直流开关电源的设计..

合集下载

开关电源的设计毕业论文

开关电源的设计毕业论文

开关电源的设计毕业论文开关电源是一种高效率、小体积、轻质化的电源,随着现代电子设备的发展,应用越来越广泛。

开关电源的设计是电子工程专业毕业设计中的一个热门方向,本文将介绍开关电源的基本工作原理及设计方法,并以一个实际开关电源的设计为例,进行详细说明。

一、开关电源的基本工作原理开关电源的基本工作原理是将交流电源转换为直流电源,其核心部分是开关管。

开关管工作时,会在电路中产生一个高频矩形波形。

再经过滤波电路、输出稳压电路等处理后,最终输出所需要的稳定直流电源。

在开关电源中,开关管的切换是关键,它的导通和截止决定程序的整个运行。

开关管的导通与截止又是由控制器控制的,所以控制器设计是非常重要的。

二、开关电源的设计方法1.功率计算开关电源的功率计算是设计的第一步。

功率 = 电流×电压,在设计前应要明确设备所需的电流和电压值并通过功率计算公式计算得出所需的功率。

2.电路设计电路设计是开关电源设计中较为复杂的一步。

主要包括直流输入电路、开关管、反馈电路、滤波电容、输出稳压电路等部分。

这些部分需要合理的组合和设计,并应通过电路仿真进行验证。

3.控制器设计在控制器设计中,主要有PWM控制器和开环控制器。

PWM控制器通常采用电流反馈控制方式,能够减少在输出处的纹波电压,提高稳定性。

开环控制器的设计要更为复杂,但是更容易实现。

4.保护电路设计保护电路是开关电源中非常重要的一部分,保护电路通常包括电流限制保护、过压保护、过载保护,以及温度保护等。

这些保护电路能够提高开关电源的使用寿命,避免因电路故障引起的安全事故。

三、开关电源设计实例以12V60W的开关电源设计为实例。

1.功率计算P = U × I = 12V × 5A = 60W。

2.电路设计直流输入电路:直流输入电路主要包括整流桥、电容滤波器和保险丝等。

整流桥需要选择合适的电流、电压值,电容滤波器应该选择合适的容量,保险丝则是起到安全保障作用。

开关电源的原理与设计

开关电源的原理与设计

开关电源的原理与设计一、引言开关电源是一种将交流电转换为直流电的电子设备,广泛应用于各种电子设备中。

本文将介绍开关电源的原理与设计。

二、开关电源的原理开关电源的基本原理是利用开关管(MOS管)的导通和截止来控制电源输出。

其主要由输入滤波电路、整流电路、变换电路、输出电路和控制电路等组成。

1. 输入滤波电路输入滤波电路的作用是将交流电转换为稳定的直流电。

它由电容和电感构成,通过对电流的整流和滤波作用,使得输出电压平稳。

2. 整流电路整流电路主要由二极管桥整流电路组成,将交流电转换为脉冲直流电。

二极管桥整流电路具有整流和滤波功能,可以将交流电转换为脉动较小的直流电。

3. 变换电路变换电路是开关电源的核心部分,主要由开关管、变压器和输出电感组成。

开关管的导通和截止控制了电源的输出电压,变压器用于提高或降低电压。

通过开关管的开关动作,可以实现高效率的电能转换。

4. 输出电路输出电路由输出电容和负载组成,用于稳定输出电压并提供给负载使用。

输出电容的作用是存储能量,平稳输出直流电压。

5. 控制电路控制电路主要由控制芯片和反馈电路组成,用于监测和控制输出电压。

控制芯片通过反馈电路不断调整开关管的导通和截止,以保持输出电压的稳定。

三、开关电源的设计开关电源的设计需要考虑输入电压、输出电压、输出功率、效率和稳定性等因素。

1. 输入电压根据应用场景的不同,可以选择不同的输入电压范围。

常见的输入电压有220V交流电和110V交流电。

2. 输出电压输出电压是开关电源设计的关键参数之一,需根据实际需求确定。

常见的输出电压有5V、12V、24V等。

3. 输出功率输出功率是开关电源能够提供的最大功率,需根据负载的功率需求确定。

需要注意的是,输出功率不能超过开关电源的额定功率。

4. 效率开关电源的效率是指输出功率与输入功率的比值,通常以百分比表示。

较高的效率意味着更少的能量损耗,可提高整个系统的能量利用率。

5. 稳定性开关电源的稳定性是指输出电压的稳定性,即在负载变化或输入电压波动时,输出电压的变化情况。

基于小型高效直流开关电源的设计

基于小型高效直流开关电源的设计
压器组成。
线 性 稳 压 电源 的优 点 是 具 有 优 良 的纹 波 及 动 态 响 应 特 性 。 但 同时 存 在 以下 缺 点 :输 入 采 用 5 0 H 工 频 变 压 器 ,体 积 庞 大 且 和 很 重 ; 电压 调 整 器 件 工 作 在 线 性 放 大 区 内 , 损 耗 大 , 效 率 低 ;过 载 能 力 差 。 线 性 电源 主 要 应 用 在 对 发 热 和 效 率 要 求 不 高 的 场 合 ,或 者 要 求 成 本 及 设 计 周 期 短 的情 况 。线 性 电源 作 为 板 载 电 源 广 泛 应 用 于 分 布 电源 系 统 中 ,特 别 是 当 配 电 电压 低 于 4 0 V 时 。 线 性 电 源 的 输 出 电 压 只 能 低 于 输 入 电压 ,并 且 每 个 线 性 电 源 只 能 产 生 路 输 出 。 线 性 电 源 的 效 率 在 百 分 之 三 十 五 到 百 分 之 五 十 之 间 , 损 耗 以热 的 形 式 耗 散 。 1 . 2 P WM 开 关 稳 压 电源 般 将 开 关 稳 压 电源 简 称 开 关 电源 ,开 关 电源 与 线 性 稳 压 电 源 不 同 , 它 是 起 电压 调整 功 能 作 用 的器 件 ,始 终 工 作 在 开 关 状 态 开 关 电源 主 要 采 用 脉 宽 调 制 技 作 原 理 开 关 电源 主 要 采 用 直 流 斩 波 技 术 , 即 降压 变 换 、 升 压 变 换 、变 压 器 隔 离 的D C / D C 变 换 电路 理论 和 P w M 控 制技 术 来 实 现 的 。 具 有输 入 、 输 出隔 离 的P W M 开 关 电源 工 作 原理 框 图 ,如 图2 所示 。
稳压两种类型 。
1 . 1线 性 稳 亚 电源 线 性 稳 压 电源 是 指 起 电压 调 整 功 能作 用 的 器 件 始 终 工 作 在 线 性 放 大 区 的直 流 稳 压 电源 ,期 工 作 原 理 如 图1 。

