光活性高分子材料的研究进展
高分子材料的光学性能与应用研究
高分子材料的光学性能与应用研究高分子材料是一类应用广泛的材料,其独特的结构和性质使其在光学领域有着广泛的应用。
本文将探讨高分子材料的光学性能以及其在光学应用中的研究进展。
首先,高分子材料的光学性能是指其对光的吸收、透射和散射等特性。
光的吸收是高分子材料的重要性能之一,它取决于材料的能带结构和分子间的作用力。
一些高分子材料具有宽带隙结构,可以吸收紫外光,因此在紫外光谱仪器中有广泛的应用。
另外,在太阳能电池中,高分子材料也可以吸收可见光,并将其转化为电能。
此外,高分子材料的透射性能也非常重要,它决定了材料在光学器件中的传输效率。
一些高分子材料具有较高的透明度和低的透射损失,因此被广泛应用于光学器件,如光纤通信和液晶显示器。
其次,高分子材料的光学性能还与其分子结构和排列方式密切相关。
例如,聚合物链的取向和排布会影响材料的散射性能。
一些高分子材料拥有有序的分子结构和排列方式,可以实现光的定向传输,因此在光学波导器件中得到了广泛应用。
此外,高分子材料还可以通过控制其分子结构和排列方式,调节其光学性能。
例如,通过添加不同的功能化基团或共聚物,可以改变材料的吸收峰和透射范围,从而满足不同应用的需求。
目前,高分子材料的光学应用研究取得了许多重要的进展。
一个研究方向是开发新型的光学器件和传感器。
例如,一些高分子材料被用作光传感器,可以检测环境中的温度、湿度和压力等参数。
另外,高分子材料还被应用于光子晶体领域,用于制备具有特殊光学性能的人工结构。
此外,高分子材料在光催化、光致变色和光疗等领域的研究也取得了重要的突破。
然而,高分子材料的光学性能和应用仍然面临着一些挑战。
首先,一些高分子材料的光学性能较差,如吸收率低、透射损失大等,限制了其在光学领域的应用。
此外,高分子材料的稳定性和寿命也是一个问题,特别是在高温、高湿等恶劣条件下。
因此,未来的研究应该集中在开发具有优异光学性能和稳定性的高分子材料,以满足不同领域的需求。
具有特殊性能的高分子材料的研究进展及应用
具有特殊性能的高分子材料的研究进展及应用高分子材料是现代科技进步中的重要组成部分。
它们具有多种特殊性能,如高强度、轻质、耐磨损、耐化学腐蚀、导电性等,可被广泛应用于航空、航天、汽车、能源、医疗、电子、建筑等领域。
此外,随着人们对环保与可持续发展的关注,可降解高分子材料也逐渐得到重视。
本文将综述具有特殊性能的高分子材料的研究进展及应用。
一、高强度高分子材料高强度高分子材料是以高分子材料为基础的一类新材料。
在这类材料中,具有高强度的纤维材料如碳纤维、玻璃纤维等被加入其中,尤其是碳纤维,其强度可以和钢甚至是钛合金媲美。
因此,碳纤维增强高分子材料广泛应用于航空航天、汽车、体育用品等领域。
其中,碳纤维增强聚酰亚胺材料具有高温稳定性、阻燃性、耐腐蚀性等性能,应用于耐高温和防火领域,如火箭制造、电力设备绝缘材料等。
二、高导电高分子材料高导电高分子材料通常是通过将导电材料掺杂进普通高分子材料中而制成的。
这类材料具有导电、抗静电等独特性能,可被应用于电子信息领域。
其中最具代表性的是聚苯胺、聚噻吩和聚乙炔等高导电高分子材料。
聚苯胺被广泛应用于制造电池、传感器、太阳能电池等电子设备,聚噻吩则是制造有机发光二极管和太阳能电池的理想材料,聚乙炔在制造柔性电路、显示器和太阳能电池等领域也有广泛应用。
三、高透明高分子材料高透明高分子材料是指在保持高强度和韧性的前提下,同时具有较高的透光性。
