王静龙《非参数统计分析》课后计算题参考答案
王静龙《非参数统计分析》教案
王静龙《非参数统计分析》(1-8章)教案(总77页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(±),随即抽取n=100件零件,数据如下:表经计算,平均长度为cm x 4958.8=,非常接近中心位置,样本标准差为()1047.0112=--=∑=ni i n x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
%66)1047.04958.84.8()1047.04958.86.8()4.8()6.8()6.84.8(≈-Φ--Φ=-Φ--Φ=≤≤σμσμX P这说明产品有接近三分之一不合格,三分之二合格,所以需要更换供应厂 商,而用非参数分析却是另外一个结果。
以下是100个零件长度的分布表:这说明有90%的零件长度在)2.05.8(±cm 之间,有9%的零件不合格,所以工厂不需要换供应商。
例2 哪一个企业职工的工资高? 表两个企业职工的工资显然,企业1职工的工资高,倘若假设企业1与企业2的职工工资分别服从正态分布),(),,(22σσb N a N ,则这两个企业职工的工资比较问题就可以转化为一个参数的假设检验问题,原假设为b a H =:0,备择假设为b a H >:0 则 ))11(,(~2σnmb a N y x +-- 若0H 为真,则)20()2(~11t n m t nm S y x t w =-++-=其中])()([2112122∑∑==-+--+=ni i m i i wy y x x n m S拒绝域为:}325.1{)}20({90.0≥=≥t t t 检测值为:282.1=t故不能拒绝原假设,认为两企业的工资水平无差异。
非参数统计答案范文
非参数统计答案范文1. 考察Mann-Whitney U检验:问题:对两组数据进行比较,数据不符合正态分布,要判断两组数据是否有显著差异。
如何选择合适的非参数检验方法?答案:Mann-Whitney U检验是一种适用于比较两组独立样本的非参数检验方法,适用于数据不符合正态分布的情况。
2. 考察Wilcoxon符号秩和检验:问题:对同一组数据进行配对比较,数据不符合正态分布,如何选择合适的非参数检验方法?答案:Wilcoxon符号秩和检验是一种适用于配对样本的非参数检验方法,适用于数据不符合正态分布的情况。
3. 考察Kruskal-Wallis检验:问题:有三组数据需要比较,但数据不符合正态分布,如何选择合适的非参数检验方法?答案:Kruskal-Wallis检验是一种适用于比较多组独立样本的非参数检验方法,适用于数据不符合正态分布的情况。
4. 考察Friedman检验:问题:有三组配对数据需要比较,但数据不符合正态分布,如何选择合适的非参数检验方法?答案:Friedman检验是一种适用于比较多组配对样本的非参数检验方法,适用于数据不符合正态分布的情况。
5. 考察Mood's中位数差异检验:问题:有两组独立样本数据需要比较,数据不符合正态分布,如何选择合适的非参数检验方法?答案:Mood's中位数差异检验是一种适用于比较两组独立样本的非参数检验方法,适用于数据不符合正态分布的情况。
6.考察符号检验:问题:对一组配对数据进行比较,但数据不符合正态分布,如何选择合适的非参数检验方法?答案:符号检验是一种适用于配对样本的非参数检验方法,适用于数据不符合正态分布的情况。
7.考察秩和检验:问题:有两组独立样本数据需要比较,如何选择合适的非参数检验方法?答案:秩和检验是一种适用于比较两组独立样本的非参数检验方法。
8. 考察Kolmogorov-Smirnov检验:问题:有一组数据需要验证其服从一些特定分布,如何进行检验?答案:Kolmogorov-Smirnov检验是一种非参数检验方法,可以用于验证数据是否符合一些特定分布。
王静龙《非参数统计分析》章教案
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
王静龙《非参数统计分析》课后计算题参考答案汇编
学习-----好资料更多精品文档王静龙《非参数统计分析》课后习题计算题参考答案习题一1.One Sample t-test for a MeanSample Statistics for xN Mean Std. Dev. Std. Error-------------------------------------------------26 1.38 8.20 1.61 Hypothesis TestNull hypothesis: Mean of x = 0Alternative: Mean of x ^= 0t Statistic Df Prob > t---------------------------------0.861 25 0.397695 % Confidence Interval for the MeanLower Limit: -1.93Upper Limit: 4.70则接受原假设认为一样习题二1.