪声。数字化设备的噪声水平也是一个重要的性能参 数。例如,数字化一幅灰度值恒定的图像,虽然输入亮度是一 个常量,但是数字化设备中的固有噪声却会使图像的灰度发生 变化。因此,数字化设备所产生的噪声是图像质量下降的根源 之一,应当使噪声小于图像内的反差点(即对比度)。
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)

《数字图像处理基础》PPT课件

《数字图像处理基础》PPT课件

14
精选ppt
根据阈值将图像二值化,将物体和背景置为黑白两色。 对图像扫描一遍,灰度大于阈值的点置为 255,即白色; 小于等于阈值的点置为0,即为黑色。由于物体上有高 光,所以二值化后,在黑色物体上会有小白点,如图所 示。为了使形心计算的结果准确,我们必须将这些小白 点填充为黑色。
15
精选ppt
2021年1月13日
9
精选ppt
图像处理系统一般使用256级灰度图像,即 8 位黑白图像,其1个
像素由 1个字节描述。0表示黑色,255为白色;其它中间灰度见图
2。一个立方形物体的照片如图1所示。通过图像采集卡后,其像
素矩阵如表1所示。
10
精选ppt
需要强调的是:
在计算机中,图像被分割成像素(Pixel),各像素的灰 度值用整数表示。一幅M×N个像素的数字图像,其像 素灰度值可以用M行、N列的矩阵G表示:
图像理解:
研究图像中各目标的性质和其相互关系,理解图像的含义。 自动驾驶、医学图像和地貌图像的自动判读理解等。
4
精选ppt
图像处理、图像分析和图像理解的关系:
5
精选ppt
数字图像处理系统
数字图像处理系统硬件
早期的数字图像处理系统为了提高处理速度、增加容量都 采用大型机。随着计算机性价比(性能价格比)日新月异的提 高,以小型机为主的微型图像处理系统得到发展。主机为PC机, 配以图像采集卡及显示设备就构成了最基本的微型图像处理系 统。微型图像处理系统成本低、应用灵活、便于推广。特别是 微型计算机的性能逐年提高,使得微型图像处理系统的性能也 不断升级,加之软件配置丰富,使其更具实用意义。
通过比较T和Sij的相似性,完成模板匹配过程。
26

数字图像处理基础知识

数字图像处理基础知识

处 ―量化处理:将f 映射到Z的处理;

基 ―Z的最大取值,确定像素的灰度级数Q= 2b,
础 如256。


第 二 章



Zi+1

处Z

基 Zi-1


Qi+1
黑 色


Q





Qi-1


255
0
254
1
128
128
1
254
0
255
知 连续的 识 灰度值
量化值 (整数值)
从白到黑的 连续变化

M



N



数 取样点的选取
字 图
假定一幅图像取M N个样点
像 1) M,N一般为2的整数次幂;
处 理
2) M,N可以相等,也可以不等;
基 础
3) 对于M,N数值大小确实定:

M N大到满足采样定理,重建图像就不会
识 产生失真。
第 二 章
数 采样定理

图 像
如果信号所含的最高频率成份为fN,
础 – 实验结论
知 识
• 随着采样分辨率和灰度级的提高,主观质量也提高 • 对有大量细节的图像,质量对灰度级需求相应降低
第 二 章 数 字 图 像 处 理 基 础 知 识