直流开关电源实施方案

直流开关电源实施方案

直流开关电源实施方案一、概述。

直流开关电源是一种将交流电转换为稳定的直流电的电源设备,广泛应用于工业生产、通信设备、电子产品等领域。

本文将介绍一种直流开关电源的实施方案,包括设计原理、组成部分、实施步骤等内容,以期为相关领域的工程师和技术人员提供参考。

二、设计原理。

直流开关电源的设计原理主要包括输入端的整流滤波、功率因数校正、直流母线的电压调节、输出端的PWM控制等。

通过合理的电路设计和控制算法,可以实现对输入交流电的高效转换和输出直流电的稳定调节。

三、组成部分。

直流开关电源的主要组成部分包括输入端的整流滤波电路、功率因数校正电路、直流母线的电压调节电路、输出端的PWM控制电路、保护电路等。

每个部分都承担着不同的功能,相互配合,共同完成对电源的转换和调节。

四、实施步骤。

1. 设计输入端的整流滤波电路,选择合适的整流桥和滤波电容电感,实现对输入交流电的整流和滤波。

2. 设计功率因数校正电路,通过控制开关管的导通角度,实现对输入电流的波形调整,提高功率因数。

3. 设计直流母线的电压调节电路,通过PWM控制技术,实现对直流母线电压的稳定调节。

4. 设计输出端的PWM控制电路,根据负载需求和输出电压的设定值,控制开关管的导通与关断,实现对输出电压的精确调节。

5. 设计保护电路,包括过流保护、过压保护、短路保护等,保障电源设备和负载的安全运行。

五、实施效果。

通过以上实施方案,可以实现直流开关电源对输入交流电的高效转换和对输出直流电的稳定调节,具有功率密度高、效率高、体积小等优点,适用于各种工业生产和电子设备的电源供应。

六、总结。

直流开关电源的实施方案是一个综合性的工程项目,需要工程师和技术人员在电路设计、控制算法、器件选型等方面进行深入研究和实践。

本文所介绍的实施方案仅供参考,具体实施过程中还需根据实际情况进行调整和优化。

希望本文能为相关领域的工程师和技术人员提供一定的帮助和启发。

直流开关电源设计课设

直流开关电源设计课设

直流开关电源设计课设
直流开关电源是一种将交流电转换为直流电的电路,其具有工作效率高、体积小、重量轻等优点,广泛应用于电子设备、工业控制、通信等领域。

以下是一些关于直流开关电源设计课程设计的建议:
1. 设计任务和要求:在开始课程设计之前,需要明确设计任务和要求,如设计一个降压型直流开关电源,输入电压为220V交流电,输出电压为12V直流电,输出电流为5A等。

2. 电路原理图设计:根据设计任务和要求,设计电路原理图,包括主电路、控制电路、保护电路等。

在设计过程中,需要考虑电路的稳定性、可靠性和安全性。

3. 元器件选型:根据电路原理图,选择合适的元器件,如开关管、电感、电容、二极管等。

需要注意元器件的规格参数、性能指标和可靠性。

4. 计算和优化:根据设计任务和要求,进行电路参数的计算和优化,如开关频率、占空比、电感值等。

可以通过模拟仿真软件对计算结果进行验证和优化。

5. 实验调试:根据设计任务和要求,进行实验调试,包括电路板的制作、元器件的安装和调试、实际运行效果的测试等。

6. 报告撰写:在完成实验调试后,撰写课程设计报告,包括设计任务和要求、设计思路和方案、实验结果和分析等。

7. 答辩和评估:在完成课程设计报告后,进行答辩和评估,包括回答问题、展示成果、接受评估和改进建议等。

通过以上的课程设计过程,可以帮助学生深入了解直流开关电源的原理和设计方法,提高实际操作能力和解决问题的能力,同时也可以为学生的后续学习和职业发展提供支持和帮助。

大功率直流开关电源设计

大功率直流开关电源设计

大功率直流开关电源设计一、引言直流开关电源是一种广泛应用于通信、工业控制和电子设备等领域的电源,其特点是稳定性好、效率高、体积小、重量轻等优点。

本文将介绍大功率直流开关电源的设计过程,包括电源选型、拓扑结构、控制策略和保护电路等内容。

二、电源选型大功率直流开关电源的选型关键是选择合适的功率器件和电源拓扑结构。

功率器件一般选择IGBT或MOSFET,这两种器件都具有开关速度快、功耗低、温升低等特点。

电源拓扑结构可选用单路、多路或多路并联等形式,具体选择要根据实际需求和成本考虑。

三、拓扑结构常见的大功率直流开关电源拓扑结构有Boost、Buck、Buck-Boost、Cuk等。

Boost结构适合于电源输出电压高于输入电压的情况;Buck结构适合于电源输出电压低于输入电压的情况;Buck-Boost结构适合于电源输出电压既可以高于也可以低于输入电压的情况;Cuk结构适合于对输出电流要求较高的情况。

根据实际需求选择合适的拓扑结构。

四、控制策略大功率直流开关电源的控制策略一般采用PWM(脉宽调制)技术。

PWM技术通过调节开关管的导通时间和截止时间来控制输出电压。

在设计过程中需要考虑到输出稳定性、响应速度和抗干扰等因素,选择合适的PWM控制策略。

五、保护电路为了保护电源和加载电路安全可靠工作,大功率直流开关电源设计中需要考虑各种保护电路。

常见的保护电路包括过压保护、欠压保护、过流保护、过温保护等。

通过合理设计和配置相应保护电路,可以降低故障风险,提高系统可靠性。

六、性能要求大功率直流开关电源设计中需要满足一定的性能要求,如输出电压稳定性、效率、负载能力等。

输出电压稳定性要求越高时,需要采用更精确的控制策略和更优秀的器件;效率越高时,要选择低损耗的器件和优化设计;负载能力要求越高时,需考虑电路稳定性、散热设计等因素。

