第二章--工件的定位

合集下载

工件定位的基本原理

工件定位的基本原理

整理ppt
23
4、限制自由度与加工要求的关系,从上面 几例分析知,一般情况下:
⑴保证一个方向上的加工尺寸需要限制1-3个自由度:
⑵保证二个方向上的加工尺寸需要限制4--5 个自由度:
⑶保证三个方向上的加工尺寸需要限制6个 自由度。
特殊性例外。如在圆球上铣平面需限制1个 自由度,在圆柱上铣平面需限制2个自由度。
整理ppt
8
3、尺寸精度获得的方法
▪ ⑴试切法:试切→测量→调刀,反复进行,达到 要求。单件加工用。
▪ ⑵定尺寸刀具法:由刀具尺寸确定加工要素尺寸。 ▪ ⑶调整法:事先调整好刀具与夹具(工件)的位置,
在加工一批工件过程中,刀具位置不变。夹具课 中涉及尺寸精度获得的方法一般试为调整法。 ▪ ⑷自动控制法:通过自动控制机床、刀具的运动, 达到尺寸精度的方法。
图2.3 铣槽整理定p位pt 分析
14
下2.4图在工件上铣槽,保证槽在三个方向上的位 置要求,试确定定位方案。
①保保分证证析槽槽满的的足左上加右下工位位要置置求要要必求求须::限必必制须须的限限自制制由度,也xx 简y y 称z z 理限
保证槽的前后位置要求: 必须限制 y
综合结果:必须限制六个自由度。
可见工件定位采用那一种定位类别,主要由加 工要求确定。反过来讲,也都能满足加工要求。
图2.4
整理ppt
22
图2.3
3、定位中存在问题
➢ ⑴欠定位:工件定位时,应该限制的自由度没 有被全部限制的定位。实际不允许发生。
➢ ⑵过定位(重复定位):工件定位时,几个定位 元件重复限制工件同一自由度的定位。
如下2.6图,位于同 一平面内的四个定位 支承钉限制了三个自 由度,是否允许,视 具体情况,干涉、冲 突就不允许。

第二章 工件在夹具中的定位

第二章 工件在夹具中的定位

Z
Y
X
考虑定位方案时,先分析必须消除哪些自由度,
再以相应定位点去限制。
Z
Z
Y
Y
X X
a) b)
ox方向上没有原始尺寸要求, 因此沿这个方向移动的自由 度。可以不加限制,工件只 要限制五个自由度就够了。 图2-3
只有oz方向上有原始尺寸, 但要保 证此尺寸必须限制三个 自由度,即沿Z轴的移动和绕X 轴、Y轴的转动
“一面两销”的两圆柱销重复限制了沿 x 方向的移动自 由度,属于过定位。由于工件上两孔的孔心距和夹具上两销 的销心距均会有误差,因而会出现上图所示的相互干涉现象。
解决“一面两孔”的定位干涉问题的途径: (1)减小一个销的直径; (2)将一个销做成削边销。
3)定位心轴
主要用于盘套类零 件的定位。心轴定心精 度高,但装卸费时,有 时易损伤工件孔,多用 于定心精度要求高的情 况。定位时,工件楔紧 在心轴上,多用于车或 磨同轴度要求高的盘类 零件,小锥度心轴实际 上起不到定位的作用
2-1. 工件定位原理
(1)六点定位原理
一个自由的物体,它对三 个相互垂直的坐标系来说,有 六个活动可能性,其中三种是 移动,三种是转动。习惯上把 这种活动的可能性称为自由度, 因此空间任一自由物体共有六 个自由度。
图2-1 工件自由度示意图
未定位工件在空间有六个自 由度,定位就是限制其自由度。
合理布置六个定位支承 点,使工件上的定位基面与 其接触,一个支承点限制工 件一个自由度,使工件六个 自由度被完全限制,在空间 得到唯一确定的位置,此即 六点定位原理。
AO AC AO2 AB
' 2
2 2
2
2
2
2
D2 b 1 D 2 min b Tlk Tlx 2 2 2 2 2 2

习题册参考答案-《机床夹具(第五版)习题册》-B01-3599

习题册参考答案-《机床夹具(第五版)习题册》-B01-3599

第一章机床夹具基础知识第一节机床夹具概述一、填空题1.根据机械工艺规程要求,在加工中,用来正确地确定工件及刀具的相对位置,并且合适而迅速地将它们夹紧的一种机床附加装置称为机床夹具。