描述性统计更多精品文档习题三1.1{}+01=1339:6500:650013=BINOMDIST(13,39,0.5,1)=0.026625957S n H me H me P S +==<≤另外:在excel2010中有公式 BINOM.INV(n,p,a) 返回一个数值,它使得累计二项式分布的函数值大于或等于临界值a 的最小整数***0*0+1inf :2BINOM.INV(39,0.5,0.05)=141sup :1132S 1313n m i n d i n m m i n d d m i d αα==⎧⎫⎛⎫⎪⎪⎛⎫=≥⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭⎧⎫⎛⎫⎪⎪⎛⎫≤=-=⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭=≤=∑∑= 以上两种都拒绝原假设,即中位数低于65001.2学习-----好资料更多精品文档****01426201inf :221inf :122BINOM.INV(40,0.5,1-0.025)=26d=n-c=40-26=14580064006200nn i c n m i n c c i n m m i x x me x αα==⎧⎫⎛⎫⎪⎪⎛⎫=≤⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭⎧⎫⎛⎫⎪⎪⎛⎫=≥-⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭====∑∑2.{}+01=4070:6500:65002402*(1-BINOMDIST(39,70,0.5,1))=0.281978922S n H me H me P S +==≠≥=则接受原假设,即房价中位数是65003.1{}+01=15521552527207911::22n 1552=5.33E-112S n H p H p P S φ+=+==>≥≈比较大,则用正态分布近似**+**0:=1552155252720791inf :221inf :122m=BINOM.INV(2079,0.5,0.975)=1084nn i c n m i S n n c c i n m m i αα===+=⎧⎫⎛⎫⎪⎪⎛⎫=≤⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭⎧⎫⎛⎫⎪⎪⎛⎫=≥-⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭∑∑另外则拒绝原假设,即相信孩子会过得更好的人多3.2P 为认为生活更好的成年人的比例,则学习-----好资料更多精品文档1522=0.7465132079p 的比估计是:4.{}00.90610.90618154157860:65:6510.9060.094~(,)181541BINOMDIST(18153,157860,0.094,1)=0S n H P H P p S b n p P S +++===>=-=≥=-因为0〈0.05则拒绝原假设习题四1.()()++0.025+W =6+8+10+1+4+12+9+11+2+7=70p 2P W 70n=12c =65p 2P W 65=0.05≥≥符号秩和检验统计量:值为,当得所以值小于即拒绝原假设2.学习-----好资料更多精品文档()()++0.025+W =2.5+2.5+7+7+7+7+10.5+14+14+14+14+14+17.5+17.5+19+20+23+24=234.5p 2P W 234.5n=25 c =236p 2P W 236=0.05≥≥符号秩和检验统计量:值为,当得所以值小于即接受原假设{}011826:0:02182*(1-BINOMDIST(17,25,0.5,1))=0.043285251S n H me H me P S +===≠≥=+符号检验:则拒绝原假设学习-----好资料更多精品文档t t =0.861df=25 p=0.3976检验:统计量接受原假设3.(1)+0.0250.0250.025++=5+2+2=9833(1)322(3)0.052(9)0.05W n c n n d c P W P W ==+=-=≤=≤>查表可得:则 接受原假设Walsh 平均由小到大排列:50 55 60 65 65 70 70 70 75 75 75 80 80 80 80 80 80 80 85 85 85 8585 90 90 90 90 90 90 95 95 95 95 95 95 100 100 100 100 100 100 100 105 105学习-----好资料 更多精品文档105 105 105 110 110 110 110 110 115 115 120N=55 则对称中心为()()^281/290N W W θ+===()()1/1/1/40.527.50.5 1.967.771011461/40.527.50.5 1.9647.22898853d n n U c n n U αα--=+--=--==+++=++=因为c 不是整数,则^+1k d L k k w w θ()()介于与之间,其中表示比大的最小整数即为8 ^L θ为70与75之间,即为72.5 []-%72.5,105H L 则的点估计为90 95的区间估计为习题五1.171(,24,25,50)0.005060988i p P i p ===∑值很小,则拒绝原假设即认为女职工的收入比男职工的低。
非参数统计参考答案
内容:, ,上机实践:将MASS数据包用命令library(MASS)加载到R中,调用自带“老忠实”喷泉数据集geyer,它有两个变量:等待时间waiting和喷涌时间duration,其中…(1) 将等待时间70min以下的数据挑选出来;(2) 将等待时间70min以下,且等待时间不等于57min的数据挑选出来;(3) 将等待时间70min以下喷泉的喷涌时间挑选出来;(4) 将喷涌时间大于70min喷泉的等待时间挑选出来。