七、设计实例以下是一个大功率直流开关电源的设计实例:1.选型:-功率器件:采用IGBT,因其开关速度快,适合高频开关模式。

宽电压输入直流开关电源的设计

宽电压输入直流开关电源的设计

宽电压输入直流开关电源的设计一、引言随着电子技术的不断发展,人们对电源稳定性、高效性和可靠性的要求也越来越高。

而宽电压输入直流开关电源是一种能够在不同电压范围内提供稳定输出电压的电源设计方案。

本文将介绍宽电压输入直流开关电源的设计原理、关键技术及实现过程。

二、设计原理1.输入电压范围选择2.稳压控制电路稳压控制电路是保证输出电压稳定的核心部分。

常用的稳压控制电路包括电流反馈式稳压控制电路和电压反馈式稳压控制电路。

电流反馈式稳压控制电路适用于输出电流变化较大的情况,而电压反馈式稳压控制电路适用于输出电压波动较大的情况。

3.开关元件选择开关元件的选择直接影响到设计方案的可行性和效率。

常用的开关元件有晶体管、开关管和MOS管。

其中,MOS管具有开关速度快、控制电压低、导通电阻小等特点,是较为常用的开关元件。

三、关键技术1.输入电压稳定性输入电压的稳定性对于宽电压输入直流开关电源的稳定性和可靠性至关重要。

可以通过滤波电路和稳压电路来提高输入电压的稳定性。

2.输出电压稳定性相比传统电源设计,宽电压输入直流开关电源输出电压波动范围更广。

因此,输出电压的稳定性也需要得到保证。

可以通过稳压控制电路和输出滤波电路来提高输出电压的稳定性。

3.效率四、实现过程实现宽电压输入直流开关电源的过程主要包括以下几个步骤。

1.选择合适的输入电压范围。

根据实际需求选择适当的输入电压范围。

2.设计稳压控制电路。

根据所选的输入电压范围和输出电压要求,选择合适的稳压控制电路,并进行设计和优化。

3.选择合适的开关元件。

根据设计要求和性能要求,选择合适的开关元件,并进行电路设计和优化。

4.优化输入电压稳定性。

通过合理的输入电压滤波和稳压电路设计,提高输入电压的稳定性。

5.优化输出电压稳定性。

通过稳压控制电路和输出滤波电路设计,提高输出电压的稳定性。

5.优化电源效率。

通过合理的选材、电路设计和优化,提高电源的效率,减少能量损耗。

六、结论宽电压输入直流开关电源具有宽范围的输入电压和稳定的输出电压特点,可以适应不同电压范围的需求。

宽电压输入直流开关电源的设计.

宽电压输入直流开关电源的设计.
11正激型电路较简单成本低可靠性高驱动电路简单变压器单向励磁利用率低几百瓦几千瓦各种中小功率开关电源反激型电路非常简单成本很低可靠性高驱动电路简单难以达到较大的功率变压器单向励磁利用率低几瓦几十瓦小功率和消费电子设备计算机设备开关电源半桥型变压器双向励磁无变压器偏磁问题开关较少成本低有直通问题可靠性低需要复杂的隔离驱动电路几百瓦几千瓦各种工业用开关电源计算机设备用开关电源全桥型变压器双向励磁容易达到大功率结构复杂成本高可靠性低需要复杂的多组隔离驱动电路有直通和偏磁问题几百瓦几百千瓦大功率工业用开关电源焊接电源点解电源等表21续优秀课件精彩无限
2、能够实现在250V和550V两种电压下正常 工作。250V电压等级的电压范围为: 150V-400V;550V电压等级的电压范围 为: 300V-800V。
3 、电源工作稳定,散热良好,无噪声。
4 、连续工作120小时,未出现异常。
5 、整个电源的成本也控制在了100元以内, 实现了低成本。
Thank you!
表2-2 几种整流电路的比较
电路 全桥型整 流
全波整流
倍流整流
电压比
D D D/2
二极管断 平均电流 态电压
优点
缺点 应用领域
IL /2 U0 /D IL /2 2 U0/D
二极管电 压低,变 压器绕组
结构简单
二级管数 量多,总 通态损耗

高输出电
压 (﹥100 V)的电 路
期间总数 少,结构 简单,总 通态损耗 小
2)输出电源指标:
电压:DC24V±0.5V
允许最大输出:200W
纹波电压:≤100mV
使用环境温度:-10ºC~+45ºC
3)整个电源的成本控制在100元以内,实现低 成本。

10kw直流开关电源设计-学位论文

10kw直流开关电源设计-学位论文

摘要开关电源具有效率高、体积小、重量轻等显著特点。

目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。

本设计的题目为10kW直流开关电源的设计,直流开关电源的工作原理:电网输送来的交流电经整流滤波电路变为直流,经过高频逆变电路变为高频交流,通过高频变压器将高频交流电变压,然后高频交流电经单相桥式整流滤波电路变为直流。

根据直流开关电源的工作原理确定设计方案,选择三相桥式不控整流滤波电路作为主电路的输入级电路,通过分析比较各种变化器的优缺点,选用移相式全桥变换器,设计了高频变压器,选择单相桥式整流电路作为主电路的输出级电路,在电压调节环节上,详细分析了基于UC3825控制芯片的PWM控制电路。

并根据任务要求完成了IGBT驱动电路、系统反馈电路的、保护电路、辅助电源以及均流电路的设计。

本次设计的10kW直流开关电源具有输出电压可调、输出电流大、纹波小等特点。

实验结果表明它基本达到设计要求,从而验证了理论分析的正确性,具有广阔的应用前景。

关键词:变换器;开关电源;高频变压器;PWM控制AbstractSwitching power supply with high efficiency, small size, light weight and other significant characteristics. At present, all the countries in the world have a wide range of applications, especially in the research and development of large capacity and high frequency switching power supply has become a main research field of modern power electronics, and derive a lot of new research directions.The subject of this design is the design of 10kW DC switching power supply, the working principle of DC switching power supply: the grid to the AC rectified filter circuit into a DC, after high frequency inverter circuit into a high-frequency alternating current, high frequency alternating current transformer by high-frequency transformer will, then high frequency AC single-phase bridge rectifier filter circuit for dc. According to the design scheme to determine the working principle of DC switching power supply, selection of three-phase uncontrolled rectifier filter circuit as the input circuit of main circuit, comparing the advantages and disadvantages of various changes through the analysis, selection of phase-shift full bridge converter, high frequency transformer design, selection of single phase bridge rectifier circuit as output circuit of the main circuit, on the voltage regulation part, a detailed analysis of the UC3825 control chip control circuit based on PWM. And the IGBT drive circuit, feedback circuit, protection circuit, auxiliary power supply and a flow equalization circuit is designed according to the requirement of the task.The design of 10kW DC switching power supply has the characteristics of adjustable output voltage, output current, low ripple. The experimental results show that it meets the design requirement, which verifies the correctness of the theoretical analysis, has a broad application prospect.Keywords: converter;Switching power supply;high-frequency transformer;PWM control目录第1章绪论 (1)1.1 开关电源的简介 (1)1.2 开关电源的发展及国外现状 (1)1.3 国内开关电源的发展及现状 (3)第2章系统分析和设计方案确定 (5)2.1系统整体概述 (5)2.2变换器的选择 (6)2.3控制电路的实现 (6)2.4 整流滤波电路的选择 (8)2.4.1 输入整流滤波回路 (8)2.4.2 输出整流滤波回路 (8)第3章开关电源主电路的设计 (9)3.1 开关电源的设计要求 (9)3.2 主电路组成框图 (9)3.2.1 输入整流滤波电路 (10)3.2.2移相式全桥变换器的设计 (12)3.2.3 输出整流滤波电路 (16)第4章控制电路的设计 (19)4.1 PWM集成控制器的基本原理 (19)4.2 高速脉宽调制器UC3825 (19)4.2.1 主要特点 (21)4.2.2 极限参数 (21)4.2.3 内部电路工作原理 (22)4.3 UC3825的调试 (24)4.4 反馈电路的设计 (25)第5章保护电路的设计 (28)5.1 软启动电路的设计 (28)5.2 过流过压保护 (29)第6章辅助电源设计 (32)第7章均流电路设计 (34)7.1 均流电路概述 (34)7.2 开关电源并联系统常用的均流方法 (34)第8章结论 (37)参考文献 (38)致谢 (39)附录1 (40)附录2 (41)第1章绪论1.1开关电源的简介开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET 构成。

