基本放大电路(全部)

合集下载

第二章基本放大电路

第二章基本放大电路
T
Rc Cb1
T
Cb2 VCC
Rc Cb2
Rb VBB
(a)
(b)
(c)
工作原理 放大电路的静态分析
静态 Ui=0时,放大电路的工作状态,也称直流工作状态。
静态分析 确定放大电路的静态值IBQ、ICQ、UCEQ,即静 态工作点Q。静态工作点的位置直接影响放 大电路的质量。
静态分析方法 1. 计算法 计算法 图解分析法
根据所用放大管的类型设置合适的静态工作点Q 。对 于晶体管应使发射结正偏,集电结反偏,以使晶体管工 作于线性放大区; 必须保证从输入到输出信号的正常流通途径。输入信 号能有效地作用于放大电路的输入回路;输出信号能有 效地加到负载上。 对实用放大电路的要求:共地、直流电源种类尽可能 少、负载上无直流分量。
-
动态信号作用时:uI ib ic uRc uCE (uo ) 输入电压ui为零时,晶体管各极的电流、b-e间的电 压、管压降称为静态工作点Q,记作IBQ、 ICQ(IEQ)、 UBEQ、 UCEQ。
Back
Next
Home
由于(IB,UBE) 和( IC,UCE )分别对应于输入、输出 特性曲线上的一个点,所以称为静态工作点。
Back
Next
Home
两种实用放大电路:(1)直接耦合放大电路
- + UBEQ
有交流损失 有直流分量 将两个电源 问题: 合二为一 静态时,U BEQ U Rb1 1. 两种电源 2. 信号源与放大电路不“共地” 动态时,VCC和uI同时作用 于晶体管的输入回路。 共地,且要使信号 驮载在静态之上
大倍数为源增益us、Ais、Ars 和Ags。 A
4
(2)输入电阻: 从输入端看进去的等效电阻

基本放大电路课件-PPT(精)精选全文完整版

基本放大电路课件-PPT(精)精选全文完整版

15.3.1 微变等效电路法
1.晶体管的微变等效电路
晶体管的微变等效电路可从晶体管特性曲线求出。
(1)输入回路
当信号很小时,在静态工作点
附近的输入特性在小范围内可近
似线性化。
晶体管的 输入电阻
输入特性
对于小功率三极管:
晶体管的输入回路(B、E 之间) 可用rbe等效代替,即由rbe来确 定ube和i 之间的关系。
放大的实质:
用小能量的信号通过三极管的电流控制作用,将放 大电路中直流电源的能量转化成交流能量输出。
对放大电路的基本要求: 1.要有足够的放大倍数(电压、电流、功率)。 2.尽可能小的波形失真。 另外还有输入电阻、输出电阻、通频带等其它技术 指标。
15.1共发射极放大电路的组成
15.1.1 共发射极放大电路组成
15.1.3 共发射极放大电路的电压放大作用
RB C₁

Ucc
RC
C
lB lc 十₂
T
十 UCE
UBE
u₀
iE
u₀=0
UBE=UBE
ucE=UCE
无输入信号(u;=0) 时:
CE
ic
WBE
iB
BE
IB
Ic
UCE
0
to
0
tO
结论:
(1)无输入信号电压时,三极管各电极上都是恒定

电压和电流:Ip、UBE和
ri≈be
当Rg>>r 时 ,
5.放大电路输出电阻的计算
放大电路对负载(或对后级放大电路)来说,是
一个信号源,可以将它进行戴维宁等效,等效电
源的内阻即为放大电路的输出电阻。
输出电阻是