2.通常,习惯于把夹具按其通用化程度分为通用夹具、专用夹具、拼装夹具三个大类。

3.机床夹具一般由定位装置、夹紧装置、夹具体三大主要部分组成。

4.根据不同的使用要求,机床夹具还可以设置对刀装置、刀具引导装置、回转分度装置及其他辅助装置。

5.按夹具适用的机床及其工序内容的不同,可以把夹具分为钻床夹具、铣床夹具、车床夹具、磨床夹具、镗床夹具、齿轮加工机床夹具、电加工机床夹具、数控机床夹具等。

二、选择题:1.工件在机床上加工时,通常由夹具中的(A)来保证工件相对于刀具处于一个正确的位置。

A.定位装置 B.夹具体C.夹紧装置 D.辅助装置2.机用平口钳是常用的(B)。

A.专用夹具 B.通用夹具C.拼装夹具 D.组合夹具3.下列夹具中,(D)不是专用夹具。

A.钻床夹具 B.铣床夹具C.车床夹具 D.三爪自定心卡盘4..( A )是夹具的核心部分。

A.定位装置B.夹紧装置C.夹具体D.V型块5.(A )是由预先制造好的各类标准元件和组件拼装而成的一类新型夹具。

A.拼装夹具 B.专用夹具C.通用夹具 C.数控机床夹具6.在机床夹具中,V形块通常作为(D )使用。

A.夹具体 B.夹紧装置C.辅助装置 D.定位元件7.下列说法中,(C)不正确。

A.一般情况下,机床夹具担负着工件在夹具中的定位和夹紧两大功能。

B.夹具相对机床和刀具的位置正确性,则要靠夹具与机床、刀具的对定来解决。

C.工件被夹紧后,就自然实现了定位。

D.定位和夹紧是两回事。

三、判断题:1.一般来说,通用夹具是机床夹具中的主要研究对象。

(×)2.工件安装时,采用找正定位比采用夹具定位效率更高,精度更高。

(×)3.机床夹具只能用于工件的机械加工工序中。

(×)4.夹具体是整个夹具的基础和骨架。

第二章工件的定位-文档资料

第二章工件的定位-文档资料
第二章 工件的定位
第一节 六点定则
夹具中的工 件是如何实现 定位的?
第二章 工件的定位
一、不定度概念
不定度——用来描述工件在某一预先设定的空间直 角坐标系中定位时,其空间位置不确定程度的六个位置 参量。
第二章 工件的定位
工件空间位置的不定度 名称 符号 X 移动 不定 含义 工件沿X轴方向移 图例

第二章 工件的定位
通孔
盲孔
通孔
盲孔
第二章 工件的定位
二、完全定位
完全定位——工件在夹具中,六个不定度全部被消 除的定位。
第二章 工件的定位
三、不完全定位
不完全定位——六个不定度不需要完全消除的定位。
第二章 工件的定位
四、欠定位和重复定位
欠定位——工件实际定位所消除的不定度数目少 于按其加工要求所必须消除的不定度数目。
C型
第二章 工件的定位
工件上幅面较大、跨度较大的大型精加工平面,多 选用支承板来体现夹具上定位元件的定位表面。
A型 支承板
B型
第二章 工件的定位
自位轴承是指能够根据工件实际表面情况,自动调 整支承方向和接触位的浮动支承。
球面副浮动结构
球面锥座式浮动结构
摆动杠杆式浮动结构
第二章 工件的定位
可调支承是指支承高度可以调节的定位支承。可调 支承的常用结构及其应用见下表。
第二章 工件的定位
(4)自动定心夹紧心轴
第二章 工件的定位
3.外圆柱面定位基准面
(1)V形块
常见的V形块
第二章 工件的定位
V形块的应用
当工件以局部曲面参与定位时,V形块往往成为 首选定位元件。另外,V形块也可以做成活动结构。 这样,它除可以提供一个定位点,还兼做夹紧元件, 具有定心夹紧功能。

定位误差综合分析

定位误差综合分析

基准位移误差△W=(Dmax-dmin)/2
工序基准
定位误差△D= △ B+ △ W =TD/2+( Dmax-dmin)/2
【例】如图所示,在轴套上铣削键槽。设定心轴水平放置,工件在垂直 向下的外力作用下,其圆柱孔与心轴的上母线接触。试求定位误差?
定位基准
工序尺寸为H2,工序基准为孔轴线 基准不重合误差△B=0
H3
上母线
Td/2
(Dmax-dmin)/2
△B+△W △W △B+△W
【 练习】钻铰图所示凸轮上的两φ16小孔,定位方工如图所示,定位
销直径Φ22
mm,求加工尺寸100±0.01的定位误差。
【 练习】如图所示为工件以内孔在夹具心轴上定位铣键槽,应保证槽深
尺寸34.8 mm的要求。已知定位孔 Φ20 mm( Φ20H7),定
练习4:如图所示,工件以φ50的外圆柱面在V形块中定位铣削两斜面,要 求保证尺寸A。试分析定位误差和定位质量。
举例:分析和计算键槽铣削夹具定位方案的合理性
工序要求
工序基准 定位基准 基准不重合误差 基准位移误差
槽深尺寸37
0 -0.4
轴线
轴线
△B=0
△W=IT8/2sin45
槽宽尺寸6+00.03
轴线
轴线
△B=0
△W=0
三、工件以心轴定位圆孔
定位基准为孔中心线 1. 工件圆柱孔在无间隙配合心轴上定位
因无间隙配合,△W=0 定位误差△D=△B
2. 工件以圆柱孔在间隙配合心轴上定位
(1)圆柱孔与心轴固定单边接触
△W=Xmax/2 =(Dmax-dmin)/2
固定单边接触时的基准位移误差