解:读取数据的R命令:library(MASS);#加载MASS包data(geyser);#加载数据集geyserattach(geyser);#将数据集geyser的变量置为内存变量(1) 依题意编定R程序如下:sub1geyser=geyser[which(waiting<70),1];#提取满足条件(waiting<70)的数据,which(),读取下标sub1geyser[1:5];#显示子数据集sub1geyser的前5行[1] 57 60 56 50 54(2) 依题意编定R程序如下:Sub2geyser=geyser[which((waiting<70)&(waiting!=57)),1];#提取满足条件(waiting<70& (waiting!=57)的数据.Sub2geyser[1:5];#显示子数据集sub1geyser的前5行[1] 60 56 50 54 60 ……原数据集的第1列为waiting喷涌时间,所以用[which(waiting<70),2](3)Sub3geyser=geyser[which(waiting<70),2];#提取满足条件(waiting<70)的数据,which(),读取下标Sub3geyser[1:5];#显示子数据集sub1geyser的前5行[1] ……原数据集的第2列为喷涌时间,所以用[which(waiting<70),2](4)Sub4geyser=geyser[which(waiting>70),1];#提取满足条件(waiting<70)的数据,which(),读取下标Sub4geyser[1:5];#显示子数据集sub1geyser的前5行[1] 80 71 80 75 77…….如光盘文件中的数据,一个班有30名学生,每名学生有5门课程的成绩,编写函数实现下述要求:(1) 以的格式保存上述数据;(2) 计算每个学生各科平均分,并将该数据加入(1)数据集的最后一列;(3) 找出各科平均分的最高分所对应的学生和他所修课程的成绩;(4) 找出至少两门课程不及格的学生,输出他们的全部成绩和平均成绩;(5) 比较具有(4)特点学生的各科平均分与其余学生平均分之间是否存在差异。
非参数统计部分课后练习习题参考答案.docx
课后习题参考答案第一章 p23-252、( 2)有两组学生,第一组八名学生的成绩分别为x1: 100, 99,99,100,99, 100, 99,99;第二组三名学生的成绩分别为x2:75,87,60 。
我们对这两组数据作同样水平a=的t检验(假设总体均值为u): H0: u=100 H 1:u<100。
第一组数据的检验结果为:df=7 , t 值为,单边p 值为,结论为“拒绝H0:u=100。
”(注意:该组均值为);第二组数据的检验结果为:df=2 , t值为,单边p值为; 结论为“接受H0: u=100。
”(注意:该组均值为)。
你认为该问题的结论合理吗说出你的理由,并提出该如何解决这一类问题。
答:这个结论不合理( 6 分)。
因为,第一组数据的结论是由于p-值太小拒绝零假设,这时可能犯第一类错误的概率较小,且我们容易把握;而第二组数据虽不能拒绝零假设,但要做出“在水平a时,接受零假设”的说法时,还必须涉及到犯第二类错误的概率。
( 4 分)然而,在实践中,犯第二类错误的概率多不易得到,这时说接受零假设就容易产生误导。
实际上不能拒绝零假设的原因很多,可能是证据不足(样本数据太少),也可能是检验效率低,换一个更有效的检验之后就可以拒绝了,当然也可能是零假设本身就是对的。
本题第二组数据明显是由于证据不足,所以解决的方法只有增大样本容量。
(4 分)第三章 p68-713、在某保险种类中,一次关于1998 年的索赔数额(单位:元)的随机抽样为(按升幂排列):4632 ,4728, 5052, 5064, 5484, 6972, 7596, 9480 ,14760,15012, 18720, 21240, 22836, 52788,67200。
已知 1997 年的索赔数额的中位数为5064 元。
( 1)是否 1998 年索赔的中位数比前一年有所变化能否用单边检验来回答这个问题(4分)( 2)利用符号检验来回答(1)的问题(利用精确的和正态近似两种方法)。
非参数统计题目及答案
1.人们在研究肺病患者的生理性质时发现,患者的肺活量与他早在儿童时期是否接受过某种治疗有关,观察3组病人,第一组早在儿童时期接受过肺部辐射,第二组接受过胸外科手术,第三组没有治疗过,现观察到其肺活量占其正常值的百分比如下:这一经验是否可靠。
解:H 0:θ2≤θ1≤θ3 H 1:至少有一个不等式成立可得到 N=15由统计量H=)112+N N (∑=Ki i N R 1i 2-3(N+1)=)(1151512+(32×6.4+29×5.8+59×11.8)-3×(15+1)=5.46查表(5,5,5)在P(H ≥4.56)=0.100 P(H ≥5.66)=0.0509 即P (H ≥5.46)﹥0.05 故取α=0.05, P ﹥α ,故接受零假设即这一检验可靠。
2.关于生产计算机公司在一年中的生产力的改进(度量为从0到100)与它们在过去三年中在智力投资(度量为:低,中等,高)之间的关系的研究结果列在下表中:值等等及你的结果。