直流开关电源的设计

直流开关电源的设计

直流开关电源的设计
直流开关电源是一种电源电路,可以将交流电通过电子开关转换为直流电,常用于计
算机、手机、电子游戏等电子设备的供电。

直流开关电源由电源输入单元、直流电输送单元、开关单元和控制单元等部分组成。

在设计这种电源时,需要考虑电源输入的稳定性、
输出电压的准确性、效率以及电路的可靠性等因素。

电源输入单元是直流开关电源的核心部分,其主要功能是将交流电流转换为DC电流,并对电流进行稳定处理。

电源输入单元可以采用变压器、二极管桥等电路来完成。

直流电输送单元是将直流电能输送至负载的部分。

这部分的设计需要考虑负载的电流、功率和电压等因素。

开关单元是电源的基本单元之一,其作用是通过开关控制电源的开闭状态,从而实现
电源输出的可控制性。

开关单元的设计需要考虑开关电子管的类型选择、保护电路的设计、制冷技术以及寄生电容等因素。

在进行直流开关电源的设计时,需要考虑到因素较多,具体可以采取以下步骤:
1.确定电源的输入电压和输入电流等参数,选择适当的电源输入电路,保证输入电压
稳定。

3.根据输出电压值和负载电流的需求,选择合适的开关电路和控制电路,保证直流电
源的输出电压和电流值稳定。

4.考虑直流开关电源的保护设计,包括过电流保护、过温保护、短路保护等措施,保
证电源的可靠性和安全性。

5.最后进行电源的调试和测试,确保电源符合设计要求,达到预期效果。

总之,直流开关电源的设计需要综合考虑电源输入电路、直流输送电路、开关电路和
控制电路等多方面因素,采取合适的设计策略和技术手段,才能设计出性能良好的直流开
关电源。

开关电源设计报告

开关电源设计报告

1开关电源主电路设计1.1主电路拓扑结构选择由于本设计的要求为输入电压176-264V交流电,输出为24V直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。

前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck电路构成。

总体要求是先将AC176-264V整流滤波,然后再经过BUCK电路稳压到24V。

考虑到变换器最大负输出功率为1000W,因此需采用功率级较高的Buck电路类型,且必须保证工作在CCM工作状态下,因此综合考虑,本文采用全桥隔离型Buck变换器。

其主电路拓扑结构如下图所示:下面将对全桥隔离型BUCK变换器进行稳态分析,主要是推导前级输出电压V与后级输g 出电压V之间的关系,为主电路参数的设计提供参考。

将前级输出电压V代替前级电路,作g 为后级电路的输入,且后级BUCK变换器工作在CCM模式,BUCK电路中的变压器可以用等效电路代替。

由于全桥隔离型BUCK变换器中变压器二次侧存在两个引出端,使得后级BUCK电路的工作频率等同于前级二倍的工作频率,如图1-1所示。

在2T的工作时间内,总共可分为四种S 开关阶段,其具体分析过程如下:1)当0<t<DT时,此时Q、Q和D导通,其等效电路图如图1-2所示。

S145/?1-1) 1-2) 1-3)3) du.•川L i (t )m 严+仃(t )c 二二v (t )R图1-3在DT<t<T 时等效电路SSv=0sv=-v Li=i -v /R C当TS <t<a+D )TS 时,此时Q2、1-4) 1-5)1-6)Q 和D 导通,其等效电路图如图1-2所示。

36图1-2在0<t<DT 时等效电路Sv=nvs gv=nv -vL gi=i -v /RC2)当DT<t<T 时,此时Q ~Q 全部关断,D 和D 导通,其等效电路图如图1-3SS 1465所示。

大功率直流开关电源设计毕业论文

大功率直流开关电源设计毕业论文

摘要开关电源具有效率高、体积小、重量轻等显著特点。

目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。

本文的主要内容就是研制一种高性能、大功率直流开关电源。

本文详细分析了高性能、大功率直流开关电源的工作原理,并提出了主电路和控制电路的详细设计方案。

在此基础上,完成了整个系统的硬件电路设计和软件程序的编制,并对电源装置的硬件和软件进行了调试和修改。

在分析原理的基础上,本文从三相桥式不控整流、全桥变换器、高频变压器、滤波电路等环节对该系统的主电路进行了阐述,同时探讨了该电源系统实现大功率的解决方案,即采用多个电源模块并联运行。

本文还探讨了多个电源模块并联运行时的自动均流技术,并详细介绍了基于平均值的自动均流电路。

在电压调节环节上,详细分析了基于UC3825控制芯片的PWM控制电路。

本文研制的直流开关电源具有输出电压可调、输出电流大、纹波小等特点,而且还具有换档、远程控制等功能。

实验结果表明它基本达到设计要求,从而验证了理论分析的正确性,具有广阔的应用前景。

关键词:DC-DC变换器,开关电源,均流,高频变压器,PWM控制目录摘要 .............................................. 错误!未定义书签。