第四课 工件定位

第四课 工件定位
V形铁:
支承钉A、B:
重复消除
知识拓展
重复定位的正确处理
四个支承钉消除三个不定度?
是否允许?
情况1、工件定位基准面为毛坯面(粗基准) 不允许
情况2、工件定位基准面为已加工面(精基准) 四个支承钉装配后一次磨出 允许
知识拓展
工件由长圆柱和大端面定位
工件 长圆柱
Z XO Y
大端面
长圆柱消除不定度情况:
Z 长圆柱消除不定度情况:
XO Y
小端面
小端面消除不定度情况:
工件长圆柱和大端面重复定位的正确处理
Z XO Y
工件 短圆柱
处理2、工件由短圆柱和大端面定位
短圆柱消除不定度情况:
大端面
大端面消除不定度情况:
工件长圆柱和大端面重复定位的正确处理
工件 长圆柱
处理3、工件由长圆柱和浮动端面定位
Z XO Y
长圆柱消除不定度情况:
浮动端面
浮动端面消除不定度情况:
课后习题1
定位形式
长圆柱+小端面
Z YO X
工件应消除不定度情况:
长圆柱+浮动端面
长定位套+短端面 (三爪卡盘)
图形
课后习题2
工序:工件钻孔4XφD
Z YO X
Z YO X
工件钻孔应消除不定度情况:
支承钉 V形铁:
课后习题3
若工件为六面体,底面上三个定位支承点在同一条 直线上,此时消除了几个不定度,为什么?
第二章 工件的定位
第二节 工件定位
工件在夹具中定位,是否在任何情况 下都必须消除工件的六个不定度呢?
只要消除那些对于本工序加工 精度有影响的不定度即可。
铣不通槽时需要消除几个不定度?

工件加工时的定位及基准

工件加工时的定位及基准
26
共28页
五、常见定位分析
4)过定位
工件在定位时,同一个自由度被两个或两个以上定位点 限制,这样的定位被称为过定位(或定位干涉)。 过定位是否允许,应根据具体情况进行具体分析。 一 般 情 况 下
——如果工件的定位面为没有经过机械加工的毛坯面,或虽经过了 机械加工,但仍然很粗糙,这时过定位是不允许的; ——如果工件的定位面经过了机械加工,并且定位面和定位元件的 尺寸、形状和位置都做得比较准确,比较光整,则过定位不但对工 件加工面的位置尺寸影响不大,反而可以增加加工时的刚性,这时 过定位是允许的。
的六个自由度均被限制,工件在空间就将占
有一个惟一确定的固定位置。
19
共28页
四、工件的定位
用图中如此
(一)六点定位原理
设置的六个定位
点,去分别限制
工件的六个自由 度,从而使工件 在空间得到确定 位置的方法,称
为六点定位原理。 六点定位简图
20
共28页
四、工件的定位
应用六点定位原理时,须注意以下两点:

以符号 X 、 、 分别表示沿X、Y、Z轴的轴向位置自由度(简 Y Z
称轴向自由度)和以符号 、 、 分别表示绕X、Y、Z轴的角 度方位的位置自由度(简称角向自由度)。因此,工件的自由 度共有六个。


18
共28页
四、工件的定位
定位的任务: 就是要设法限制工件的自由度。 若工件的某一个自由度被限制,工件在 这个方向或方位上的位置就确定了;若工件
9
共28页
2. 工艺基准
(4)装配基准
装配时用以确定零件、组件 和部件相对于其他零件、组件和
部件的位置所采用的基准。
10
共28页

工件的定位与夹紧

工件的定位与夹紧

划线找正法示例Leabharlann 图2 划线找正装夹图3 套筒零件简图
1.快换钻套 2.导向套 3.钻模板 4.开口垫圈 5.螺母 6.定位销 7.夹具体
图 4 套筒钻夹具
二、工件的定位 工件的定位
◆六点定位原理
:任一刚体在空间都有六个自由度,为 使工件完全定位,必须有合理分布的 六个定位支承点分别限制其六个自由 度,使工件的位置唯一。
●基准
设计基准 工序基准 工序基准 定位基准( 定位基准(大平面、长圆柱面或轴线) ) 三者重合,提高位置精度
●定位元件 定位元件
◆定位元件的基本要求 ①足够的精度 ②足够的硬度和耐磨性 ③足够的强度和刚度 ④工艺性好
◆平面定位 ◇主要支承 —限制自由度 ①固定支承 —支承钉
支承板 非标支承板 ②可调支承 —一批工件调一次
(原则上不允许)
zz
o
x
y
注:若不限制 y 等 为欠定位,不符要求
图7
完全定位
z
z
y
X
o y
不完全定位
X
图8
x y
后果:
1.心轴 2.支承凸台 3.工件 4.压板
1)机床心轴弯曲 2)工件翘曲变形 图9 插齿时齿坯的定位(过定位) 插齿时齿坯的定位(过定位)
x y
图10 齿坯过定位的影响
改变定位结构避免过定位
Z
x、 y、 z
( y (
z
O
(
z
x 、 y 、z
x ( x
X
(
(
Y y
y
5 4
Z
6
O
y Y
3 2
1
X
图5 长方体定位时支承点的分布