基本 放大电路

基本 放大电路
上一页 下一页
第三节 多级放大电路
四、阻容耦合多级放大电路的分析
由两级共射放大电路采用阻容耦合组成的多级放大电路如 图7-17所示。
由图7-17可得阻容耦合放大电路的特点: (1)优点 因电容具有“隔直”作用,所以各级电路的静态
工作点相互独立,互不影响。这给放大电路的分析、设计和 调试带来厂很大的方便。此外,还具有体积小、质量轻等优 点。 (2)缺点 因电容对交流信号具有一定的容抗,在信号传输 过程中,会受到一定的衰减。尤其对于变化缓慢的信号容抗 很大,不便于传输。此外,在集成电路中,制造大容量的电 容很困难,所以这种祸合方式下的多级放大电路不便于集成。
上一页 下一页
第三节 多级放大电路
三、变压器耦合
我们把级与级之间通过变压器连接的方式称为变压器耦合。 其电路如图7-16所示。
变压器耦合的特点: (1)优点 因变压器不能传输直流信号,只能传输交流信号
和进行阻抗变换,所以,各级电路的静态工作点相互独立, 互不影响。改变变压器的匝数比,容易实现阻抗变换,因而 容易获得较大的输出功率。 (2)缺点 变压器体积大而重,不便于集成。同时频率特性 差,也不能传送直流和变化非常缓慢的信号。
分压偏置共射极放大电路如图7-12 (a)所示,发射极电阻 RE起直流负反馈作用,在外界因素变化时,自动调节工作点 的位置,使静态工作点稳定。
分压偏置共射极放大电路的直流通路如图7-12 (b)所示电路
上一页 返 回
第二节 共集电极电路
一、共集电极放大电路的组成
如图7-13 (a)所示,由于直流电源对交流信号相当于短路, 集电极便成为输入与输出回路的公共端,因此这个电路称为 共集电极放大电路,简称共集放大器,又称射极输出器它的 直流通路如图7-13 ( b)所示,交流通路如图7-13 (c)所示。

放大电路的四种基本类型

放大电路的四种基本类型

放大电路的四种基本类型
1.直流耦合放大电路
直流耦合放大电路是一种常用的放大电路。

它可以将输入信号通过一个放大器进行放大,并输出到负载中。

这种电路适用于需要高增益和线性度的应用,比如音频放大器。

2.电容耦合放大电路
电容耦合放大电路也是一种常用的放大电路。

它使用电容将输入信号传递到放大器的输入端,并将放大后的信号输出到负载中。

这种电路适用于对低频响应要求不高的应用,比如射频放大器。

3.变压器耦合放大电路
变压器耦合放大电路是一种少见但重要的放大电路。

它使用变压器将输入信号传递到放大器中,并将放大后的信号输出到负载中。

这种电路适用于需要隔离输入和输出信号、同时保持宽带性能的应用,比如视频放大器。

4.光耦合放大电路
光耦合放大电路是一种特殊的放大电路。

它使用光耦进行信号传输和隔离,可以有效地避免共模干扰和地回路干扰。

这种电路适用于需要隔离输入和输出信号、同时保持较高带宽等优秀性能的应用,比如光纤收发器。

第9章 基本放大电路

第9章  基本放大电路

- 43 -第9章 基本放大电路放大是模拟电路最重要的一种功能。

本章所要介绍的基本放大电路几乎是所有模拟集成电路的基本单元。

工程上的各类放大电路都是由若干基本放大电路组合而成的,其中第一级称为输入级,最后一级称为输出级,其余各级为中间级。

9.1 放大电路的工作原理放大电路或称为放大器,其作用是把微弱的电信号、电压、电流、功率放大到所需要的量级,而且输出信号的功率要比输入信号的功率大,输出信号的波形要与输入信号的波形相同。

现以晶体管共射极接法的电路为例来说明放大电路的工作原理。

输入信号按波形不同可分为直流信号与交流信号两种。

由于正弦信号是一种基本信号,在对电路进行性能分析与测试时,常以它作为输入信号。

因此,也以正弦信号作为输入信号来说明放大电路的工作原理。

在输入端与输出端分别接有电容C 1、C 2,它们起着传递信号,隔离直流的作用,电容C 1、C 2称为输入和输出耦合电容或隔直电容。

由于耦合作用要求电容的容抗值很小,一般为几微法至几百微法,因而需要采用有极性的电解电容器。

输入端未加输入信号时,放大电路的工作状态称为静态。

这时U CC 提供了直流偏置电流。

由于电容的隔直作用,输入端和输出端不会有电压与电流。

可见,静态时,除了输入端与输出端外,晶体管各极电压与电流都是直流,其波形如图9-1各波形中的虚线所示。

输入端加上输入信号时,放大电路的工作状态称为动态。

交流输入信号u i 通过C 1耦合到晶体管的发射结两端,使发射结电压u BE 以静态值U BE 为基准上下波动,但方向不变,即u BE 始终大于零,发射结保持正向偏置,晶体管始终处于放大状态。