章 数 字
1. 灰度层次
• 灰度层次:表示灰度级的数量
图 图像数据的实际层次越多视觉效果就越好。

处 理
256个层次的图像

数字图像处理(冈萨雷斯)2数字图像处理基础PPT课件

数字图像处理(冈萨雷斯)2数字图像处理基础PPT课件
人眼对不同亮度的适应和鉴别能力
亮 暗 适应慢 暗 亮 适应快
55
(1)视觉适应性
2.1.3亮度适应和鉴别
✓亮度适应范围:1010量级(10-6mL(夜视域)~104mL(强闪光));
✓与整个适应范围相比,人眼在某一时刻能鉴别的亮度级别范围很 小(以该环境的平均亮度为中心的一个小的亮度范围);
✓亮度适应级(视觉系统当前的灵敏度级别):
Bit数为:
b=M×N×k
(2.4-4)
因此,存储一幅512×512 ,有256个灰度级(k=8)的图像
需要512×512×8=2097152(Bit) 或
512×512=256K(Byte)
32 32
2.4.3 空间和灰度分辨率
空间分辨率(spatial resolution)
图像中可分辨的最小细节,主要由采样间隔值决定
0<r(x,y)<1 平均反射系数(reflectance) r ( x ,y ) 0 — — 全 吸 收 r ( x ,y ) 1 — — 全 反 射
单色图像在任何坐标(x0,y0)处的强度为图像在该处的灰度 级 l=f(x0,y0),显然有 Lmin,l可L以ma规x 定灰度级范围为 [0,L-1]
2.1.3亮度适应和鉴别
✓当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以
察觉间变化,一般观察者可以辨别12到24级不同强度的变化.
图2.5 亮度辨 别特性的基本 实验
图2.6 作为强
韦伯定理说明:
度函数
的典型
✓人眼视觉系统对亮度的对比度 敏感而非对亮度本身敏感;
韦伯比
✓低照度,韦伯比高,亮度辨别能力差;高照度,韦伯比低, 亮度辨别能力强;

数字图像处理基础知识

数字图像处理基础知识

国际照明委员会(CIE)规定以 规定以700nm(红)、 国际照明委员会 规定以 红 、 546.1nm (绿)、435.8nm (蓝)三个色光为三基色。 三个色光为三基色。 绿 、 蓝 三个色光为三基色 又称为物理三基色。 又称为物理三基色。自然界的所有颜色都可以通 过选用这三基色按不同比例混合而成。 过选用这三基色按不同比例混合而成。 这三基色按不同比例混合而成 C = R(R) + G(G) + B(B)
反映了将图像信息进行离散化的程度, 反映了将图像信息进行离散化的程度,常用 灰度级来衡量
主观亮度
适应范围 夜视 昼视
-6
夜间阈值
-4
-2
0
2
4
光强的对数
人眼亮度感觉范围
总范围很宽( ① 总范围很宽( C = 108) 人眼适应某一环境亮度后, ② 人眼适应某一环境亮度后,范围限制 适当平均亮度下: 适当平均亮度下:C = 103 很低亮度下: 很低亮度下:C = 10
图象“ 图象“黑”/“白”(“亮”/“暗”)对比参 白 暗 数
眼睛中图像的形成
视网膜将图像反射在中央凹区域上, 视网膜将图像反射在中央凹区域上,由光接 收器的相应刺激作用产生感觉, 收器的相应刺激作用产生感觉,感觉把辐射 能转变为电脉冲, 能转变为电脉冲,最后由大脑进行解码
电信号 光信号 视觉细胞 视神经 视神经中枢 解码 图像
人眼视觉模型
每个图像由若干个像素点组成, 每个图像由若干个像素点组成,每个点均可看作一个 点光源,每个点光源就是一个冲激函数δ 点光源,每个点光源就是一个冲激函数δ(x,y)
任意一幅图像可以表示为: 任意一幅图像可以表示为:
人眼亮度感觉
闪光极限
人的视觉系统感觉到的亮度 (主观亮度 :是进入人眼的 主观亮度): 主观亮度 光强对数函数 人眼亮度感觉范围: 人眼亮度感觉范围:通过光 强对数衡量,一般为3-10 强对数衡量,一般为 人眼的亮度适应级: 人眼的亮度适应级:视觉系 统当前对光强的灵敏度级别