定位方法及定位元件

定位方法及定位元件

生产中最常用的是“一面两孔” 生产中最常用的是“一面两孔”定位
“一面两孔”定位的特点: 一面两孔”定位的特点: 容易实现基准统一; 位置精度高; 存在过定位现象(支承平面限制三个自由 度,每根短销限制两个自由度)
为了保证销的 强度,通常使 用菱形销。 图a用于直径很 小时 图b用于直径为 3~50mm时 图c用于大于 50mm时
分析限制自由度数。 分析限制自由度数。
作业: 1-12、13 思考题 1-14
(2) 当孔径、销径为: 当孔径、销径为: D1min、D2min、d1max、d2max 孔间距最大、销间距最小: (L+δLD)、 (L–δLd) 第一销孔中心到第二孔径的最小距离为: L+δLD–D2min/2= L–δLd–d2max/2–X2min/2 即:d2max= D2min –2(δLD+ δLd+ X2min/2)
1.4.4工件的定位(二) 工件的定位( 工件的定位
本节主要任务: 本节主要任务: 了解工件的定位方法及定位元件的使用 分析不同的定位基准面所采用不同的定位元 件 熟悉定位元件的结构形式和应用特点
1.4.4定位方法及定位元件 定位方法及定位元件
工件在夹具中定位时,是把支承点转化为 支承点转化为 具有一定结构的定位元件与工件相应的定 具有一定结构的定位元件 位基准面相接触或配合面实现的。 定位元件的结构形状、尺寸、布置形式, 定位元件 主要取决于加工要求、工件定位基准、外 力作用状况等因素。 定位元件的选择、制造精度直接影响定位 精度、工作效益。
dmax=Dmin – Xmin
d — 轴径;D — 孔径;X — 间隙 轴径; 孔径;
第二定位销装入的条件:
(1) 当孔径、销径为: 当孔径、销径为: D1min、D2min、d1max、d2max 孔间距最小、销间距最大: 孔间距最小、销间距最大: (L–δLD)、 (L+δLd) δ 、 δ 第一销孔中心到第二孔径的最大距离为: 第一销孔中心到第二孔径的最大距离为: L–δLD+ D2min/2= L+δLd+ d2max/2+X2min/2 δ δ 即:d2max= D2min –2(δLD+ δLd+ X2min/2) δ

机械制造技术基础(第2版)前五章课后习题答案

机械制造技术基础(第2版)前五章课后习题答案

《机械制造技术基础》部分习题参考解答第一章绪论1-1 什么是生产过程、工艺过程和工艺规程?答:生产过程——从原材料(或半成品)进厂,一直到把成品制造出来的各有关劳动过程的总称为该工厂的过程。

工艺过程——在生产过程中,凡属直接改变生产对象的尺寸、形状、物理化学性能以及相对位置关系的过程。

工艺规程——记录在给定条件下最合理的工艺过程的相关内容、并用来指导生产的文件。

1-2 什么是工序、工位、工步和走刀?试举例说明。

答:工序——一个工人或一组工人,在一个工作地对同一工件或同时对几个工件所连续完成的那一部分工艺过程。

工位——在工件的一次安装中,工件相对于机床(或刀具)每占据一个确切位置中所完成的那一部分工艺过程。

工步——在加工表面、切削刀具和切削用量(仅指机床主轴转速和进给量)都不变的情况下所完成的那一部分工艺过程。

走刀——在一个工步中,如果要切掉的金属层很厚,可分几次切,每切削一次,就称为一次走刀。

比如车削一阶梯轴,在车床上完成的车外圆、端面等为一个工序,其中,n, f, a p不变的为一工步,切削小直径外圆表面因余量较大要分为几次走刀。

1-3 什么是安装?什么是装夹?它们有什么区别?答:安装——工件经一次装夹后所完成的那一部分工艺过程。

装夹——特指工件在机床夹具上的定位和夹紧的过程。

安装包括一次装夹和装夹之后所完成的切削加工的工艺过程;装夹仅指定位和夹紧。

1-4 单件生产、成批生产、大量生产各有哪些工艺特征?答:单件生产零件互换性较差、毛坯制造精度低、加工余量大;采用通用机床、通用夹具和刀具,找正装夹,对工人技术水平要求较高;生产效率低。

大量生产零件互换性好、毛坯精度高、加工余量小;采用高效专用机床、专用夹具和刀具,夹具定位装夹,操作工人技术水平要求不高,生产效率高。

成批生产的毛坯精度、互换性、所以夹具和刀具等介于上述两者之间,机床采用通用机床或者数控机床,生产效率介于两者之间。

1-5 试为某车床厂丝杠生产线确定生产类型,生产条件如下:加工零件:卧式车床丝杠(长为1617mm ,直径为40mm ,丝杠精度等级为8级,材料为Y40Mn );年产量:5000台车床;备品率:5%;废品率:0.5%。