ABSTRACT ........................................... 错误!未定义书签。

第1章绪论 ........................................ 错误!未定义书签。

开关电源的发展及国外现状........................ 错误!未定义书签。

国内开关电源的发展及现状........................ 错误!未定义书签。

第2章系统的整体分析和选择 ........................ 错误!未定义书签。

直流开关电源的设计

直流开关电源的设计

直流开关电源的设计1. 引言直流开关电源是一种根据输入电源的电压转换为特定输出电压的电源装置,常用于电子设备、通信设备和工业设备中。

本文将介绍直流开关电源的设计原理、关键参数和设计步骤。

2. 设计原理直流开关电源设计的核心是使用开关元件(如MOSFET)进行电压转换。

其工作原理如下:1.输入电压通过整流电路进行整流,并经过滤波电路去除杂散波动,得到一个平滑的直流电压。

2.转换电路使用开关元件将直流电压转换为高频脉冲信号。

3.输出滤波电路平滑高频脉冲信号并降低输出电压纹波。

4.控制电路根据输出电压反馈信号控制开关元件的导通和断开,以维持稳定的输出电压。

3. 关键参数在直流开关电源设计中,有几个关键参数需要考虑:3.1 输入电压范围输入电压范围决定了直流开关电源能够适应的外部电源情况。

一般情况下,输入电压范围应根据应用需求选择合适的数值范围。

3.2 输出电压和电流输出电压和电流是直流开关电源的最重要的输出参数。

根据不同的应用需求,需要确定合适的输出电压和电流数值。

3.3 效率直流开关电源的效率是指输出功率与输入功率之间的比值,通常以百分比表示。

高效率是设计过程中需要追求的目标之一,可通过优化电路拓扑和选择合适的元件来提高效率。

3.4 纹波与噪声直流开关电源输出电压的纹波和噪声对于一些敏感的应用来说是非常重要的指标。

纹波是指输出电压的小幅度波动,而噪声是指随机的杂散信号。

设计过程中需要注意控制纹波和噪声,以满足不同应用的需求。

4. 设计步骤以下是直流开关电源的设计步骤:4.1 确定输出电压和电流需求根据具体的应用需求,确定直流开关电源的输出电压和电流数值。

4.2 选择开关元件根据输出电压和电流要求,选择合适的开关元件,如MOSFET。

4.3 设计输出滤波器设计输出滤波器以降低输出电压的纹波和噪声。

可以使用电容和电感元件组成滤波器。

4.4 设计控制电路设计控制电路以测量输出电压,并根据反馈信号控制开关元件的导通和断开,以维持稳定的输出电压。

半桥式直流开关电源设计报告

半桥式直流开关电源设计报告

电力电子课程设计报告直流开关电源的设计学院:信息科学与工程学院专业:电气工程及其自动化班级:姓名:学号:指导教师:日期:2013年8月21日目录1.课题任务介绍 01.1 技术参数: 01.2 设计要求: 02.直流开关电源总体认知 02.1开关电源的概念 02.2直流开关电源基本结构 02.3直流开关电源的工作原理 (1)3.直流开关电源设计流程 (1)3.1输入整流电路设计 (1)3.1.1单相桥式输入整流电路设计 (1)3.1.2变压器参数计算: (2)3.1.3整流管参数计算 (2)3.1.4滤波电容计算 (3)3.2 DC/DC变换器设计 (3)3.2.1 DC/DC变换器总体概述 (3)3.2.2 半桥式DC/DC典型电路如下 (4)3.2.3 PWM DC/DC变换器的工作原理 (4)3.2.4 DC/DC变换器参数计算 (5)3.3输出滤波整流电路设计 (9)3.3.1输出整流电路图 (9)3.3.2 输出电感的设计 (9)3.3.3 输出电容的计算 (10)3.3.4 整流输出二极管计算 (11)3.4 驱动电路设计 (12)3.4.1 MOSFET管的基本工作原理 (12)3.4.2 IR2110芯片介绍 (13)3.4.3 半桥驱动电路分析图如下 (15)3.4.4 半桥驱动器器件参数选择 (17)3.5 PWM控制电路设计 (17)3.5.1 PWM控制变换原理 (17)3.5.2 SG3525的封装图 (18)3.5.3 SG3525芯片介绍 (19)3.5.4 SG3525参数计算 (20)3.6 反馈电路设计 (20)4. 电路原理图与波形图汇总 (21)4.1 电路原理图 (21)4.1.1 主电路原理图 (21)4.1.2 PWM控制电路原理图 (21)4.1.3 驱动电路原理图 (21)4.2 各部分电路波形图 (22)4.2.1 单相桥式整流电路电压波形图 (22)4.2.2 MOSFET驱动电路波形 (22)5. 主电路元器件清单 (23)6. 电路仿真 (23)6.1 仿真技术总体简介 (23)6.2 SPICE和PSPICE仿真程序介绍 (24)6.3 仿真图表 (25)6.3.1 平均整流输入电压如下 (25)6.3.2 交流输入均方根电压如下 (25)6.3.3 平均桥二极管Pd (26)6.3.4 峰值到峰值输出纹波电压 (26)6.3.5 频率 (27)6.3.6 效率 (28)6.3.7 总输出功率 (28)7. 设计总结与感想 (29)8. 致谢 (30)9. 参考文献 (30)1.课题任务介绍1.1 技术参数:装置输入电源为单相工频交流电源(220V+20%),输出电压V o=24V,输出电流I o=5A,最大输出纹波电压100mV,工作频率f=100kHz。