(利用Jonkheere-Terpstra 检验) 解:H 0:M 低=M 中=M 高 H 1:M 低﹤M 中﹤M 高U 12=0+9+2+8+10+9+10+2+10+10+8+0.5+3=82.5 U 13=10×8=80U 23=12+9+12+12+12+11+12+11=89 J=∑≤jijUi =82.5+80+89=251.5大样本近似 Z=[]72)32()324121i 222∑∑==+-+--ki i i ki n n N N n N J ()(~N (0,1)求得 Z=3.956 Ф(3.956)=0.9451取α=0.05 , P >α,故接受原假设,认为智力投资对改进生产力有帮助。
王静龙《非参数统计分析》(1-8章)教案汇编
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5 _ 0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.5048.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.4978.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.5058.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.5078.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.4928.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.5058.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.5048.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.5018.495 8.461 8.504 8.691经计算,平均长度为x - 8.4958cm,非常接近中心位置8.5cm,样本标准差为X j-X? n -1 = 0.1047 cm.—般产品的质量服从正态分布,X~N(・,2)。
非参数考试题及答案
非参数考试题及答案一、单项选择题(每题2分,共10题)1. 非参数统计方法主要处理的是:A. 正态分布数据B. 非正态分布数据C. 离散型数据D. 连续型数据答案:B2. 斯皮尔曼等级相关系数适用于:A. 正态分布数据B. 非正态分布数据C. 有序分类数据D. 有序连续数据答案:B3. 曼-惠特尼U检验用于比较:A. 两个独立样本的均值B. 两个独立样本的中位数C. 两个配对样本的均值D. 两个配对样本的中位数答案:B4. 克鲁斯卡尔-瓦利斯检验用于:A. 单样本方差分析B. 双样本方差分析C. 多样本方差分析D. 配对样本方差分析答案:C5. 弗里德曼检验适用于:A. 单因素方差分析B. 双因素方差分析C. 多因素方差分析D. 配对样本方差分析答案:D6. 威尔科克森符号秩检验用于:A. 两个独立样本的比较B. 两个配对样本的比较C. 多个独立样本的比较D. 多个配对样本的比较答案:B7. 非参数检验中,不需要假设数据分布的是:A. t检验B. 方差分析C. 卡方检验D. 克鲁斯卡尔-瓦利斯检验答案:D8. 斯皮尔曼等级相关系数的取值范围是:A. -1到1B. 0到1C. -1到0D. 0到-1答案:A9. 以下哪个检验不是非参数检验:A. 曼-惠特尼U检验B. 克鲁斯卡尔-瓦利斯检验C. 弗里德曼检验D. 单样本t检验答案:D10. 非参数检验中,用于比较两个独立样本的秩次差异的是:A. 威尔科克森符号秩检验B. 弗里德曼检验C. 克鲁斯卡尔-瓦利斯检验D. 曼-惠特尼U检验答案:D二、多项选择题(每题3分,共5题)1. 以下哪些是非参数检验:A. 曼-惠特尼U检验B. 单样本t检验C. 克鲁斯卡尔-瓦利斯检验D. 威尔科克森符号秩检验答案:ACD2. 以下哪些检验适用于两个独立样本的比较:A. 曼-惠特尼U检验B. 威尔科克森符号秩检验C. 弗里德曼检验D. 克鲁斯卡尔-瓦利斯检验答案:AD3. 以下哪些检验适用于多个独立样本的比较:A. 威尔科克森符号秩检验B. 克鲁斯卡尔-瓦利斯检验C. 弗里德曼检验D. 曼-惠特尼U检验答案:BC4. 以下哪些检验适用于配对样本的比较:A. 单样本t检验B. 威尔科克森符号秩检验C. 弗里德曼检验D. 曼-惠特尼U检验答案:BC5. 以下哪些检验不需要假设数据的分布:A. 单样本t检验B. 曼-惠特尼U检验C. 克鲁斯卡尔-瓦利斯检验D. 威尔科克森符号秩检验答案:BCD三、简答题(每题5分,共2题)1. 请简述非参数检验与参数检验的主要区别。
王静龙《非参数统计分析》(1-8章)教案讲课讲稿
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。
王静龙《非参数统计分析》课后计算题参考的答案解析