第二章工件的定位

第二章工件的定位

(2)圆柱几何体的定位
1)定位基准是长圆柱面的轴线、 端平面和键槽 2)主要定位基准为长圆柱面的 轴线
3) 1、、 2 3、 4 x、z、x、z 4) 5 y 5) 6 y
பைடு நூலகம்
特点:定位接触点在圆柱面上,而定位基准则为中心轴线。
(3)圆盘几何体的定位
1) 圆柱面较短,其定位功能将 降低 2)端平面较大,作主要定位基 准
锥度心轴
5)通常定位精度为0.01mm的同轴度公差。 6)锥度为1:10000时,同轴度公差可达0.005mm。 7)工件孔为IT6、IT7,粗糙度小于0.8μm。 8)材料T10A,热处理至58~64HRC,大型心轴可用20钢无 缝钢管制造。
心轴选择实例
工件为Ø40N7孔,长度64mm,同轴度公差为5级,试 设计外圆磨床的锥度心轴。
圆锥定位套
圆锥心轴
当工件锥面用涂色法检验其接触面面积大于85%时,圆 锥可获得很高的定位精度。
定心夹紧精度高
滚齿心轴的通用结构
1)柄部按滚齿机通用底盘设计。 2)定位轴颈D的公差带为h6。 3)心轴用20Cr制作,经热处理渗碳淬硬至50~55HRC。 4)心轴的主要技术要求是对同轴度、垂直度。 5)7: 24圆锥及其中心孔作为夹具体的基面。
锥度心轴
1)用于套类零件的外圆磨削。 2)直径为8~100mm,锥度为1: 3000~1: 8000。 3)锥度心轴的定位精度较高。 4)心轴锥面与孔壁之间接触面很大,工件被锁紧。
2.工件以精基准孔定位
(1)定位轴
钻套
1 –与夹具体的连接部分 2 –中心定位部分 3 –引导部分 4 –夹紧部分 5 –排屑槽 6 –台阶定位面
定位轴材料为T8制作,经热处理至55~60HRC ;也可 用20钢制作,经渗碳淬硬至55~60HRC。

第2章 工件的定位和机床夹具

第2章 工件的定位和机床夹具

定位心轴
轮加工。
主要用于套筒类和空心盘类工件的车、铣、磨及齿
圆柱心轴 图a为间隙配合圆柱心轴,其定位精度不高,但装卸工件较方便; 图b为过盈配合圆柱心轴,常用于对定心精度要求高的场合; 图c为花键心轴,用于以花键孔为定位基准的场合。当工件孔的长径 比L/D>1时,工作部分可略带锥度。 短圆柱心轴限制工件两个自由度,长圆柱心轴限制工件的四个自由度
支承板:用于精基准,工件重,较大平面支承,相当2个支承点
固定式V形块
图a用于较短的精基准定位; 图b用于较长的粗基准(或门路轴)定位; 图c用于两段精基准面相距较远的场合; 图d中的V形块是在铸铁底座上镶淬火钢垫而成, 用于定位基准直径与长度较大的场合。
活动V形块应用实例
活动式V形块限制工件在Y方向上的移动自由度。 它除定位外,还兼有夹紧作用。
垂直度
长柱销限制 X、X、Z、 Z四个自由 度
Φ8
Z O Y
0.08 14±0.1
A
3.2
中心线 位置
X
A
基准重合原 则选基准孔 基准重合原 则选基准面
小端面限 制Y自由度 靠销限制 Y自由度
需进行定位 误差计算
图2-48 需保证的工序尺寸
夹具设计举例
(2) 确定导向装置。 采用快换钻套,用固定钻模板支撑钻套。
(1) 应标注的尺寸及配合
① 工件与定位元件的联系尺寸; ② 夹具与刀具的联系尺寸; ③ 夹具与机床的联系尺寸; ④ 夹具内部的配合尺寸; ⑤ 夹具的外廓尺寸。
(2) 应标注的技术条件
① 定位元件之间或定位元件与夹具体底面间的位置要求; ② 定位元件与连接元件间的位置要求; ③ 对刀元件与连接元件间的位置要求; ④ 定位元件与导引元件的位置要求。

工件的定位6个自由

工件的定位6个自由
工件以平面作为定位基准面时,常用的定位元件有以下几种: (1)支承钉 一个支承钉相当于一个支承点,可限制工件一个自由度。
如图13-7所示 (2) 支承板 支承板适用于工件以精基准定位的场合。工件以大平面
与一大(宽)支承板相接触定位 时,该支承板相当于三个不在一条直线上的定位支承点,可限制
工件三个自由度。一个窄长支承 板相当于两个定位支承点,可限制工件两个自由度。工件以一个
如图13-3所示,
如图13-3 所示 ,在空间直角坐标系的O面上布置三个定位支承点1、2、3, 使工件的底面与三点相接触,则该三点就限制了工件的、、 三个自由度。 同理,在O面上布置两个定位支承点4、5与工件侧面相接触,就可限制工 件的和的自由度。在O面上布置一个定位支承点与工件的另一侧面接触, 就可限制工件的自由度,从而使工件的位置完全确定。
证工件的加工技术要求。
?
工件在夹具中的定位,并不是用定位支承点,而是用各种不
同结构与形状的定位元件与工件相应的定位基准面相接触或配合
实现的。工件上的定位基准面与相应的定位元件的工作表面合称
为定位副。定位副的选择及其制造精度直接影响工件的定位精度
和夹具的制造及使用性能。
三、常见的定位方式及定位元件
常见的工件定位方式有四种,即工件以平面为定位基准面、工件 以内孔为定位基准面、工件以外圆为定位基准面和工件以一面两孔为 定位基准面。 1.工件以平面为定位基准面
2.工件的定位形式
(1)完全定位 用六个合理布置的定位支承点限制工件的六个自由 度,使工件位置完 全确定的定位形式称为完全定位。
(2)不完全定位 工件被限制的自由度少于六个,但能满足加工技 术要求的定位形 式称为不完全定位。如图13-5所示,即为不完全定位。