这类材料通常是通过选择特殊的合成方法和改进材料结构而实现的。
高透明高分子材料在建筑、玻璃器皿、装饰等领域应用广泛,如聚碳酸酯、聚甲基丙烯酸甲酯、聚苯乙烯等。
其中,聚碳酸酯作为一种高透明、高强度、高韧性的材料,可用于制造汽车、飞机罩等,并有很好的隔热、隔音和阻燃性能。
四、可降解高分子材料可降解高分子材料是指在自然环境下或特定条件下能够分解并降解的高分子材料,这类材料主要由生物质材料和合成可降解高分子材料两类组成。
生物质材料如淀粉、纤维素等是一种可再生的、生产成本低廉、环保的材料,因此在医疗、包装、农业等领域有广泛应用。
功能高分子材料的应用现状及研究进展
科技 圈向导
21 年第 1期 02 4
功能高分子材料的应用现状及研究进展
齐 菲 ( 津现代职业技术学 院 中国 天津 天
3 05 ) 0 3 0
【 要】 摘 新型功能 高分子材料 已广泛应用 于许 多领域 , 本文分析 了传统功能 高分子材料在化 学、 、 生物 医用等方面的发展和应 用; 光 电、 介
绍 了几种新型功能 高分子材的研究进展 : 并论述 了发展功能 高分子材料的重要意 义。
【 关键词 】 功能材料 ; 高分子 ; 现状 ; 发展
材料是人类赖 以生存和发展 的物质基础 . 是人类 文明的重要里程 正等方 面获得 了较大成果 碑, 如今有人将能源 、 信息和材料并列为新科技革命的三大支柱 。 进入 新 型高分 子药物 , 具有缓 释 、 长效 、 毒的特点 , 低 分为两类 : 一类 药 本世纪 8 年代 以来 . O 一场与之相适应的“ 新材料革命” 蓬勃兴起。 功能 物即为高分子本 身 . 以直接 用作药物 . 可 也可以通过合 成获得某些疗 材料是新材料发展 的方 向.而功能高分子材料 占有举 足轻重的地位 . 效 另 一类高分子药物高分 子本身 没有药 用价值 . 而是作为药 物的载 由于其原料丰富 、 种类繁多 , 发展十分迅速 , 已成为新技术 革命 必不可 体 .以离子键或共价键 的形式连接具有药理 活性 的低分子化合物 . 制 少的关键材料【 ” 成 高分子药物控制释放制剂 。 方面达 到将最 小的剂 量在作用 于特定 一 部 位产 生治效 的 目的 ; 另一方 面使药物 的释放 速率可控 . 在提高疗效 1 能高分子材料 . 功 功能高分子材料在其原有性能的基础上 .赋予其某种 特定功能。 的同时 降低 了毒 副作用口 22 _新型 功能高分子材料 诸如 : 化学性 、 电性 、 敏性 、 导 光 催化 性 , 特定金 属离子 的选择螯 合 对 2 .高 吸水性高分子材料 .1 2 性. 以及 生物活性等特殊 功能 . 这些 都与在高分子 主链和侧链 上带有 近 年来开 发的高 吸水性树脂是一种新 型功能高分子材料 . 它可 吸 特殊结构的反应性功能基 团密切相关 收自 身重 量数 百倍 至上千倍 的水 . 身含 有强亲水性基 团同时具有 一 自 2功 能高分子材料 的研究现状 . 高吸水性树脂 的保水性能极 好 . 即使 受压也不会 渗 在原来高分子材料的基础上 ,可将功能高分子材料 分为两类 : 一 定 交联 度 。此外 . 而且具有 吸收氨等臭气 的功 能。 高吸水性 树脂 在石油、 工 、 化 轻工 、 类是 以改进其性能为 目的 的高功能高分子材料 : 另一类 是为赋予其某 水 , 建 筑等部 门被用作堵 水剂 、 脱水 剂 、 增粘剂 、 密封材料等 : 在农业上 可 种新功能的新型功能高分子材料口 以做土壤改 良剂 、 水剂 、 物无 土栽培材料 、 保 植 种子覆盖 材料 , 并可用 21 . 