WORD格式资料王静龙《非参数统计分析》课后习题计算题参考答案习题一1.One Sample t-test for a MeanSample Statistics for xN Mean Std. Dev. Std. Error-------------------------------------------------26 1.38 8.20 1.61Hypothesis TestNull hypothesis: Mean of x = 0Alternative: Mean of x ^= 0t Statistic Df Prob > t---------------------------------0.861 25 0.397695 % Confidence Interval for the MeanLower Limit: -1.93Upper Limit: 4.70则接受原假设认为一样习题二1.描述性统计专业整理专业整理习题三1.1{}+01=1339:6500:650013=BINOMDIST(13,39,0.5,1)=0.026625957S n H me H me P S +==<≤另外:在excel2010中有公式 BINOM.INV(n,p,a) 返回一个数值,它使得累计二项式分布的函数值大于或等于临界值a 的最小整数***0*0+1inf :2BINOM.INV(39,0.5,0.05)=141sup :1132S 1313n m i n d i n m m i n d d m i d αα==⎧⎫⎛⎫⎪⎪⎛⎫=≥⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭⎧⎫⎛⎫⎪⎪⎛⎫≤=-=⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭=≤=∑∑= 以上两种都拒绝原假设,即中位数低于65001.2WORD 格式资料专业整理****01426201inf :221inf :122BINOM.INV(40,0.5,1-0.025)=26d=n-c=40-26=14580064006200n ni c n m i n c c i n m m i x x me x αα==⎧⎫⎛⎫⎪⎪⎛⎫=≤⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭⎧⎫⎛⎫⎪⎪⎛⎫=≥-⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭====∑∑2.{}+01=4070:6500:65002402*(1-BINOMDIST(39,70,0.5,1))=0.281978922S n H me H me P S +==≠≥=则接受原假设,即房价中位数是65003.1{}+01=15521552527207911::22n 1552=5.33E-112S n H p H p P S φ+=+==>≥≈比较大,则用正态分布近似**+**0:=1552155252720791inf :221inf :122m=BINOM.INV(2079,0.5,0.975)=1084nn i c n m i S n n c c i n m m i αα===+=⎧⎫⎛⎫⎪⎪⎛⎫=≤⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭⎧⎫⎛⎫⎪⎪⎛⎫=≥-⎨⎬⎪ ⎪⎝⎭⎝⎭⎪⎪⎩⎭∑∑另外则拒绝原假设,即相信孩子会过得更好的人多3.2P 为认为生活更好的成年人的比例,则WORD 格式资料专业整理1522=0.7465132079p 的比估计是:4.{}00.90610.90618154157860:65:6510.9060.094~(,)181541BINOMDIST(18153,157860,0.094,1)=0S n H P H P p S b n p P S +++===>=-=≥=-因为0〈0.05则拒绝原假设习题四1.()()++0.025+W =6+8+10+1+4+12+9+11+2+7=70p 2P W 70n=12c =65p 2P W 65=0.05≥≥符号秩和检验统计量:值为,当得所以值小于即拒绝原假设2.专业整理()()++0.025+W =2.5+2.5+7+7+7+7+10.5+14+14+14+14+14+17.5+17.5+19+20+23+24=234.5p 2P W 234.5n=25 c =236p 2P W 236=0.05≥≥符号秩和检验统计量:值为,当得所以值小于即接受原假设{}011826:0:02182*(1-BINOMDIST(17,25,0.5,1))=0.043285251S n H me H me P S +===≠≥=+符号检验:则拒绝原假设WORD 格式资料专业整理t t =0.861df=25 p=0.3976检验:统计量接受原假设3.(1)+0.0250.0250.025++=5+2+2=9833(1)322(3)0.052(9)0.05W n c n n d c P W P W ==+=-=≤=≤>查表可得:则 接受原假设Walsh 平均由小到大排列:50 55 60 65 65 70 70 70 75 75 75 80 80 80 80 80 80 80 85 85 85 8585 90 90 90 90 90 90 95 95 95 95 95 95 100 100 100 100 100 100 100 105 105专业整理N=55 则对称中心为()()^281/290N W W θ+===()()1/1/1/40.527.50.5 1.967.771011461/40.527.50.5 1.9647.22898853d n n U c n n U αα--=+--=--==+++=++=因为c 不是整数,则^+1k d L k k w w θ()()介于与之间,其中表示比大的最小整数即为8 ^L θ为70与75之间,即为72.5 []-%72.5,105H L 则的点估计为90 95的区间估计为习题五1.171(,24,25,50)0.005060988i p P i p ===∑值很小,则拒绝原假设即认为女职工的收入比男职工的低。
非参数统计题目及答案