第六课 定位误差的产生及组成

第六课 定位误差的产生及组成
第二章 工件的定位
第四节 定位误差的产生及组成
定位只解决了工件在夹具中位 “定与不定”的问题。 夹具中的工件还存在着位置“准 与不准”的问题。
一、定位误差及其产生
一批工件定位时,被加工表面的工序基准在沿工序 尺寸方向上的最大可能变动范围,称为定位误差。用 △D表示。
工件轴径误差导致轴心线位置的变化,导致工序基准在加工要求方向上发生位置移动。
二、定位误差的组成 基准不重合误差△B
基准位移误差△W
1.基准不重合误差△B 采用夹具定位时,如果工件的定位基准与工序基准
不重合,则形成基准不重合误差,以符号 B 表示。
△B=两基准间尺寸(定位尺寸)公差在加工方 向上的投影。
举例:工件加工键槽 定位尺寸是定位基准到工序基准的尺寸
定位尺寸是轴的半径
△B=轴径公差的1/2=δd/2
分析:基准不重合误差△B
△B=0
V形铁定位加工键槽
分析:基准不重合误差△B
用V形铁定位加工键槽
△B=0
V形铁定位加工键槽
分析:基准不重合误差△B
△B=δd/2
2.基准位移误差△W
采用夹具定位时,由于工件定位基准面与定位元件不可避免地存在制 造误差,或者配合间隙,致使工件定位基准在夹具中相对于定位元件工作 表面的位置产生位移,从而形成基准位移误差,以符号 W 表示。
0
槽宽
尺寸 轴线 轴线 0
0
6+0.03 0
一般有定位误差△D≤(1/5~1/3)T的要求。这个要求作 为夹具使用能否满足加工精度要求的一项重要依据。
如果某夹具的定位误差超出本工 序公差的1/3,则认为此夹具的定位系 统不能满足工件定位安装精度的要求。 此时应提高夹具的定位精度,否则, 此夹具不允许投入实际生产中使用。

第二章 2.1工件的定位和定位元件

第二章  2.1工件的定位和定位元件
工序图上用来确定本工序加工表面的尺寸和位置时所依据的基准。
§2-1
基准的概念
加工表面为孔,要求其中心线与 A面垂直,并与B、C面有尺寸要 求,因此表面A、B、C均为本工 序的工序基准。
工序基准
工序图上用来确定本工序加工表面的尺寸和位置时所依据的基准。
§2-1
基准的概念
定位基准
加工时使工件在 机床或夹具上占 有正确位置所依 据的基准。
*定位夹紧
定位+夹紧=装夹
为满足上述要求工件的装夹方法有 找正装夹法和
专用机床夹具装夹法两种
§2-2
工件的装夹方法
一、找正装夹法 (1) 直接找正装夹
以工件的实际表面作为定位 的依据,用找正工具(如划 针、指示表)找正工件的正 确位置以实现定位,然后将 工件装夹的方法,称为直接 找正装夹。
二、专用机床夹具的分类
1)专用夹具:针对某一道工序要求专门设计的夹具。 特点:定位准确,拆装方便,效率高,加工质量好, 适于产品相对稳定,生产量大的情况。例图2-7 2)组合夹具:由夹具标准件组合而成。可根据零件加 工工序的需要拼装。用于单件、小批量生产。例图2-9 3)成组夹具:适于一组零件加工的夹具。一般是同类 零件,经调整(如更换、增加元件)可用来定位、夹 紧一组零件。例图2-10 4)随行夹具:工件在随行夹具上由运输装置输送到各 机床,并在机床夹具或工作台上进行定位夹紧。
B球头 用于支承 粗基准面
C齿纹 用于侧面支承 /增大摩擦力
§ 2-4 工件在夹具中的定位
(一)工件以平面定位时常用的定位元件
(2)支承板(用于光面)
限制2个自由度(1移动/1转动),同一平面 两个支承板限制3个(1移动/2转动)
A平面沉头 切屑不易清除; 用于侧面、顶面的定位 B斜凹槽 切屑易清除; 用于底面的定位

第二章 工件在夹具中的定位

第二章   工件在夹具中的定位

二 置精度

工 件 在 夹 具 中 的 定 位

工件在夹具中的定位,是靠定位元件来实现的。定位表面
二 不同,应选择不同的定位元件。
章 一、平面定位元件
工 件
1 固定支承:定位支承点的位置固定不变的定位元件。


具 中
限制一个不定度



限制两个不定度
第 2 可调支承:定位支承点的位置可以调节的定位元件。
工 件
自由度,因此工件定位就是限制工件的自由度。但是自由度
在 往往容易按力学概念理解为工件有沿坐标轴移动和绕坐标轴
夹 具 中
转动的可能性。这样就把工件定位的概念引偏至限制工件的 运动上去,从而可能得出夹紧才能使工件定位,不夹紧就不
的 定 位
能定位的错误结论,造成定位和夹紧概念的混淆。为了避免 与力学中的自由度概念混淆,这里将工件定位范畴中习惯所
称的“自由度”改为“不定度”。
根据工件各工序的加工精度要求和选择定位元件的情况, 工件在夹具中的定位通常有如下几种情况:
第 一、完全定位

工件在夹具中定位,若六个不定度都被限制时,称为完全
章 定位。
工 件
为了便于进行定位分析可将夹具的定位元件抽象转化为相
在 应的定位支承点,与工件各定位表面相接触的支承点将分别
夹 具
限制工件在夹具中各个方向的不定度。