高功能高分子材料 以改造 沙漠 , 土壤流失 等 ; 日常生活 中 , 防止 在 高吸水性树脂可用作 吸 21 化学功能高分子材料 .1 . 餐 鞋垫 、 次性尿 布等。 一 化学功能高分子材料通常具有某种化学反应功 能 . 它将具有化学 水性抹 布 、 巾、 2 .C .2 O 功能高分子材料 2 活性 的基 团连接到 以原有主链链为骨架 的高分子上 离子交换树脂是 在不 同催化剂作用下 , C 以 O 为基本原料 与其他化合物缩 聚成 多 种带有可交换 离子 的活性 基团 、 具有 三维 网状结 构 、 不溶 的交 联聚 种共 聚物 。 其中研 究较多 、 已取得实质性进展 、 并具有应用价值 和开发 合物 . 在水 中具 有足够大 的凝 胶孔或大 孔结构 . 由于它具有高效 快速 O 与环 氧化 合物通过 开键 、开环 、 聚制得 的 缩 分析和分离 功能 . 目前 已广 泛用于硬水软 化 、 废水净化 、 高纯水制 备 、 前 景的共 聚物 是由 C 海水淡化 、 溶液浓缩和净化 、 海水提铀 , 特别是在食 品工业 、 制药行业 、 C 聚物脂肪族碳 酸酯 。把长期以来 因石化 能源燃烧 和代谢 而排放 0共 的污染环境 、 产生温 室效应 的 C O 视为一种新 的资源 。利用它 与其他 治理污染和催化剂 中应用的更为广泛 化 合物共聚 . 成新型 C 聚物材料 . 解决 当今世 界 日趋严重 的 合 O共 对 21 .. 2光功能高分子材料 O 含量增 高等问题有 重要 的现实意义 。 在光 的作用 下 , 实现对 光的传输 、 吸收 、 贮存 、 转换的高分 子材料 C 22 .3形状记忆功 能高分子材料 即为光功能高分子材料 近年来 。 在数据传输 、 能量转换和降低 电阻率 形状 记忆 功能材料 的特 点是形状记忆性 . 它是一种能循环 多次 的 等方面的应用增长迅速 感光性树脂 由感光基 团或光敏剂吸收光的能 发生变形并被保 量后 , 迅速改变分子 内或分子间的化学结构 , 引起物理和化学变化 。 光 可逆变 化。即具有特定 形状 的聚合 物受 到外 力作用 . 一旦给予适 当的条件 ( 、 、 、 、 )就 会恢复到原始状 力 热 光 电 磁 , 致变色高分子具有光色基 团. 不同波长的光对其照射 时会 呈现不同 的 持 下来 : 可将其分 为电致型 、 光致 颜色 , 当其受到特定波长照射后又会恢复为原来 的颜 色。利用这种 态。根据不 同的触发材料记忆 功能 的条件 , 而 热致型和酸碱感 应型。形状记忆 高分子材料是高分子功 能材料研 可逆反应 可以实现信息 的存 储 、 号的显示和材料 的隐蔽 . 用前景 型 、 信 应 究新分支 , 电子 、 在 印刷 、 纺织 、 包装 和汽 车工业 中具 有 良好 的发展 前 十分诱人 。
高分子材料的光学亮度与发光机制研究
高分子材料的光学亮度与发光机制研究摘要:高分子材料的光学亮度与发光机制是当前材料科学研究领域的热点之一。
光学亮度作为一种重要的物理性能指标,对于材料的应用具有重要意义。
本文将介绍高分子材料的光学亮度和发光机制的研究进展,包括发光材料的分类、光学亮度的定义与评价以及不同发光机制的研究。
一、引言随着人们对材料性质的需求不断提升,高分子材料作为一类重要的功能材料,其在光电、显示、传感等领域得到了广泛应用。
而光学亮度作为一个重要的评价指标,在高分子材料的研究中占据着重要地位。