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理

数字图像处理

第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。

二、数字图像处理的目的1、提高图像的视觉质量。

2、提取图像中的特征信息。

3、对图像数据进行变换、编码和压缩。

三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。

细节越多,采样间隔应越小。

把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。

一般,灰度图像的像素值量化后用一个字节(8bit)来表示。

二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。

为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。

对细节化图像,细采样,粗量化,以避免模糊。

三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。

彩色图像的像素值量化后用三个字节(24bit)来表示。

一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。

五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。

六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。

数字图像处理基础2

数字图像处理基础2

数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。

由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。

所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。

设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。

显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。

在实际中,一般取L min 的值为0,L max =L-1。

这样,灰度的取值范围就可表示成[0,L-1]。

当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。

为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。

图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。

图像的数字化包括采样和量化两个过程。

连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

即:空间坐标的离散化。

量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。

《数字图像处理》-教学大纲

《数字图像处理》-教学大纲

《数字图像处理》课程教学大纲Digital image processing一、教学目标及教学要求数字图像处理课程是智能科学与技术、数字媒体技术等专业的专业必修课。

主要目标及要求是通过该课程的学习,使学生初步掌握数字图像处理的基本概念、基本原理、基本技术和基本处理方法,了解数字图像的获取、存储、传输、显示等方面的方法、技术及应用,为学习相关的数字媒体、视频媒体和机器视觉等课程,以及今后从事数字媒体、视频媒体、图像处理和计算机视觉等领域的技术研究与系统开发打下坚实的理论与技术基础。

二、本课程的重点和难点(一)课程教学重点教学重点内容包括:图像的表示,空间分辨率和灰度级分辨率,图像直方图和直方图均衡,基于空间平滑滤波的图像增强方法,基于空间锐化滤波的图像增强方法,图像的傅里叶频谱及其特性分析,图像编码模型、霍夫曼编码和变换编码,图像的边缘特征及其检测方法,彩色模型,二值形态学中的有腐蚀运算和膨胀运算。

(二)课程教学难点教学难点包括:直方图均衡,二维离散傅里叶变换的若干重要性质、图像的傅里叶频谱及其特性分析,变换编码,小波变换的概念、嵌入式零树小波编码,图像的纹理特征及其描述和提取方法,Matlab图像处理算法编程。

三、主要实践性教学环节及要求本课程的实验及实践性环节要求使用Matlab软件平台,编写程序实现相关的数字图像处理算法及功能,并进行实验验证。

课程实验与实践共10学时,分别为:实验一:图像基本运算实验(2学时)。

实验二:图像平滑滤波去噪实验(2学时)。

实验三:图像中值滤波去噪实验(2学时)。

实验四:图像边缘检测实验(2学时)。

相关图像处理算法的课堂演示验证(2学时)。

要求每个学生在总结实验准备、实验过程和收获体会的基础上,写出实验报告。

四、采用的教学手段和方法利用多媒体课件梳理课程内容和讲授思路,合理运用启发式教学方式激发学生的思考力,采用讨论式教学方式增强教学过程的互动效果,理论教授与应用实例编程实践相结合,提高学生的分析和解决问题的能力。