开关电源的原理与设计

开关电源的原理与设计

开关电源的原理与设计开关电源是一种高效、稳定并且广泛应用于各种电子设备中的电源供应方式。

本文将探讨开关电源的原理与设计方法,帮助读者理解和应用开关电源技术。

一、开关电源的原理开关电源的工作原理主要基于开关器件(如晶体管或MOSFET)、变压器和滤波电路。

其基本原理如下:1. 输入电压通过整流桥变成直流电压,然后经过输入滤波电路去除大部分的纹波。

2. 直流电压通过PWM(脉宽调制)技术控制开关器件,使其周期性地开关。

3. 开关器件的快速开关与关断导致电压和电流的变化,并通过变压器传导到输出端。

4. 输出电压经过输出滤波电路去除纹波,然后供应给负载。

二、开关电源的设计要素1. 选定开关器件:合适的开关器件应具备低导通电阻、快速开关速度和高耐受电压等特点。

2. 设计变压器:变压器的设计应根据输入输出电压比例、功率需求和开关频率来选择合适的磁芯和线圈参数。

3. 输出滤波:合理设计输出滤波电路以减小输出纹波,采用合适的电容和电感来实现滤波效果。

4. 转换控制电路:PWM技术常用于控制开关器件的开关频率和占空比,需要设计合适的控制电路来实现转换。

三、开关电源的设计步骤1. 确定功率需求:根据需求确定开关电源的输出功率和电压范围。

2. 选择开关器件:根据功率需求选择适合的开关器件,考虑其导通电阻、开关速度和电压容忍度等。

3. 设计变压器:根据输入输出电压比例和功率需求设计变压器的磁芯和线圈参数。

4. 设计滤波电路:根据输出电压的纹波要求确定输出滤波电路的参数,包括电容和电感等。

5. 设计转换控制电路:选择合适的PWM控制芯片或设计自己的控制电路,实现开关器件的控制。

四、开关电源的优点1. 高效性:相比线性电源,开关电源的转换效率更高,能够节省能源并减少功耗。

2. 稳定性:开关电源具有更好的稳定性和调节性能,能够在不同负载条件下保持输出电压的稳定。

3. 体积小巧:开关电源采用高频开关器件和储能元件,使得电源尺寸更小、重量更轻。

直流开关电源的设计

直流开关电源的设计

直流开关电源的设计概述直流开关电源是一种常用的电源类型,用于在电子设备中提供稳定的直流电压。

它由三个关键部分组成:变压器、整流器和稳压器。

在本文中,我们将探讨直流开关电源的设计原理和步骤。

设计原理直流开关电源的设计原理基于功率转换和电路控制技术。

其基本工作原理如下:1.变压器将交流输入电压变换为所需的直流输出电压。

2.整流器将变压器输出的交流电压转换为脉冲电压。

3.稳压器通过对脉冲电压进行滤波和稳压,将其转换为稳定的直流输出电压。

设计步骤设计直流开关电源的步骤如下:第一步:确定电源需求首先,需要确定直流开关电源的输入和输出要求。

输入要求包括输入电压和频率,输出要求包括输出电压和电流。

第二步:选择变压器根据电源需求选择适当的变压器。

变压器的选取应考虑到输入和输出电压之间的变换比,以及变压器的功率容量。

第三步:选择整流器整流器将变压器输出的交流电压转换为脉冲电压。

常见的整流器类型有半波整流和全波整流。

根据功率要求,选择合适的整流器。

第四步:选择稳压器稳压器通过对脉冲电压进行滤波和稳压,将其转换为稳定的直流输出电压。

选择合适的稳压器应考虑到输出电压稳定性,负载调节性能以及效率等因素。

第五步:设计控制电路设计控制电路以实现对直流开关电源的稳定输出。

控制电路一般使用反馈控制原理,通过对输出电压进行采样并与参考电压进行比较,调整开关器件的导通时间来实现稳定输出。

第六步:布局与连线在设计完成后,需要进行电路的布局与连线。

布局应合理安排各个元件的位置,以保证电路的稳定性和可靠性。

连线应遵循电路设计原则,避免干扰和回路。

第七步:测试与调试完成电路布局后,需要进行测试与调试,以确保直流开关电源的正常工作。

测试过程中应注意安全措施,并对异常情况进行排查和修复。

总结通过以上步骤,我们可以完成直流开关电源的设计。

设计过程中需要考虑电源需求、选择合适的变压器、整流器和稳压器,并设计控制电路实现稳定输出。

布局与连线应合理安排,测试与调试确保电路正常工作。

毕业设计9DC直流开关电源

毕业设计9DC直流开关电源

摘要本设计是DC/DC直流开关电源设计,首先将开关电源与线性电源进行对比,总结了开关电源的优点,并对其当前的发展以及在发展中存在的问题进行了描述,然后在对开关电源的整体结构进行了介绍的基础上,对开关电源的主回路和控制回路进行设计:在主回路中整流电路采用单相桥式、功率转换电路采用单端正激功率转换电路、采用增加副边绕组的方法实现多路输出,其中功率转换电路(DC/DC变换器)是开关电源的核心部分,对此部分进行了重点设计;控制电路采用PWM控制,控制器采用开关电源集成控制器GW1524、设计了过压保护电路、电压检测电路和电流检测电路,对各个部分的参数进行了计算并进行了元器件的选型。

【关键词】DC/DC变换器、PWM控制、整流、滤波。

AbstractIn this paper,I designed a switch power supply system with three outputs: Compare the switch power with linear power at first , has summarized the advantage of the switch power ,have described its present development and there are natural questions in development. On the basis of the thing that the whole structure to the switch power has made an introduction, to the main return circuit and controlling the return circuit to design of the switch power: The rectification circuit adopts the single-phase bridge type in the main return circuit, the power changes the circuit and adopts and defies the power to change the circuit , realize by increasing the winding of one pair of sides single and well that many ways are exported, it is a key part of the switch power supply that the power changes circuit (DC/DC transformer ), have designed this part especially ; The control circuit adopts PWM to control, the controller adopts the switch power integrated controller GW1524, design the circuit to measure voltage and the circuit to el measure ectric current, selecting type of calculating and carrying on the components and parts the parameter of each part.Keyword:DC/DC transformer , PWM control , rectification , straining waves.目录1 概述 ------------------------------------------------------- 11.1开关电源的基本原理-------------------------------------------------------- 11.2开关电源与线性电源的比较----------------------------------------------- 21.3开关电源的发展与应用----------------------------------------------------- 21.4 开关电源当前存在的问题 ------------------------------------------------- 32 整流电路的设计 --------------------------------------------- 52.1整流电路的选择 -------------------------------------------------------------- 52.1.1单相半波整流电路 (6)2.1.2单相桥式整流电路 (7)2.2 防止电流冲击的设计 ------------------------------------------------------- 72.3 参数计算以及元器件的选型 ---------------------------------------------- 82.3.1整流管参数计算 (9)2.3.2 变压器参数 (9)2.3.3 电容参数计算 (10)3 DC/DC变换器的设计----------------------------------------- 113.1控制方式的选择 ------------------------------------------------------------- 113.2 功率转换电路的选择 ------------------------------------------------------ 123.2.1 推挽式功率转换电路 (12)3.2.2 全桥式功率转换电路 (13)3.2.3 半桥式功率转换电路 (13)3.2.4 正向激励功率转换电路 (14)3.2.5 反向激励功率转换电路 (15)3.3单端正激变换器的设计---------------------------------------------------- 153.3.1工作原理 (16)3.3.2能量再生线圈P2的工作原理 (17)3.3.3 多路输出的设计 (17)3.3.4 变压器设计 (17)3.3.5电感的参数计算 (19)3.3.6 二极管和电容器的选择 (21)3.3.7 开关管的选择 (21)4 控制电路的设计 -------------------------------------------- 224.1控制模式的选择 ------------------------------------------------------------- 224.1.1电压模式控制 (22)4.1.2平均电流模式控制 (23)4.1.3 峰值电流模式控制 (24)4.1.4滞环电流模式控制 (25)4.1.5相加模式控制 (26)4.2 开关电源集成控制器 ------------------------------------------------------ 264.2.1 GWl524的特点 (27)4.2.2 1524 的极限使用值和主要电性能 (27)4.2.3 GW1524的内部结构 (27)4.2.4 GW1524工作过程 (30)4.3电压检测电路 ---------------------------------------------------------------- 314.4电流检测电路 ---------------------------------------------------------------- 324.4.1电阻检测 (32)4.4.2电流互感器检测 (33)4.5 启动和集成电路供电电路设计 ------------------------------------------ 344.6 保护电路的设计 ------------------------------------------------------------ 355 结论及设想 ------------------------------------------------ 37致谢 -------------------------------------------------------- 38参考文献 ---------------------------------------------------- 39附录1:开关电源原理图--------------------------------------- 40附录2:元器件清单------------------------------------------- 411 概述电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子技术课程设计》课程设计报告设计题目直流开关电源的设计学院班级姓名学号指导教师日期一、设计任务:直流开关电源的设计二、设计的主要技术指标及特点电路指标参数1、交流输入电压AC95~270V;2、直流输出电压15V;3、输出电流6A;4、输出纹波电压≤0.2V;5、输入电压在95~270V之间变化时,输出电压误差≤0.03V;三、设计的具体要求设计要求:(1)设计主电路,建议主电路为:整流部分是桥式二极管整流,大电容滤波,DC/DC部分采用半桥变换器,主功率管用MOSFET;(2)选择主电路所有图列元件,并给出清单;(3)设计MOSFET驱动电路及控制电路;(4)绘制装置总体电路原理图及PCB设计图(5)编制设计说明书、设计小结。