这时的发射结电压u BE =U BE +u be 。

忽略C 1上的交流电压降,则u be =u i 。

发射结电压的变化会引起各极电流的相应变化,而且它们都会有一个静态直流分量和一个交流信号分量,其波形如图9-1所示。

i C 的变化引起R C i C 的相应变化。

电工学第八章 基本放大电路

电工学第八章 基本放大电路

RL RC//RL
返回
(3)电压放大倍数的计算


Ui I b rbe



UoIcRL IbRL
式中 RL RC//RL 则放大电路的电压放大倍数

Au
U0

Ui
R' L rbe
输出端开路时(未接RL)
Au
RC rbe
结 论
❖ Au与β、rbe和并联电阻 有关;
❖负载电阻RL越小,放大倍数越小; ❖ 输入电压与输出电压相位相反。
返回
放大电路可分为静态和动态两种情况来分析。
动态:输入端加上输入信号时,放大电路的工作状态。
❖ 此时,电路中电流和电压值是直流和交流分量叠加。 ❖ iB、iC、iE、uBE和uCE,称为动态值(直流分量和交流 分量的叠加) ❖ 对放大电路的动态分析就是采用放大电路的交流通道, 确定电压放大倍数Au,输入电阻ri,输出电阻ro等。 ❖ 动态分析方法:微变等效电路法和图解法 直流通道——只考虑直流信号的分电路。 交流通道——只考虑交流信号的分电路。
步骤: ❖ 用估算法确定IB; ❖ 由输出特性曲线确定IC和UCE。
由 U CE U CC ICR C 得
IC=0时, UCEUCC
UCE=0时,I C
U CC RC
返回
(1)输入输出特性曲线
如下图所示,(IBQ,UBEQ) 和( ICQ,UCEQ )分别对 应于输入输出特性曲线上的一个点,称为静态工
0.0m 4 A40A
IC IB
3.750.04
1.5mA
U CE U CC ICR C
1 2 1.5 1 0 34 130
6V
返回

第二章(简好用新)-基本放大电路..

第二章(简好用新)-基本放大电路..

五、实用共发射极放大电路
1.温度对工作点的影响
温度升高
UBE减小 ICBO增大
β增大
注:旁路电容的作用。接人发射极电阻 RE,一方面发射极电流的直流分量IE 通过它能起到自动稳定静态工作点的作 用;另一方面发射极电流的交流分量ie 也会产生交流压降,使uBE减小,这样 就会降低电压放大倍数,因此增加了旁 路电容,使交流信号从电容上流过。
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us


E B
V
us+-
Rs
RB C ui+-
RE
RL
+-uo
交流通路
二、共集电极放大电路分析 1.静态工作点的计算
VCC IBQRB U BEQ IEQRE
I BQ

VCC U BE
RB (1 )RE
ICQ I BQ I EQ
动态分析步骤:
1.先画出交流通路, 有时为了便于分析, 还要把电路变形为我 们便于分析的方式。
2.根据交流通路画微 变等效电路
E B
V
RB C ui+-
RE
RL
+-uo
ic
ii
ib
C
+ BE
+ Rs ui RB RE
RL
+
uo
us


Ii B
Ib
Ic
画微变等效电路时需注意的 问题:
1.交流通路变化成微变等效
RC
C2
+-
uCE

基本放大电路

基本放大电路

IB
IC
IB
Q
IC
UBE
UBE
Q IB
UCE
UCE
直流负载线
VCC
UCE=VCC–ICRC
IC
RC
静态IC
Q IB
UCE
静态UCE VCC
由估算法求出IB, IB对应的输出特
性与直流负载 线的交点就是 工作点Q
三、电路参数对静态工作点的影响
1. 改变 RB,其他参数不变
iB
iC
VBB
R B iB Q 趋近截止区;
晶体管放大电路的组成 及其工作原理
共射基本放大电路的组成 及其工作原理
共射基本放大电路的组成及其工作原理
一.放大原理
三极管工作在放大区:
发射结正偏,
集电结反偏。
放大原理:
VBB
UI

Ui
→△UBE
→△IB →△IC(b△IB


→△UCE(-△IC×Rc)→ Uo
电压放大倍数:


Au =
Uo

当放大电路的输入信号电压很小时,就可以把三极 管小范围内的特性曲线近似地用直线来代替,从而可 以把三极管这个非线性器件所组成的电路当作线性电 路来处理。
小信号模型如下:
iB b
c iC
vBE
vCE
e
BJT双口
网络
• b ib 是受控源 ,且为电流
控制电流源(CCCS)。
(RL= RC // RL)
选择工作点的原则: 当 ui 较小时,为减少功耗和噪声,“Q”可设得 低一些;
为提高电压放大倍数,“Q”可以设得高一些;
为获得最大输出,“Q” 可设在交流负载线中点。

(完整)经典的运算放大器基本电路大全,推荐文档

(完整)经典的运算放大器基本电路大全,推荐文档

运算放大器基本电路大全我们经常看到很多非常经典的运算放大器应用图集,但是这些应用都建立在双电源的基础上,很多时候,电路的设计者必须用单电源供电,但是他们不知道该如何将双电源的电路转换成单电源电路。

在设计单电源电路时需要比双电源电路更加小心,设计者必须要完全理解这篇文章中所述的内容。

1.1 电源供电和单电源供电所有的运算放大器都有两个电源引脚,一般在资料中,它们的标识是VCC+和VCC-,但是有些时候它们的标识是VCC+和GND。

这是因为有些数据手册的作者企图将这种标识的差异作为单电源运放和双电源运放的区别。

但是,这并不是说他们就一定要那样使用――他们可能可以工作在其他的电压下。

在运放不是按默认电压供电的时候,需要参考运放的数据手册,特别是绝对最大供电电压和电压摆动说明。

绝大多数的模拟电路设计者都知道怎么在双电源电压的条件下使用运算放大器,比如图一左边的那个电路,一个双电源是由一个正电源和一个相等电压的负电源组成。

一般是正负15V,正负12V和正负5V也是经常使用的。

输入电压和输出电压都是参考地给出的,还包括正负电压的摆动幅度极限Vom以及最大输出摆幅。

单电源供电的电路(图一中右)运放的电源脚连接到正电源和地。

正电源引脚接到VCC+,地或者VCC-引脚连接到GND。

将正电压分成一半后的电压作为虚地接到运放的输入引脚上,这时运放的输出电压也是该虚地电压,运放的输出电压以虚地为中心,摆幅在Vom 之内。

有一些新的运放有两个不同的最高输出电压和最低输出电压。

这种运放的数据手册中会特别分别指明Voh 和Vol 。

需要特别注意的是有不少的设计者会很随意的用虚地来参考输入电压和输出电压,但在大部分应用中,输入和输出是参考电源地的,所以设计者必须在输入和输出的地方加入隔直电容,用来隔离虚地和地之间的直流电压。

(参见1.3节)图一通常单电源供电的电压一般是5V,这时运放的输出电压摆幅会更低。

另外现在运放的供电电压也可以是3V 也或者会更低。

基本放大电路

基本放大电路

极管工作在线性区,以保证信号不失真。
IB IB Q UBE UBE
IC Q
IC
IB
UC建 立 正 确 的 静 态 ?
工 作 点 合 适
工 作 点 偏 低
四、基本共射放大电路的工作原理及波形分析
+ VC C
R b1 Cb 1
ui iB
iC
Rc
Cb 2
uCE uo
uo Ro = 1 RL u o
ii
+
io
+
RS uS 信号源
放大电路 Ri
+
+
ui +
Ro uo
+
uo +
RL
Ri
Ro
负载
输出电阻是表明放大电路带负载能力的,Ro越小, 放大电路带负载的能力越强,反之则差。
4、通频带
A Am 0.7Am
放大倍数随频率变 化曲线——幅频特 性曲线
uo比ui幅度放大且相位相反
三极管放大作用
变化的 i c 通过Rc 转变为 变化的输出
ui
C1
uBE
iB
iC (β iB )
iRcRC uCE
+VCC Cb2 T RL
+
C2
uo
Rb Cb1
+
Rc
+
ui +
uo -
结论: 1、uo 与ui反相 2、电流放大
RC
电压放大
放大电路的两个特点: 1、非线性 2、交直流共存
通过输出特性曲线上的Q点做一条直线,其斜 率为-1/R’L
其中 R'L= RL∥Rc, 是交流负载电阻。

基本放大电路_典型例题(全)