数字图像处理第2章采样量化图像格式

数字图像处理第2章采样量化图像格式
3) 打印机分辨率
又称输出分辨率,是指打印机输出图像时每英寸的点数(dp i)。打印机分辨率也决定了输出图像的质量,打印机分辨率越高, 可以减少打印的锯齿边缘,在灰度的半色调表现上也会较为平滑。 打印机的分辨率可达300-1200 dpi。
4) 扫描仪分辨率
单位长度上采样的像素个数。台式扫描仪的分辨率可以分
• 曲线3:
质量
细节较多的球赛观众图像 k
5
4 32 64 128 256 N
总结
一般,当限定数字图像的大小时, 为了得到质量较好的图像 可采用如下原则:
(1)对缓变的图像,应该细量化,粗采样,以避免假轮廓。
(2)对细节丰富的图像,应细采样,粗量化,以避免模糊。 对于彩色图像,是按照颜色成分——红、绿、蓝分别采样和量
2.3.3 用传感器阵列获取图像
传感器阵列
2.4 图像数字化技术
图像的数字化包括采样和量化两个过程。 设连续图像f(x, y) 经数字化后,可以用 一个离散量组成的矩阵g(i, j)(即二维数组) 来表示。
f (0,0) f (0,1) f (0, n 1)
g(i,
j)
g(1,0)
z 蓝 (Blu e) 品 红 (Magenta )
青 (Cyan ) O 红 (Red) x
绿 (Gre en) 黄 (Yello w) y
(2) 数字化采样一般是按正方形点阵取样的, 除此之外还 有三角形点阵、正六角形点阵取样。
(3)以上是用g (i, j)的数值来表示(i, j)位置点上灰度级值的
大小,即只反映了黑白灰度的关系, 如果是一幅彩色图像, 各点
的数值还应当反映色彩的变化,可用g (i, j, λ)表示,其中λ是波 长。如果图像是运动的,还应是时间t的函数,即可表示为g (i, j, λ, t)。

数字图像处理第2章

数字图像处理第2章

Digital Image Processing
2.1 色度学基础
颜色模型 人眼视觉的感受颜色可用色调(hue),饱和度 人眼视觉的感受颜色可用色调(hue),饱和度 ), (saturation)和亮度(brightness)来表示. (saturation)和亮度(brightness)来表示. 各种表示颜色的方法,称做颜色模型.目前使用最多 各种表示颜色的方法,称做颜色模型. 的是面向机器(如显示器,摄像机,打印机等)的RGB模型 的是面向机器(如显示器,摄像机,打印机等) RGB模型 和面向颜色处理(也面向人眼视觉) HSI(HSV)模型. 和面向颜色处理(也面向人眼视觉)的HSI(HSV)模型.
f s ( m , n ) ← f s ( x , y ) = f ( x , y ) s( x , y ) =∑
m

n
f ( m x , n y )δ ( x m x , y n y )
Digital Image Processing
2.3 图像数字化
x
y
图2.3.1 采样函数s(x,y)的图示 采样函数s(x,y) s(x,y)的图示
120°

240°
Digital Image Processing
2.1 色度学基础
RGB和HIS之间的模型转换: RGB和HIS之间的模型转换: 之间的模型转换
(1) RGB转换到HSI RGB转换到 转换到HSI (2) HIS转换到RGB HIS转换到 转换到RGB 常见数字图像处理流程,其中包含了RGB模型和HSI模型之间 RGB模型和HSI模型之间 常见数字图像处理流程,其中包含了RGB模型和HSI 的转换. 的转换.
I分量 I分量图 像处理