四、设计内容(一)、总体设计思路及框图1.1设计总体思路输入——EMC等滤波——整流(也就一般的AC/DC类似全桥整流模块)——DC/DC模块(全桥式DC—AC—高频变压器—高频滤波器—DC,)——输出。

系统可以划分为变压器部分、整流滤波部分和DC-DC变换部分,以及负载部分,其中整流滤波和DC-DC变换器构成开关稳压电源。

整流电路是直流稳压电路电源的组成部分。

整流电路输出波形中含有较多的纹波成分,所以通常在整流电路后接滤波电路以滤去整流输出电压的纹波。

直流/直流转换电路,是整个开关稳压电源的核心部分。

1.2开关稳压电源的基本原理框图如图1-1所示:图1-1 开关稳压电源基本原理框图(二)电路设计及原理分析2.1、基本原理开关稳压电源包括输入电路、有源调整、功率转换、输出电路、控制电路、频率振荡发生器六部分电路。

其中输入电路包含有低通滤波和整流环节。

交流电压经桥式整流和低通滤波后得到未稳压的直流电压Vi,此电压送到有源调整电路进行功率因数校正,以提高功率因数,它的形式是保持输入电流与输入电压同相。

功率转换是由电子开关和高频变压器来完成,它把高功率因数的直流电压变换成受到控制的符合设计要求的高频方波脉冲电压。

输出电路用于将高频方波脉冲电压经整流滤波后变成直流电压输出。

控制电路使输出电压经过分压采样后与电路的基准电压进行比较放大。

而频率振荡发生器产生一种高频波段信号,该信号与控制信号叠加进行脉宽调制,达到脉冲宽度可调。

其中高频电子开关是实现电能转换的主要单元,在一个周期内,电子开关的接通时间ton 与一个周期所占时间的比值叫做接通占空比D,D=ton/T。

断开时间与周期T的比例称为断开占空比D’,D’=toff/T。

接通占空比越大,负载上的电压越高,表明电子开关的接通时间越长,此时负载感应电压较高,工作频率也较高,能量传递速度也快,便于实现高频变压器的小型化。

但是开关电源中的开关功率管、高频变压器、控制集成电路以及输入整流二极管的发热量高,损耗大。

对于不同的变换器形式,所选用的占空比是不一样的。

2.2单元电路设计2.2.1整流滤波电路电子设备的电源线是电磁干扰(EMI)出入电子设备的一个重要途径,在设备电源线入口处安装电网滤波器可以有效地切断这条电磁干扰传播途径,本电源滤波器由带有IEC插头电网滤波器和PCB电源滤波器组成。

IEC插头电网滤波器主要是阻止来自电网的干扰进入电源机箱。

PCB电源滤波器主要是抑制功率开关转换时产生的高频噪声。

交流输入220V时,整流采用桥式整流电路。

如果将JTI跳线短连时,则适用于110V交流输入电压。

由于输入电压高,电容器容量大,因此在接通电网瞬间会产生很大的浪涌冲击电流,一般浪涌电流值为稳态电流的数十倍。

这可能造成整流桥和输入保险丝的损坏,也可能造成高频变压器磁芯饱和损坏功率器件,造成高压电解电容使用寿命降低等。

所以在整流桥前加入由电阻R1和继电器K1组成的输入软启动电路。

电路如图2-1所示:图2-1 输入整流滤波电路2.2.2反激式变换器根据电路的结构形式的不同,脉宽式变换器可分为:正激式、反激式、半桥式、全桥式、推挽式和阻塞式。

所谓反激式是指变压器的初级极性与次级极性相反。

反激式变换效率较高,线路简单,能多路输出。

当开关管VT截止时,变压器初级所积蓄的电能向次级传送,这时变压器的次级绕组下端为负,上端为正,二极管VD正向导通,导通电压经过电容C滤波后向负载RL供给电能。

当变压器的初级储存的电能释放到一定程度后,电源电压Vin通过变压器的初级绕组N1向三极管VT的集电极充电,N1又开始储能。

V1上升到一定程度后,三极管VT 截止,又开始新一轮放电。

在充电周期,变换器的输出电压为V o=Vin *D*(N1/N2)。

变换器电路如图2-2所示。

图2-2 变换器电路2.2.3 MC33374MC33374采用8引脚双列直插式封装(DIP-8)或五脚TO-220式封装管脚排列。

内部结构主要包括九个部分:振荡器、并联调整器\误差放大器、脉宽调制比较器与脉宽调制触发器、电流极限比较器及功率开关管、启动电路、欠压锁定电路、过热保护电路和状态控制器。