本文旨在探讨高分子材料的光学亮度与发光机制,为材料科学研究和应用提供参考。
二、高分子材料的光学亮度分类1. 荧光材料荧光材料是一类能够将电能或光能转化为荧光的材料,其具有良好的发光特性和较高的光电转换效率。
荧光材料的发光机制主要有激发态传能和自激励辐射两种方式。
以聚苯乙烯为代表的高分子荧光材料在有机光电器件和生物荧光成像等领域具有广阔的应用前景。
2. 磷光材料磷光材料是一类通过磷光激发产生发光的材料,其发光机制主要由磷光矢量耦合效应和电荷传输机制共同作用。
磷光材料的发光特性使其成为照明和显示领域的重要候选材料。
3. 共振发光材料共振发光材料是一类通过共振增强效应产生高强度发光的材料,其发光机制主要依赖于光学共振和多光子吸收。
共振发光材料可以在光学器件中实现高亮度和高效率的发光,因此在LED和激光器等领域有着广泛的应用。
三、光学亮度的定义与评价方法光学亮度是表征材料发光强度的物理量,通常用亮度单位流明/平方米(lm/m²)来表示。
光学亮度的评价可以从发光强度、光谱特征及色彩特性等方面进行。
常用的评价指标包括光谱辐射功率、亮度温度、色坐标等。
四、高分子材料的发光机制研究进展1. 激子共振激子共振是高分子材料中常见的一种发光机制,它由高分子材料中的载流子与激子相互作用而产生。
激子共振的发光机制主要包括激子重组和激子晶格耦合。
研究激子共振有助于提高高分子材料的光学亮度和发光效率。
高分子材料的研究进展
高分子材料的研究进展高分子材料是当今材料科学领域中的热门研究方向。
作为一种具有多种优良性质的材料,它的应用领域十分广泛,例如建筑、医学、电子、机械等领域。
在过去的几十年中,众多科学家和工程师们对高分子材料进行了大量的研究工作,在技术创新和应用推广等方面取得了丰硕成果。
目前,高分子材料的研究重点主要集中在以下几个方面:一、生物可降解高分子材料人们对社会和环境的关注程度日益提高,对于高分子材料的可持续性和环保性提出了更高的要求。
因此,生物可降解高分子材料已成为材料领域的研究热点。
生物可降解高分子材料能够在一定时间内被自然环境分解,不会对环境造成污染,具有很大的优势。
目前,生物可降解高分子材料的研究主要集中在增加降解速率和提高材料性能方面。
许多研究人员通过改变材料的化学结构来促进降解,同时保证其物理性能和机械性能。
二、智能高分子材料与传统的高分子材料相比,智能高分子材料具有更高的适应性和反应性。
智能高分子材料与外界环境发生交互作用后,可以调整自身的结构和性质,实现预期的物理或化学变化。
智能高分子材料可根据外界的温度、湿度、光线等条件进行响应性反应,因此被广泛应用于传感器、记忆材料、微机器人等领域。
同时,智能高分子材料也有着很好的潜力,未来的应用前景很广阔。
三、高性能高分子材料高性能高分子材料具有优异的力学、热学和电学性能,并且具有极强的耐化学腐蚀性和稳定的化学性质。
在工业和航空航天等领域中,高性能高分子材料的应用十分广泛。
高性能高分子材料的研究需要追求更高的材料性能和机械性能,如强度、硬度、耐磨性、耐热性等,同时还需要考虑材料的稳定性和重复性。
总的来说,高分子材料的研究尚有很大发展空间。
从实现高分子生物可降解化到开发新颖高性能高分子材料,这个领域的研究人员仍然在为寻找更好的材料和性质而进行努力。
随着科学技术的发展和人们对材料性能的不断追求,相信高分子材料必将在未来的科技发展中起到更大的作用。
高分子光致发光材料的研究现状
电子共有化运动