基本放大电路_典型例题(全)

C2
+
+
RL uo

第五章 基本放大电路
2.求静态工作点Q 根据直流通路,有
IB
VCC U BE RB
12 0.7 377
30A
RB RC
Rs C1+ + us−
+VC
C
+C2 +
RL uo

I C I B 5 0 3 0 1 .5 m A U C E V C C R C I C 1 2 6 1 .5 3 V
试计算:
+VC
C
C2 +
RL uo

1.试标出电容C1、C2极性;2.求电路的静态工作点Q ; 3.电压放大倍数Au、Aus ; 4.输入电阻ri、输出电阻ro。
第五章 基本放大电路
解: 1. 标出电容C1、C2极性
RB RC
Rs C1
+
+VCC
C2
+
+
RL
uo

RB RC
Rs C1
+
+
us

+VCC

rbe2
300
(1
)26 2 I E2
300 38.5 26 1.65
0.9k
ri2 RB1 // RB2 // rbe2 0.79k
RL 1
RE1
//
ri2
2 0.79 2 0.79
0.57 k
第五章 基本放大电路
RB
200kΩ
Rs C1+ + 100Ω +
RB1
20kΩ

第02章基本放大电路

第02章基本放大电路

iB
Ec/Rb
B
- 1/Rb
Q
放大电路的输入和输出直流负载线
确定静态工作点 I
UBE Ec uBE
(1)由输入特性曲线和输入直流负载线求IBQ、UBEQ
EC
UBE=EC- IBRb → 直流负载线
IB IC UCE
作出直流负载线,直流负载线和输入 特性曲线的交点即是静态工作点Q,由 Q可确定IB、UBE
1.估算法 (1) 首先画出直流通路
EC
(2)求静态值 求解顺序是先求IB→IC→UCE
Si管:UBE=0.6V~0.7V
IB UBE IC UCE
Ge管:UBE=0.2V~0.3V
IB
E C U BE Rb

E C 0 .7 Rb
IC β IB
UCE=EC-ICRC
2. 图解法
三极管的输入和输出特性曲线
EC Ii Uo Ui Ib
Ic Uo
Ui
2. 放大电路的工作过程
当有交流信号ui加到放大器的输入端时,晶体管各点
的电压和电流将在静态值基础上叠加一交流分量,
此时电路中的信号即有直流,又有交流。
各点波形
iC
+EC
RC RB C1 iB
ui
t iB ui t
iC C2
t
uC u C uo
t
uo t
US ~
Ui
Au
ri
Ui Ii
(2-3)
三、输出电阻ro
放大电路对其负载而言,相当于信号源,我们 可以将它等效为戴维南等效电路,这个戴维南 等效电路的内阻就是输出电阻。
US ~
Au
ro
US' ~

基本放大电路

基本放大电路
(15-23)
放 大 电 路 分 析
静态分析
(IBQ,UBEQ)
( ICQ,UCEQ )
估算法—利用静态等效电路
图解法—利用晶体管特性曲线
动态分析
(Au,ri,ro)
微变等效电路法 图解法
(15-24)
一.直流通路和交流通路: 在放大电路工作在动态时,“交、直流共存”, 但“通路有别”。 直流通路:直流电流所流经的通路。 用于静态分析。对于直流通路:电容视为开路; 信号源视为短路但保留其内阻. 交流通路:交流电流所流经的通路。 用于动态分析。对于交流通路:大容量电容(耦 合电容、旁路电容等)视为短路;直流电源视为 短路。
iB
iB
iC h21 iB
U CE

uCE
O
uCE
晶体管的c、e之间可用 一个受ib控制的电流源 等效代替。
⑷输出电导(c-e间的动态电阻) iC 1 h22 iB uCE rce rce越大,恒流特性越好;
(15-39)
2、简化的h参数等效模型
I b U be I c
注意:必须分清直流通路和交流通路以及各自的用途
(15-25)
2.3.1放大电路的静态分析
静态分析的目的: 确定放大电路的静态值. ---静态工作点Q :(IBQ、UEBQ)(ICQ、UCEQ )。 所用电路:放大电路的直流通路。 设置Q点的目的: 使放大电路的放大信号不失真. 两种分析方法: 估算法、图解法
在小信号工作时,各增量之间满足线性关系,用信 号的增量(或向量)来代替偏导数。 I c I b
U be
+
-
+ U ce -
晶体管的h参数等效模型
(15-37)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