其各管脚功能说明如下,结构如图2-3所示:管脚1(VCC):工作电源电压输入端。

在启动芯片时,必须通过管脚5(D)给该管脚供给10V以下的工作电压。

当VCC>8.5V(工作阀值电压)时,启动电路中的MOS场效应管立即关断,而功率开关管开始工作,从高频变压器次级线圈上即可获得正常输出电压,此时改由反馈给芯片供电。

一旦电源发生过载或短路故障,致使VCC<7.5V(欠压阀值电压),功率开关管就关断,而共启动用的MOS场效应管则工作,芯片进入自启动工作模式。

管脚2(FB):反馈输入端。

该端经内部15Ω电阻接误差放大器的反向输入端,能周期性的控制功率开关管的通断。

反馈的上下阀值电压分别为8.5V 7.5V,有1V的滞后电压。

此端通常与VCC端连通,并且接反馈线圈的输出电压。

显然,反馈电压值就就反映了开关电源输出电压的高低。

反馈线圈的输出电压,经高频整流滤波后形成反馈输出电压,再通过光耦合器中的光敏三极管接反馈端。

光耦合器的发射管接在取样电路中。

反馈端经过R3,C5接地。

C5具有三个作用:(1)启动电路定时电容;(2)兼做补偿电容,与R3 一起对反馈环路进行频率补偿;(3)作为工作电压VCC的旁路电容,在启动过程中对C5充电,建立VCC。

管脚3(GND):接地。

该端是控制电路与功率开关管的公共地,给元件加装散热器时兼作为散热器的地端。

管脚4(state control input,SCI):状态控制输入端。

它也是一个多功能的引出端,只需配少量的外围元器件,就能用多种方式来控制变换器的开关状态。

它所具有的六种状态控制如下:(1)利用按键触发方式来选择工作模式或备用模式;(2)配微控制器进行关断操作;(3)给状态控制器配以低压保护电路,使之在工作模式装换过程种不会引起开关电源输出电压的波动;(4)利用数字信号进行控制;(5)配上电延时电路;(6)禁止对状态控制器进行操作。

管脚5(power switch drain,D):功率开关管漏极引出端。

该端能直接驱动高频变压器的初级。

此外,它还与内部启动用mos场效应管的漏极相连。

图2-3 MC333742.2.4反馈电路反馈的基本类型又四种,即基本的反馈电路、改进型基本反馈电路、配稳压管的光电耦合反馈电路以及配TL431的精密光电耦合反馈电路。

配TL431的精密光电耦合反馈电路在开关电源中应用最多,效果最好,稳压性能最佳。

如图所示,用TL431代替稳压管构成外部误差放大器,对输出电压Vo做精细调整,组成精密开关电源,使电压调整率和负调整率均能达到0.2%以下。

可调式精密电源稳压器TL431B构成了外部误差放大器,再与光耦合器MOC8103一起组成光耦反馈电路,反馈电压UFB加至MC33374的反馈端。

其稳压原理是当输出电压U0发生波动时,经R5 R6 分压后得到的取样电压就与TL431B中的2.5V基准电压进行比较,产生外部误差电压Ur,再通过光耦合器使第二脚的反馈电流IFB产生相应的变化,并以此调节输出占空比,达到稳压的目的。

考虑到高频变压器的初次级间耦合电容会造成供墨干扰,现利用C14加以滤除。

C7为控制环路的补偿电容。

R4为LED的限流电阻。

反馈电路如图2-4所示。

图2-4 反馈电路2.2.5脉宽调制器开关电源的控制方式主要包括脉宽调制,脉冲频率调制。

脉冲频率调制是将脉冲宽度固定,通过调节工作频率来调节输出电压。

交流输入电压经过整流滤波后变为脉动的直流电压,供给功率开关管作为动力电源。

开关管的基极或场效应管的栅极由脉宽调制器的脉冲驱动。

脉宽调制器由基准电压源,误差放大器,PWM比较器和锯齿波发生器组成,如图所示。

开关电源的输出电压和基准电压进行比较,放大,然后将其差值送到脉冲调制器。

脉冲调制的频率是不变的,当输出电压V o下降时,与基准电压比较的差值增加,经放大后输入到PWM比较器,加宽了脉冲宽度。

宽脉冲经开关晶体管功率放大后,驱动高频变压器,使变压器初级电压升高,然后耦合到次级,经过二极管整流和电容滤波后,输出电压上升,反之亦然。

脉宽调制器电路如图2-5所示。

图2-5 脉宽调制器电路(三)、电路相关计算3.1变压器参数的计算输入电压为95~270V/50Hz;输出电压为为15V、输出电流为6A。

N2是次级绕组,N3是反馈绕组。

(1)磁心大小的选择输出功率:Po=VS2*IS2+VS3*IS3设VS3=8V,IS3=0.1A,占空比D=0.5,效率为85%,则Po=15*6+8*0.5=94W输入功率Pi=Po/μ=94/0.85=110W根据输入功率选择EE30磁芯。

设工作频率为f=50KHz,则周期为T=1/f=20(μs)(2)电子开关的接通时间ton初级绕组开关晶体管VT1的最大导通时间对应于最低输入电压和最大负载。

ton=D*T =0.5*20=10(μs)(3)最低直流输入电压当变换器在最低输入电压下满载工作时,计算它输入端的直流电压Vp 。

对于单相交流电容滤波,直流电压不会超过交流输入有效值的1.3倍,倍压整流系数1.9倍,则Vp=95*1.3*1.9=247.65V选择工作时的磁通密度△Bac :输出功率与EE 磁芯尺寸的对照表可选用EE30,中心柱的有效面积为115mm 2,饱和磁通密度在100摄氏度时为360mT, 对于一般形状、材质的铁氧体磁芯,当工作在频率为50kHz 时,磁通密度为饱和值的65%。

△Bac=360*0.65=234(mT)(4)原边匝数作用电压为一个方波,一个导通期间伏秒值与原边匝数的关系为1N A B t V N e ac on P P =⋅∆⋅=式中Np 为原边匝数;Vp 为原边所加直流电压;ton 为导通时间;Ae 为铁芯有效面积(2mm )。

92115234.01065.247=⨯⨯=p N (匝) (5)次级匝数 设肖特基二极管的管压降为0.8V , 电感L 的压降为0.4V ,则初级绕组每伏匝数n=Vp/Np=247.65/92=2.69(伏/匝)次级绕组匝数N2=(15+0.8+0.4)/2.69=6(匝)(6)反馈绕组匝数N3=8/2.69≈3(匝)3.2取样电路的计算R2的阻值:Ω=⨯-=-=-27010465.2155.232F O I V R 其中IF 是光电耦合器中发光二极管的电流在传输比CTR 为120%时的标称值。

相关文档
最新文档