• 根据量子力学知识,单个原子中处于束缚态的电子能量是量化 的,只有当它脱离原子核的束缚成为自由电子后,其能量才是连续 的。在单个原子中,某一电子只受到原子核和同一原子中其他电子 的相互作用。原子组成晶体后,由于原子壳层的交叠,电子不再局 限在某一个原子上,而是在整个晶体中运动,这种运动称为电子的 共有化运动。电子共有化运动使能级分裂为能带。
电子性质与能带结构
• 固体的电子性质和能带结构密切相关。按能带模型,可将固体 划分为导体、半导体和绝缘体,它们之间的差别决定于:①各自的 能带结构;②价带是充满的还只是部分地被充满;③满带和空带之 间能隙的大小。
图2 简化的半导体能带模型
图3 固体材料的电性质及分类依据Leabharlann 高分子光致发光机理•
高分子在受到可见光、紫外光、X-射线等照射后吸收光能,高分子电子壳
聚苯撑乙烯类(PPV)光致发光材料
PPV是第一个被报道用作发光材料制备光致发光器件 的高分子,是目前研究得最多、最广泛、最深入,也被认 为是最有应用前途的异类高分子光致发光材料。经典的 PPV材料具有不溶与不熔的特点,不能满足发光器件的制 作要求。因此许多科学家都致力于通过化学改性和物理改 性来设计合成出结构、性能各异的PPV及其衍生物,以满
层内处于价带的电子向较高能级导带跃迁,形成空穴和电子。空穴可能沿高分
子移动,并被束缚在各个发光中心上,辐射是由于导带上的电子返回较低能量
级价带或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗
散,从而可以产生发光现象。
图4 光致发光机理示意图
光致发光材料研究现状
1 聚苯撑乙烯类(PPV)光致发光材料 2 聚芴类(PF)光致发光材料 3 聚噻吩类(PT)光致发光材料
我国高分子化工材料的研究进展
我国高分子化工材料的研究进展【摘要】近些年来,中国在世界工业领域的地位越来越高,甚至被不少国家称之为“世界工厂”,由此促使了社会对工业技术的重视,也让更多的人开始重视高分子化工材料的研究和应用。
本文先分析了高分子化工材料的定义和特点,结合当前研究现状分析了未来发展进程,旨在为同行工作提供参考。
【关键词】高分子化工材料;智能材料;聚乙烯材料;规划高分子材料是当今社会经济发展的基础性产业,是推动国民经济稳步发展的助力产业,是国家科技引导型产业,也是国家战略产业。
就目前高分子材料的发展情况进行分析,其在社会各行业的应用范围更加广泛,不仅是传统石化产业的延伸和优化,还是电子信息、国防建设、新型能源、航空航天等领域的主要配套材料,是一种技术含量高、附加值大、新能源要求高的现代化产业体系。
在当今社会发展中,高分子材料的研究越来越深入,在优化传统工艺的同时需要对其可持续发展进行深入分析。
文章具体分析了高分子化工材料的研究现状和进展。
一、高分子材料概述在当今化工材料研究中,高分子材料的重视度越来越高,其不仅是发展速度最快的产业,也是产能转化率最高的产业。
在当前高分子材料研发的时候,其最早起步于工业制造和生产,随着城市化发展进程的加快,高分子化工材料逐渐被应用在计算机、医学和生物学等多个领域,这也促使了越来越多的人对其进行深入研究。
为了更好的保证高分子材料的研究科学性和有效性,提前对理念和特点进行分析十分必要。
1、高分子材料的概念高分子化工材料是一种由聚合物的许多基本单元构成的综合性结构,是一种具备良好耐磨性、强韧性、绝缘性和高密度的化工材料。
伴随科学技术的发展,高分子化学材料的研究逐渐朝着精密化、多元化和综合化发展,其中有不少材料都是由植物提取出来的天然物质。