精品课件-《数字图像处理(第三版)》第2章 数字图像

精品课件-《数字图像处理(第三版)》第2章 数字图像
j 1
其它
i 1,2,n
2.3 数字图像类型
矢量(Vector)图和位图(Bitmap),位图也称为栅格图像。 矢量图是用数学(准确地说是几何学)公式描述一幅图像。(计 算机图形学)
➢ 优点:一是它的文件数据量很小,因为存储的是其数学公式; 其二是图像质量与分辨率无关,这意味着无论将图像放大或 缩小了多少次,图像总是以显示设备允许的最大清晰度显示。
2.2.3 颜色变换
对彩色图像进行颜色变换,可实现对彩色图像的增强处理,改 善其视觉效果,为进一步处理奠定基础。 基本变换
➢ 颜色变换模型为:g(x,y)=T[ f ( x,y )] 式中:f ( x , y )是彩色输入图像,其值为一般为向量; g ( x , y )是变换或处理后的彩色图像,与 f(x,y)同维; T是在空间域上对f的操作。T对图像颜色的操作 有多种方式;
2.4 图像文件格式 数字图像有多种存储格式,每种格式一般由不同的软件公司开 发所支持。 文件一般包含文件头和图像数据。就像每本书都有封面,目录, 它们的作用类似于文件头,通过文件头我们可读取图像数据。 文件头的内容由该图像文件的公司决定,一般包括文件类型 、 文件制作者、制作时间、版本号、文件大小等内容,还有压缩方 式。
2.2.2 颜色模型
HSI 颜色模型 ➢ 色调H (Hue): 与光波的波长有关,它表示人的感官对不同 颜色的感受,如红色、绿色、蓝色等, ➢ 饱和度(Saturation): 表示颜色的纯度,纯光谱色是完合饱 和的,加入白光会稀释饱和度。饱和度越大,颜色看起来就 会鲜艳,反之亦然。 ➢ 强度I (Intensity):对应成像亮度和图像灰度,是颜色的 明亮程度。 ➢ HSI模型建立基于两个重要的事实: (1) I分量与图像的彩色 信息无关; (2) H和S分量与人感受颜色的方式是紧密相联 的。这些特点使得HSI模型非常适合彩色特性检测与分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 单幅图像 → 单幅图像 ,如图(a). 2 多幅图像 →单幅图像, 如图(b). 3 单(或多)幅图像→ 数字或符号等。
2.5 图像处理算法的形式
二.图像处理的几种具体算法形式 1.局部处理
对于任一像素(i,j),把像素的集合 {(i+p,j+q),p、q取任意整数}叫做该像素的邻 域,
2.5 图像处理算法的形式
依赖于起始像素的位置。为此,跟踪处理的结果与从图像 哪一部份开始进行处理相关。
②能够根据利用在此以前的处理结果来限定处理范围,从而 可能避免徒劳的处理。另外,由于限制了处理范围,有可 能提高处理精度。
③用于边界线、等高线等线的跟踪(检测)方面。如根据搜索 法检测边缘曲线。
2.5 图像处理算法的形式
4.位置不变处理和位置可变处理 输出像素JP(i,j)的值的计算方法与像素
的位置(i,j)无关的处理称为位置不变处理或 位移不变处理。随位置不同计算方法也不同的 处理称为位置可变处理或位移可变处理。
2.5 图像处理算法的形式
5.窗口处理和模板处理 单独对图像中选定的矩形区域内的像素进
行处理的方式叫做窗口处理。 单独对图像中选定的任意形状的像素进行
0
255 0
255 0
255
(a) 恰当量化 (b)未能有效利用动态范围 (c)超过了动态范围
2.4 图像灰度直方图
2. 边界阈值选取(确定图像二值化的阈值)
假设某图象的灰度直方图具有 二峰性,则表明这 个图象的较亮的区域和较暗的区域可以较好地分离, 以这一点为阈值点,可以得到好的二值处理的效果。
2.4 图像灰度直方图
1 2 3 45 6 6 4 3 22 1 1 6 6 46 6 3 4 5 66 6 1 4 6 62 3 1 3 6 46 6
123456 5 4 5 6 2 14
ni
i
灰度直方图
2.4 图像灰度直方图
123456
5 4 5 6 2 14
频率的计算式为:
vi
ni n
vi
3.一幅图像分成多个区域,多个区域的直方图 之和即为原图像的直方图。