非参数统计题目及答案标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]1.人们在研究肺病患者的生理性质时发现,患者的肺活量与他早在儿童时期是否接受过某种治疗有关,观察3组病人,第一组早在儿童时期接受过肺部辐射,第二组接受过胸外科手术,第三组没有治疗过,现观察到其肺活量占其正常值的百分比如下:以往的经验告诉我们,这三组病人的肺活量有如下关系:第二组≤第一组≤第三组,试判断这一经验是否可靠。
解:H 0:θ2≤θ1≤θ3 H 1:至少有一个不等式成立可得到 N=15由统计量H=)112+N N (∑=Ki i N R 1i 2-3(N+1)=)(1151512+(32×+29×+59×-3×(15+1)= 查表(5,5,5)在P(H ≥= P(H ≥= 即P (H ≥)﹥故取α=, P ﹥α ,故接受零假设即这一检验可靠。
2.关于生产计算机公司在一年中的生产力的改进(度量为从0到100)与它们在过去三年中在智力投资(度量为:低,中等,高)之间的关系的研究结果列在下表中:是否智力投资对改进生产力有帮助说明检验的步骤,包括零假设,备选假设,统计量,P值等等及你的结果。
(利用Jonkheere-Terpstra检验)解:H0:M低=M中=M高H1:M低﹤M中﹤M高U 12=0+9+2+8+10+9+10+2+10+10+8++3=U 13=10×8=80U 23=12+9+12+12+12+11+12+11=89J=∑≤jij U i =+80+89=大样本近似 Z=[]72)32()324121i 222∑∑==+-+--k i i i k i n n N N n N J ()(~N (0,1)求得 Z= Ф=取α= , P >α, 故接受原假设,认为智力投资对改进生产力有帮助。
非参数统计(附答案)
《非参数统计》试卷注意事项:1.本试卷适用于经济统计专业学生使用。
2.本试卷共6 页,满分100分,答题时间120分钟。
题号 一 二 三 四 总分 得分一、 选择题(本大题共10小题,每小题1分,共10分)1、以下对非参数检验的描述,哪一项是错误的( )。
A.非参数检验方法不依赖于总体的分布类型 B.应用非参数检验时不考虑被研究对象的分布类型 C.非参数检验的假定条件比较宽松D.非参数检验比较简便2、秩和检验又叫做( )A 、参数检验B 、Wilcoxon 检验C 、非参数检验D 、近似正态检验 3、( )同分校正后,统计量会变小。
A. Kruskal-Wallis 检验B.弗里德曼(Friedman )检验C. Mann-Whitney 检验D. Spearman 等级相关检验 4、配对比较的秩和检验的基本意思是:如果检验假设成立,则对样本来说( )。
A.正秩和的绝对值小于负秩和的绝对值 B.正秩和的绝对值大于负秩和的绝对值C.正秩和的绝对值与负秩和的绝对值不会相差很大D.正秩和的绝对值与负秩和的绝对值相等5、成组设计多个样本比较的秩和检验,当组数大于3时,统计量H 近似( )分布A 、正态B 、2C 、FD 、二项 6、Wilcoxon 符号秩检验不适用于( )。
A 位置的检验 B 连续总体 C 随机性的检验 D 配对样本的检验7、成组设计两样本比较的秩和检验中,描述不正确的是( )。
A .遇有相同数据,若在同一组,取平均秩次 B .遇有相同数据,若在同一组,按顺序编秩2.本评卷人C .遇有相同数据,若不在同一组,按顺序编秩D .遇有相同数据,若不在同一组,取其秩次平均值8、m=4,n=7,Tx=14的双侧检验,则( ) A. Ty=41,在显著性水平0.05时接受原假设 B. Ty=41,在显著性水平0.05时拒绝原假设 C. Ty=42,在显著性水平0.05时拒绝原假设 D. Ty=42,在显著性水平0.05时接受原假设 9、序列3 5 2 7 9 8 6的一致对数目为( )。
[定稿]非参数统计王星版第一章课后答案
非参数统计王星版第一章课后答案非参数统计第一章课后答案#1.1AGE=c(18,23,22,21,20,19,20,20,20)first3=sort(AGE)[(length(AGE)-2):length(AGE)] delete.1=order(AGE)[(length(AGE)-2):length(AGE)] except=AGE[-delete.1]c(except[1:2],19,except[3:length(except)]) except[2]=22#1.2a1=rep(1:3,rep(2,3))a2=c(1,8,10,11)a3=seq(1,30,length(a2))a4=seq(1,5,2)a4=c(a1,a4,rep(0,2))a5=2:10a6=c(a2,a3[-(1:3)],a4)a7=c(rep(1,10),rep(0,8))#1.3library(MASS)data(geyser)a=geysera1=subset(a,waiting<70)a1=geyser[geyser$waiting<70,]#两个a1等价a2=subset(a,waiting<70&waiting!=57)a2=geyser[geyser$waiting<70&geyser$waiting!=57,]#两个a2等价a3=subset(a,waiting<70,c(duration))a4=subset(a,duration>70,c(waiting))#1.3library(MASS)a=geyserattach(a)b1=waiting[waiting<70]b2=waiting[waiting<70&waiting!