在目前,常见的高分子材料主要包含了合成纤维、塑料、橡胶以及聚乙烯材料等。
2、高分子材料的特点高分子材料是一种多元化、多功能化的材料,其通常都是通过加强内需和生产技术来提高材料的生产和加工效率。
新型光电功能高分子和改性材料的研究和应用
新型光电功能高分子和改性材料的研究和应用近年来,随着科技的不断进步和人们对于新型材料需求的不断增加,新型光电功能高分子和改性材料的研究和应用逐渐成为一个热门话题。
这些材料在太阳能电池、LED灯、智能材料、传感器、医疗领域等多个领域都有着广泛的应用前景。
一、光电功能高分子1、定义光电功能高分子是一种结构精密、功能丰富、性能优异的高分子材料。
它具备光电转换、发光、光电导、扩散、储存、控制等多种功能,可用于太阳能电池、显示器、灯光发光、激光器、生物医学等领域。
2、研究进展在研究方面,目前光电功能高分子的研究主要分为两个方向:一是加强光电性能,如提高电荷传输速率、降低光电转换损失等;另一个是开发新的材料,如手性共聚物、有机无机复合材料等来实现更好的光电转换和性能改善。
目前,随着材料科学和能源技术的快速发展,新型高分子太阳能电池已经成为研究的一个重要方向。
与传统的硅太阳能电池相比,高分子太阳能电池具有更高的可塑性和整合性,更适合于各种形状、大小、颜色的应用。
3、应用前景随着环保、绿色能源的日益受到重视,高分子太阳能电池的应用前景也非常广阔。
它不仅能够普及到日常生活中的小型电子设备,如电子表、手机、电脑,还能够在大型光伏电站、船舶、飞机、太空站等领域得到广泛应用。
高分子太阳能电池有着应用范围广泛、能源效率高、光学稳定性好、制造成本低等优势,是一种非常有前途的新型能源技术。
二、改性材料1、定义改性材料指的是对普通材料进行改性处理后,使其具备更好的性能。
改性的方式有很多种,例如添加复合材料、改变交联程度、改变粒径等等。
改性材料具有更好的机械强度、防腐能力、导电性能和光电性能等特点,可以应用于电子、光电、能源、化工、医药等领域。
2、研究进展在改性材料的研究中,有许多方法可供选择。
例如,利用高分子材料来制备改性材料,通过掺杂金属或半导体等添加物来改变材料的电学性能,用表面活性剂或二氧化硅纳米粒子等改变材料表面性质等等。
光活性高分子材料的研究进展[整理]
光活性高分子材料的研究进展具有光学活性的高分子( 又称旋光性聚合物) 是上世纪五十年代中期发展起来的一类新型功能高分子材料。
从结构上看, 旋光性聚合物分子主链上带有不对称因素, 它或者含有带手性原子的基团而具有构型上的特异性, 又或者可以形成相对稳定的单向螺旋链而具备构象上的特异性。
这种结构上的特点赋予了聚合物材料的旋光性能, 即可以使通过它的偏振光发生偏转。
在自然界的生物体中, 旋光性大分子特有的不对称结构在维持生命过程、新陈代谢、物种繁衍、进化等方面都起着决定性的作用。
在人工合成领域, 旋光性聚合物也已经在手性识别和对映体拆分方面得到广泛应用, 并在手性催化剂、液晶、生物医药、光学开关和非线性光学等领域展现出良好的应用前景。
随着材料科学的飞速发展, 设计合成具有新型结构的聚合物, 并研究其独特的性质和功能已成为当今高分子科学领域研究的热点。
从聚合方法的角度, 可以把旋光性聚合物的合成方法分成几大类, 主要有自由基聚合、离子引发聚合、缩合聚合、催化偶联聚合、配位聚合、非旋光性聚合物的手性修饰法、模板印记聚合等方法。
其中, 通过缩合聚合的方法来获得旋光性聚合物的途径最为普遍。
对于具有羧基、氨基、酰氯、醇、酸酐等双活性基团的手性单体, 都可以通过缩合聚合的方法得到旋光性聚合物。