图像的直方图H(i)= 区域Ⅰ的直方图H1(i) + 区 域Ⅱ的直方图H2(i)
=
+
2.4 图像灰度直方图
三、直方图的应用
1 . 数字化参数(判断量化是否恰当)
直方图给出了一个简单可见的指示,用来判断 一幅图象是否合理的利用了全部被允许的灰度级 范围。一般一幅图应该利用全部或几乎全部可能 的灰度级,否则等于增加了量化间隔。丢失的信 息将不能恢复。
JP (i,j)p(IP (i,j))
2.5 图像处理算法的形式
在局部处理中,输出像素JP(i,j)的值取决 于输入图像大范围或全部像素的值,这种处理 称为大局处理。其计算表达式为:
J(P i,j)G(G (i,j))
2.5 图像处理算法的形式
2.迭代处理 反复对图像进行某种运算直至满足给定的条
0.5
0.25
i
1 23 456
2.4 图像灰度直方图
二、直方图的性质
1.灰度直方图只能反映图像的灰度分布情况,而不能反映 图像像素的位置,即所有的空间信息全部丢失。
2.一幅图像对应唯一的灰度直方图,反之不成立。不同的 图像可对应相同的直方图。下图给出了一个不同的图像具 有相同直方图的例子。
2.4 图像灰度直方图
处理的方式叫做模板处理。
2.5 图像处理算法的形式
6.串行处理和并行处理
后一像素输出结果依赖于前面像素处理的结果,并 且只能依次处理各像素而不能同时对各像素进行相同处 理的一种处理形式称为串行处理。串行处理的特点是:
①用输入图像的第(i,j)像素邻域的像素值和输出图像(i,j) 以前像素的处理结果计算输出图像(i,j)像素的值; ②处理算法要按一定顺序进行。 • 因此,不能同时并行计算各像素的输出值,且串行处理 的顺序会影响处理结果。
H Pi log2 Pi
i0
Pi是图像灰度级为i的像素出现的频率,图像的灰度范围 在[0,L-1]。
彩色图的灰度直方图
灰度图的灰度直方图
灰度图具有二峰性
具有二峰性的灰度图的二值化
2.5 图像处理算法的形式
一. 图像处理基本功能的形式 按图像处理的输出形式,图像处理的基本功能可
分为三种形式。
背景Leabharlann 目标0 f(x,y)T g(x,y)1 f(x,y)T
背景
目标
0
阈值T 255
2.4 图像灰度直方图
3.当物体部分的灰度值比其它部分灰度值大时,可利用 直方图统计图像中物体的面积。
A= n vi iT
式中n为图像像素总数,
vi是图像灰度级为i的像素出现的频率。
4. 计算图像信息量H(熵)
L1
在对输入图像处理时,计算某一输出像素 JP(i,j)值由输入图像IP(i,j)像素的小邻域 N(i,j)中的像素值确定。这种处理称为局部处 理,或者称邻域处理。局部处理的计算表达式
为: J(P i,j)N(N (i,j))
在局部处理中,当邻域N(i,j)仅包含 IP(i,j)像素时的处理称为点处理。点处理的 计算表达式为:
件,从而得到输出图像的处理形式称为迭代处理。 下图为图像的细化处理过程。
2.5 图像处理算法的形式
3.跟踪处理
选择满足适当条件的像素作为起始像素,检查输入 图像和已得到的输出结果,求出下一步应该处理的像 素,进行规定的处理,然后决定是继续处理下面的像 素,还是终止处理。这种处理形式称为跟踪处理。
• 跟踪处理有以下特点: ①对某个像素的处理,依赖于这以前的处理结果,从而也就
• 对图像内的各像素同时进行相同形式运算的一种处理形式称 为并行处理。其特点如下:
①输出图像像素(i, j)的值,只用输入图像的(i, j)像素的 邻域像素进行计算;
②相对于不同(i, j)的输出值可以独立进行计算。
2.6图像的数据结构与特征
2.6.1 图像的数据结构
2.4 图像灰度直方图
在数字图像处理中,灰度直方图是最简 单且最有用的工具,可以说,对图像的分析 与观察直到形成一个有效的处理方法,都离 不开直方图。
一、灰度直方图的定义
灰度直方图是灰度级的函数,描述的是 图像中该灰度级的像素个数或该灰度级像素 出现的频率。即:横坐标表示灰度级,纵坐 标表示图像中该灰度级出现的个数或该灰度 级像素出现的频率,这个关系图就是灰度直 方图。它反映了图像灰度分布的情况。
相关文档
最新文档