=57]b3=duration[waiting<70]b4=waiting[duration>70]#1.4x=c(0,1,1,2,3,4)num=function(x){r=0p=c(rep(0,length(x)-1))q=c(rep(0,length(x)-1))for(i in 1:(length(x)-1)){for(j in (i+1):length(x)){p[i]=p[i]+I(x[i]<x[j])q[i]=q[i]+I(x[i]>x[j])}r=r+p[i]-q[i]}r}h=rep(0,1000)x=runif(5,-5,5)h[i]=num(x)}y=as.factor(h)yy=levels(y)a=rep(0,11)#记数记录-10:10:2各种结果出现的次数p=rep(0,11)for(i in 1:11){a[i]=sum(h==(-12+2*i))p[i]=a[i]/length(h)}aphist(h)h=rep(0,10000)for(i in 1:length(h)){x=sample(1:5,5,replace=T)#-5到5中间的整数随机抽样h[i]=num(x)}y=as.factor(h)yy=levels(y)a=rep(0,length(yy))#记数记录-10:10各种结果出现的次数p=rep(0,length(yy))a[i]=sum(h==(-11+i))p[i]=a[i]/length(h)}aphist(h)#当随机取10000次的一个结果 a=[71 321 774 1255 1637 1825 1684 1256 743 338 96]# p=[0.0071 0.0321 0.0774 0.1255 0.1637 0.1825 0.1684 0.1256 0.0743 0.0338 0.0096]#当随机取十万次数据的一个结果#a=[795 3421 7553 12521 16771 18180 16538 12553 7418 3400 850]#p=[0.00795 0.03421 0.07553 0.12521 0.16771 0.18180 0.16538 0.12553 0.07418 0.03400 0.00850]#1.5uniroot(f=function(x) 2*x^3-4*x^2+3*x-6, interval=c(-10,10))f=function(x){2*x^3-4*x^2+3*x-6}f(0)a=-10b=10root=function(a,b){c=(a+b)/2;while(abs(f(c))>0.00001){if(f(c)*f(a)<0){b=c; c=(a+b)/2;}else {a=c; c=(a+b)/2;}}c#1.6x=seq(0,2*pi,0.2)y=sin(x)/(cos(x)+x)#1.7chartonum=function(x){a=c("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ");b=strsplit(a,"");for(i in 1:52){if(b[[1]][i]==x){t=i;i=i+1}else{i=i+1}}t}#将字符转化为数字,小写为前26位,大写为后26位,输入为单个字符f7=function(x){y=strsplit(x,"");#将输入分为单个字符for(i in 1:length(y[[1]])){t=chartonum(y[[1]][i])if(t<14){t=t+13;y[[1]][i]=LETTERS[t];}else if(t>=14&t<=26){t=t-13;y[[1]][i]=LETTERS[t];}else if(t>=27&t<=39){t=t+13-26;y[[1]][i]=letters[t];}else{t=t-13-26;y[[1]][i]=letters[t];} }mima=y;mima}#1.8f1.81=function(a){for(i in 1:length(a)){c[i]=a[length(a)-i+1]}c}f1.82=function(a,b){for(i in 1:(length(a)+length(b))){if(i%%2==1){c[i]=a[(i+1)/2];}else{c[i]=b[i/2];}}c}#%%为求余符号#1.9f1.9=function(n,m){a=rep(1,n);i=1;k=0;t=1;while(sum(a)>1|a[t]==0){t=i%%n;if(t==0){t=n;}else{t=i%%n}if(a[t]!=0){k=k+1;i=i+1;}else{i=i+1}if(k%%m==0){k=0;a[t]=0;}}t}#1.10student<-read.table("C:\\Documents andSettings\\Administrator\\桌面\\非参数统计配套数据\\各章数据\\第一章\\student.txt",header= T)student1=as.data.frame(student)means=apply(student1[,2:6],1,mean)b1=data.frame(student1,means)b2=student1[which(b==max(b)),]b3=I(student1[,2:6]<60)#判断每个学生每门课程是否及格b4=apply(b3,1,sum)#找出每个学生有几门课程不及格b5=b1[which(b4>1),]b6=b1[-which(b4>1),]t.test(b5$means,b6$means)#不说明情况下认为两总体方差不同,特殊说明var.equal=TRUE 