第 二 章





中 的
二、部分定位
定 位
工件在夹具中定位,若六个不定度没有被全部被限制时,
称为部分定位。
根据工件加工前结构形状特点和工序加工精度要求,可分 成如下两种情况:

参考答案-《机床夹具第五版习题册》

参考答案-《机床夹具第五版习题册》

参考答案-《机床夹具第五版习题册》第一章机床夹具基础知识第一节机床夹具概述一、填空题1.根据机械工艺规程要求,在加工中,用来正确地确定工件及刀具的相对位置,并且合适而迅速地将它们夹紧的一种机床附加装置称为机床夹具。

2.通常,习惯于把夹具按其通用化程度分为通用夹具、专用夹具、拼装夹具三个大类。

3.机床夹具一般由定位装置、夹紧装置、夹具体三大主要部分组成。

4.根据不同的使用要求,机床夹具还可以设置对刀装置、刀具引导装置、回转分度装置及其他辅助装置。

5.按夹具适用的机床及其工序内容的不同,可以把夹具分为钻床夹具、铣床夹具、车床夹具、磨床夹具、镗床夹具、齿轮加工机床夹具、电加工机床夹具、数控机床夹具等。

二、选择题:1.工件在机床上加工时,通常由夹具中的(A)来保证工件相对于刀具处于一个正确的位置。

A.定位装置C.夹紧装置。

2.机用平口钳是经常使用的(B)A.专用夹具C.拼装夹具3.以下夹具中,(D)不是专用夹具。

A.钻床夹具C.车床夹具(A)是夹具的中心部分。

4..A.定位装置B.夹紧装置C.夹具体D.V型块(A)是由预先制造好的各类标准元件和组件拼装而成的一类新型夹具。

5.A.拼装夹具C.通用夹具B.专用夹具C.数控机床夹具1B.夹具体D.辅佐装配B.通用夹具D.组合夹具B.铣床夹具D.三爪自定心卡盘6.在机床夹具中,V形块通常作为(DA.夹具体C.辅佐装配(C)不正确。

7.下列说法中,A.一般情况下,机床夹具担负着工件在夹具中的定位和夹紧两大功能。

B.夹具相对机床和刀具的位置正确性,则要靠夹具与机床、刀具的对定来解决。

C.工件被夹紧后,就自然实现了定位。

D.定位和夹紧是两回事。

三、判断题:1.一般来说,通用夹具是机床夹具中的主要研究对象。

2.3.4.5.6.7.8.9.工件安装时,采用找正定位比采用夹具定位效率更高,精度更高。

机床夹具只能用于工件的机器加工工序中。

夹具体是整个夹具的基础和骨架。

机床夹具一般已标准化、系列化,并由专门厂家出产。

机械制造工艺学一、二、三章

机械制造工艺学一、二、三章

5. 自动控制法 这种方法是把测量、进给装置和控制系统组成一个 自动加工系统,加工过程依靠系统自动完成的。 初期的自动控制法是利用主动测量和机械或液压 等控制系统完成的。目前已采用按加工要求预先 编排的程序,由控制系统发出指令进行工作的程 序控制机床(简称程控机床)或由控制系统发出 数字信息指令进行工作的数字控制机床(简称数 控机床),以及能适应加工过程中加工条件的变 化,自动调整加工用量,按规定条件实现加工过 程最佳化的适应控制机床进行自动控制加工。自 动控制法加工的质量稳定、生产率高、加工柔性 好、能适应多品种生产,是目前机械制造的发展 方向和计算机辅助制造(CAM)的基础。

广义制造概念的形成过程主要有以下几方面原因。 (一)工艺和设计一体化 它体现了工艺和设计的密切结合,形成了设计工艺 一体化,设计不仅是指产品设计,而且包括工艺 设计、生产调度设计和质量控制设计等。 人类的制造技术大体上可分为三个阶段,有三个重 要的里程碑。 1. 手工业生产阶段 2. 大工业生产阶段 3. 虚拟现实工业生产阶段
第三节制造过程
市场需求→产品开发和设计→产品的生产过程-→ 市场对产品的评价”这个完整的循环过程,这个 过程称为制造过程。


“生产过程”和“制造过程”从字面上看,区别不大。但是,从上述定义来 分析,“制造过程”的含义就丰富多了。 首先,由于在制造过程的概念中,产品的开发和设计是由市场决定的,制造 业必然要适应市场经济体制转变,是现代制造技术所必须的条件。 其次,生产过程中人们关注的重点是将原材料转变为成品(产品)的物质形 态转变,即物质流,这是传统制造工艺技术的主要内容。而在制造过程中, 除了研究物质流外,还要研究控制物质流的信息流,如:对市场需求的分析, 对生产过程中物质流的规划、组织、管理和控制,对物料的采购、存储和销 售,经营决策和管理,市场开发和服务等,以及现代制造技术中的柔性自动 化技术和控制技术,智能制造技术也都有信息流的内容。因此,需要对信息 进行采集、分析和处理的信息流。 制造过程中除了物质流、信息流外,还有能量流,它是指制造过程中的能量 消耗及其流程,物质流、信息流和能量流统称制造过程的三流。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章工件的定位
第一节六点定则
一、不定度概念
不定度——用来描述工件在某一预先设定的空间直角坐标系中定位时,其空间位置不确定程度的六个位置参量。