U CC U BE 所以I B RB
3.由输出回路求IC、UCE:
UCE = UCC – IC RC IC= βIB
例1:用估算法计算图示电路的静态工作点。
+UCC RB IB RC + + TUCE UBE – – IC 由KVL可得:
U CC I B RB U BE I E RE
– A + IB=0 ICEO
温度ICEO,所以IC也相应增加。 三极管的温度特性较差。
ICEO受温度的影响大。
4. 集电极最大允许电流 ICM
集电极电流 IC上升会导致三极管的值的下降,当值下 降到正常值的三分之二时的集电极电流即为ICM。 5. 集-射极反向击穿电压U(BR)CEO 当集—射极之间的电压UCE 超过一定的数值时,三极管 就会被击穿。手册上给出的数值是25C、基极开路时的击 穿电压U(BR) CEO。 6. 集电极最大允许耗散功耗PCM PCM取决于三极管允许的温升,消耗功率过大,温升过 高会烧坏三极管。 PC PCM =IC UCE 硅管允许结温约为150C,锗管约为7090C。
静态工作点Q: IB、IC、UCE 分析方法:估算法、图解法。 分析对象:各极电压电流的直流分量。 所用电路:放大电路的直流通路。 设置Q点的目的: (1)使放大电路的放大信号不失真; (2)使放大电路工作在较佳的工作状态,静态是动态的基础。
例:画出下图放大电路的直流通路
对直流信号电容 C 可看作开路(即将电容断开) +UCC 断开 RB C2 断开 + iC + iB + + T uCE uBE – RL u o – – iE RC RB IB RC +UCC IC
C IC ICBO
IB
B
ICE
N P
EC
I CE I C I CBO I C I BE I B I CBO I B
RB
EB
IBE
N E I E
IC I B (1 ) ICBO I B ICEO
忽略I CEO ,有 I C I B (常用公式)
发射结正偏 集电结反偏
PNP VB<VE VC<VB
EB VC﹤VB﹤VE
EC
2. 各电极电流关系及电流放大作用 IB(mA) 0.04 0 0.02 IC(mA) IE(mA) 结论: <0.001 0.70 <0.001 0.72 1.50 1.54
0.06 2.30 2.36
0.08 3.10 3.18
由三个极限参数可画出三极管的安全工作区
IC ICM
ICUCE=PCM
安全工作区
O
U(BR)CEO
UCE
15.2 基本放大电路的组成
一、基本放大电路组成及各元件作用 晶体管T: 放大元件 利用电流放大作用,获得 较大的iC RC C2 基极电源EB与基极电阻RB: + + iC + C1 iB EC 使发射结处于正偏,并提 + – 供大小适当的基极电流 + + T uCE + RS 集电极电源EC: RB uBE – RL uo – u 为电路提供能量。并保证 + i + – iE EB es 集电结反偏。 – – – 集电极电阻RC: 将变化的电流转变为变化 共发射极基本电路 的电压。 耦合电容C1 、C2 : 隔离输入、输出与放大电路直流的联系 RS、eS :交流信号源 负载 RL:
0.10 3.95 4.05
1)三电极电流关系 IE = IB + IC 2) IC IB , IC IE C 3) IC IB IB
IC
晶体管的电流放大作用:基极电 流的微小变化能够引起集电极电流 较大变化的特性。 实质:用一个微小电流的变化去 控制一个较大电流的变化。
N P
4
饱3 和 区
I C f (U CE ) I
输出特性曲线通常分三个工作区:
B 常数
(1) 放大区
特点: IC= IB ,也称为线性区
100A 80A 放大区 60A 40A
条件:发射结正偏、集电结反偏 (2)截止区 IB < 0 以下区域为截止区,有 IC 0 。 条件:发射结反偏,集电结反偏 (3)饱和区 当UCE UBE时,晶体管处于饱和状态。 当UCE=UBE时,晶体管处于临界饱和。 偏置,集电结也处于正偏。 深度饱和时, 硅管UCES 0.3V, 锗管UCES 0.1V。
称为动态分析
结论:
(1) 无输入信号电压时,三极管各电极都是恒定的 电压和电流:IB、UBE和 IC、UCE 。
IB IB Q
IC Q
IC UBE
O
O
UCE
UCE
UBE
(IB、UBE) 和(IC、UCE)分别对应于输入、输出特性曲线上 的一个点,称为静态工作点。
(2) 加上输入信号电压后,各电极电流和电压的大小均发 生了变化,都在直流量的基础上叠加了一个交流量,但 方向始终不变。 iC 直流分量 iC iC 交流分量 集电极电流 i
IB(A)
I B f (U BE ) U
CE
常数
80
60 作时发射结电压: NPN型硅管: UBE 0.6~0.7V PNP型锗管: UBE 0.2 ~ 0.3V
UBE(V) 0.4 0.8 死区电压: 硅管0.5V, 锗管0.1V。
2. 输出特性 IC(mA )
+ ui –
无输入信号(ui = 0)时:
uCE
uBE
O
+UCC
RB C1 + C2 + + iB iC + + T uCE uBE – uo – iE – iC RC
+ ui