置信区间为均值差的置信区间wilcox.test(b5$means,b6$means)wilcox.test(b5$means,b6$means,paires=FALSE)#1.11basket<-read.table("C:\\Documents andSettings\\Administrator\\桌面\\非参数统计配套数据\\各章数据\\第一章\\basket.txt",header= T)A=I(basket[,2:6]=='A')A=basket[,2:6]=='A'Asum=apply(A,1,sum)B=basket[,2:6]=='B'Bsum=apply(B,1,sum)a1=basket[which(Asum>0&Bsum>0),1]length(a1)#求个数a2=basket[which(Asum>0&Bsum>=3),]length(a2$ID)#求个数#1.12x=seq(-10,10,0.05)y1=sin(x)y2=cos(x)y3=y1+y2plot(x,y1,col=1,lty=1,axes=T,main="习题1.12",sub="sin(),cos (),sin()+cos()对比图")points(x,y2,col=2,lty=3)points(x,y3,col=3,lty=4)plot(x,y1,col=1,lty=1,main="习题1.12",sub="sin(),cos (),sin()+cos()对比图")lines(x,y1,col=1,lty=1)lines(x,y2,col=2,lty=3)lines(x,y3,col=3,lty=4)curve(sin(x),-10,10,col=1,lty=1,main="习题1.12",sub="sin (),cos(),sin()+cos()对比图")curve(cos(x),add=TRUE,col=2,lty=3)curve(sin(x)+cos(x),add=TRUE,col=3,lty=4)#1.13x=seq(-5,5,length=50)a=runif(500,-5,5)y=0.1*a*sin(2*a)f1=function(x,y){1-exp(-1/x^2+y^2)}z1=outer(x/2,x/2,f1)persp(z1)f2=function(x,y){0.1*x*sin(2*y)}z2=outer(x,x,f2)persp(z2)f3=function(x,y){sin(x)+cos(x)}z3=outer(x,x,f3)persp(z3)plot(sin(3*x),sin(6*x),type="l")#1.14a=rnorm(100,3,sqrt(5))b=rnorm(20,5,sqrt(3))c=c(a,b)hist(c)boxplot(c)qqnorm(c)#1.15x=rnorm(100,0,1)y1=log(abs(x))#lamda=0 hist(y1)qqnorm(y1)qqline(y1, col = 2)y2=(x-1)#lamda=1hist(y2)qqnorm(y2)qqline(y2, col = 3)y3=1-1/x#lamda=-1hist(y3)qqnorm(y3)qqline(y2, col = 4)。
王静龙《非参数统计分析》(1-8章)教案讲课讲稿
.引言一般统计分析分为参数分析与非参数分析,参数分析是指,知道总体分布,但其中几个参数的值未知,用统计量来估计参数值,但大部分情况,总体是未知的,这时候就不能用参数分析,如果强行用可能会出现错误的结果。
例如:分析下面的供应商的产品是否合格?合格产品的标准长度为(8.5±0.1),随即抽取n=100件零件,数据如下:表1.18.503 8.508 8.498 8.347 8.494 8.500 8.498 8.500 8.502 8.501 8.491 8.504 8.502 8.503 8.501 8.505 8.492 8.497 8.150 8.496 8.501 8.489 8.506 8.497 8.505 8.501 8.500 8.499 8.490 8.493 8.501 8.497 8.501 8.498 8.503 8.505 8.510 8.499 8.489 8.496 8.500 8.503 8.497 8.504 8.503 8.506 8.497 8.507 8.346 8.310 8.489 8.499 8.492 8.497 8.506 8.502 8.505 8.489 8.503 8.492 8.501 8.499 8.804 8.505 8.504 8.499 8.506 8.499 8.493 8.494 8.490 8.505 8.511 8.502 8.505 8.503 8.782 8.502 8.509 8.499 8.498 8.493 8.897 8.504 8.493 8.494 7.780 8.509 8.499 8.503 8.494 8.511 8.501 8.497 8.493 8.501 8.495 8.461 8.504 8.691经计算,平均长度为cm x 4958.8=,非常接近中心位置8.5cm ,样本标准差为()1047.0112=--=∑=ni in x x s cm.一般产品的质量服从正态分布,),(~2δμN X 。