名称符号含义图例
移动不定度X
工件沿X轴方向移动位置的不确定性
Y
工件沿Y轴方向移动位置的不确定性
Z
工件沿Z轴方向移动位置的不确定性
名称符号含义图例
转动不定度X
工件绕X轴方向转动位置的不确定性
Y
工件绕Y 轴方向转动位置的不确
定性
Z
工件绕Z轴方向转动位置的不确
定性
二、六点定则
六点定则——在工件的定位中,我们用在空间合理分布的最多六个定位点(由定位元件抽象而来),来限制工件使其获得一个完全确定的位置的方法。

三、六点定则的应用
1.箱类工件
平行六面体不定度消除
2.盘类工件
盘类工件的六点定位
3.轴类工件
轴类工件的六点定位
第二节工件的定位
一、加工要求与不定度消除
显然,铣不通槽时,必须消除六个不定度,方能满足加工要求。

铣通槽,则只需消除五个不定度即可满足加工要求。

几种常见加工方式所需消除的不定度情况。

通孔
盲孔
通孔
盲孔
二、完全定位
完全定位——工件在夹具中,六个不定度全部被消除的定位。

三、不完全定位
不完全定位——六个不定度不需要完全消除的定位。

四、欠定位和重复定位
欠定位——工件实际定位所消除的不定度数目少于按其加工要求所必须消除的不定度数目。

夹具上的定位支承点多于六个或少于六个,但由于布局不合理,将造成重复消除工件的一个或几个不定度的现象,这种重复消除工件不定度的定位称为重复定位。

第三节工件的定位元件
工件上常被选作定位基准的表面形式包括平面、圆柱面、圆锥面和其他成形面及其组合。

一、对定位元件的要求
1. 高精度
2. 高耐磨性
3. 足够的刚度和强度
4. 良好的工艺性
二、常用定位元件的选择
1.平面定位基准面
(1)基本支承
基本支承是用作消除工件定位不定度、具有独立定位作用的支承。

其中包括支承钉、支承板、自位支承、可调支承。

A型 B型 C型
工件上幅面较大、跨度较大的大型精加工平面,多选用支承板来体现夹具上定位元件的定位表面。

A型 B型
支承板
自位轴承是指能够根据工件实际表面情况,自动调整支承方向和接触部位的浮动支承。

球面副浮动结构球面锥座式浮动结构摆动杠杆式浮动结构
可调支承是指支承高度可以调节的定位支承。

可调支承的常用结构及其应用见下表。

六角头支承调节支承
圆柱体调节支承顶压支承
(2)辅助支承
辅助支承——为提高工件的安装刚性及稳定性,防止工件的切削振动及变形,或者为工件的预定位而设置的非正式定位支承。

2.圆孔定位基准面
(1)定位销
小定位销
定式定位固销
可换定位销定位插销(2)定位心轴
锥度心轴
过盈配合心轴
间隙配合心轴
(3)锥销类(夹具标准顶尖)
圆柱销用于工件圆柱孔端的定位情况,其中图a用于精基准定位,图b用于粗基准定位。

(4)自动定心夹紧心轴
3.外圆柱面定位基准面
(1)V形块
常见的V形块
当工件以局部曲面参与定位时,V形块往往成为首选定位元件。

另外,V形块也可以做成活动结构。

这样,它除可以提供一个定位点,还兼做夹紧元件,具有定心夹紧功能。

V形块的应用
常用V形块两工作斜面间的夹角一般分为60°、90°、120°三种,其中90°角的V形块应用最多,其结构及规格尺寸均已标准化。

(2)圆柱孔
用圆柱孔作定位元件时,通常采用定位套形式进行精基准定位。

需要注意的是,下半圆孔的最小直径应取工件定位基准外圆的最大直径。

半圆孔定位装配结构形式
第四节 定位误差的产生及组成
定位只解决了工件在夹具中位置“定与不定”的问题。

夹具中的工件还存在着位置“准与不准”的问题,即定位误差问题。

轴心线位置的变化
一、定位误差及其产生
定位误差:一批工件定位时,被加工表面的工序基准在沿工序尺寸方向上的最大可能变动范围,通常以符号 表示。

二、定位误差的组成 1.基准不重合误差
采用夹具定位时,如果工件的定位基准与工序基准不重合,则形成基准不重合误差,以符号 表示。

基准不重合的情况
D
∆B

基准重合的情况
2
.基准位移误差
采用夹具定位时,由于工件定位基准面与定位元件不可避免地存在制造误差,或者配合间隙,致使工件定位基准在夹具中相对于定位元件工作表面的位置产生位移,从而形成基准位移误差,以符号表示。

定位基准位移的情况
第五节定位综合分析
一、工件以平面定位
平面定位的定位误差分析
二、工件以圆孔定位
1. 工件以圆柱孔在无间隙配合心轴上定位
2. 工件以圆柱孔在间隙配合心轴上定位
(1)圆柱孔与心轴固定单边接触
W
固定单边接触时的基准位移误差
(2)圆柱孔与心轴任意边接触
任意边接触时的基准位移误差
【例2】如图所示,在轴套上铣削键槽。

设定心轴水平放置,工件在垂直向下的外力作用下,其圆柱孔与心轴的上母线接触。

试求工序尺寸H1、H2、H3的定位误差?

三、工件以外圆柱面定位
(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档