u = uo o0 0 uBE = UBE uBE = UBE+ ui u= = UCE uCE CEUCE+ uo
uCE
RS es – +
C1 + +
ui –
直流通路
+ + TUCE UBE – – IE
直流通路用来计算静态工作点Q ( IB 、 IC 、 UCE )
一、用估算法确定静态值 1.画直流通路(C开路) 2.由输入回路求IB: 由KVL: UCC = IB RB+ UBE RB IB RC + + TUCE UBE – – IC +UCC
2
1
O 3 6 9
截止区
20A IB=0
12 U (V) 在饱和区,IB IC,发射结处于正向 CE
四、主要参数
表示晶体管特性的数据称为晶体管的参数,晶体管的参数也是设计 IC(mA ) 电路、选用晶体管的依据。 1. 电流放大系数 , ___
IC 直流电流放大系数 I B ΔI C 交流电流放大系数 ΔI B
若IB =0, 则 IC ICE0 集-射极穿透电流, 温度ICEO
三、特性曲线 重点讨论应用最广泛的共发射极接法的特性曲线 IC
IB
A
+ +
V UBE –
mA
RB
+ – EB
V UCE
输出回路
+

EC
输入回路

共发射极电路 发射极是输入回路、输出回路的公共端
1. 输入特性 特点:非线性
+UCC IB + + TUCE UBE – –
RC IC
步骤: 1.作出电路非线性部分的V-I特性曲线——晶体管输出特性 (1)先求出IB:IB=UCC/RB
O
uCE = UCC- i RC 有输入信号(u ≠ 0)时: 无输入信号(uiC= 0)时
ui
O
uo t
uBE
t
O
iB UBE tO
IB
tO
IC
tO

UCE
t
四、放大电路中各处电流、电压由eS和UCC共同作用产生 直流量+交流量 i B = IB + i b i C= IC + i c uCE= UCE + uce uBE= UBE + ube 其中:ib,ic表示交流分量的瞬时值 对放大电路的分析可分为: (1) 求IB 、 IC、UCE (2) 求Au 、 ri、ro 称为静态分析
4 3 2 1 0 3 6
Q2 Q1
100A 80A 60A 40A 20A IB=0
例:在UCE= 6 V时, 在 Q1 点IB=40A, IC=1.5mA; 在 Q2 点IB=60 A, IC=2.3mA。 在 Q1 点,有
I I 1.5 37.5 0.04
C B
9 12 UCE(V)
+
c
O
t
动态分析
IC
O
t
O
t 静态分析
(3) 若参数选取得当,输出电压可比输入电压大,即电路具有 电压放大作用。
O
ui t
O
uo
t
(4)输出电压与输入电压在相位上相差180°,
即共发射极电路具有反相作用。
15.3 放大电路的静态分析
静态:当放大电路无信号输入(ui = 0)时的工作状态。
静态分析:确定放大电路的静态值。
二、省去EB的放大电路 原因: (1) 用到两个直流电源不方便,可省去EB, IB、IC由 RB、RC控制 (2) 放大电路中,通常设公共端为“地”电位为0(参考点) (3) 为简化电路,而只在连接正极的一端标出电压值 RC +UCC
C2 + iC + C1 iB + + T uCE R + + u RS uo RB BE – – L ui + + – iE EB es – – –
相关文档
最新文档