本文主要介绍由此类活性官能团单体聚合得到的高性能旋光性聚合物, 如聚酯酰亚胺、聚酰胺、聚酰胺酰亚胺等的研究进展。
一、螺旋链光活性高分子材料自60年代烯类单体的Ziegler-Natta催化聚合得到立体规整性聚合物以来,聚合物的立体化学研究引起了广泛地兴趣。
我们知道很多有规立构的天然和合成高分子,其结晶的固态以螺旋结构存在,螺旋链结构是高聚物的基本结构之一。
然而,绝大部分全同立构螺旋链烯类聚合物像聚苯乙烯、聚丙烯在溶液中不具有光学活性,原因是由于这种高分子在熔融或溶液中很快达成热力学平衡而成无规线团。
然而,如果聚合物具有的侧基足够大,链旋转受到阻碍,以致能保持稳定的螺旋结构,那么,得到的螺旋聚合物具有光学活性。
新型高分子材料的研究进展和应用前景
新型高分子材料的研究进展和应用前景随着科技的不断发展,高分子材料在我们生活中扮演着越来越重要的角色。
而新型高分子材料的研究进展,更是为我们未来的生活打开了一扇崭新的大门。
在本篇文章中,我们将探讨新型高分子材料的研究进展和应用前景。
一、新型高分子材料的研究进展1. 生物可降解高分子材料随着环保观念的普及,越来越多的科研人员开始关注生物可降解高分子材料的研究。
与传统材料相比,生物可降解高分子材料具有降解周期短、不会对环境造成污染等优点,被广泛应用于医学、农业、环保等领域。
2. 定向自组装高分子材料定向自组装高分子材料是近年来受到科研人员广泛关注的一种新型高分子材料。
其通过自组装形成纳米组织结构,从而赋予其特殊的结构和性能。
该材料具有自组装、高效载荷和传递作用等特点,被广泛应用于材料化学、药物输送等领域。
3. 再生高分子材料再生高分子材料是指以已经使用完毕的废旧材料为原料,经过加工处理后再次成为一种新的材料。
相比于传统的制造方式,再生高分子材料具有节能减排、资源利用等优点,被广泛应用于包装、建筑、汽车、家电等领域。
二、新型高分子材料的应用前景1. 医学领域在医学领域中,新型高分子材料具有广阔的应用前景。
例如,在智能药物输送方面,通过定向自组装高分子材料来实现药物的释放,可以提高药物的治疗效果并减少副作用。
未来还有可能通过生物可降解高分子材料制作出可降解的内置式治疗系统,能够有效地缓解药物的毒副作用。
2. 环保领域在环保领域中,生物可降解高分子材料的应用前景广阔。
例如,在农业领域中,可以利用生物可降解高分子材料制作新型的农膜,用于膜覆盖、定向控制作物生长和改善作物品质。
同时,再生高分子材料的应用也极具潜力,例如,利用再生高分子材料制作环保型的家具和家电等产品,从而达到节能减排和资源循环利用等效果。
3. 新材料领域在新材料领域中,新型高分子材料的应用前景同样不容忽视。
例如,定向自组装高分子材料在材料化学领域中可用于构建具有特殊功能的仿生材料和光子晶体,优化传感器和光学器件的性能。
高分子材料的研究进展及其应用
高分子材料的研究进展及其应用随着科技的不断发展,高分子材料作为重要材料之一,其应用范围也在不断扩大。
本文将介绍高分子材料的研究进展及其应用。
一、高分子材料的研究进展高分子材料是一类以高分子化合物为基础组成的材料,具有高分子化合物相对于其他材料所不具有的特性,如质轻、抗腐蚀、可塑性强等。
高分子材料的研究发展可以追溯到20世纪初,当时的研究主要集中在天然高分子材料,如木材、橡胶等。
直到1920年代,合成高分子材料被首次合成。
1940年代至1950年代,聚合物化学开始发展,加速了合成高分子材料的研究进展。
1970年代至1990年代是高分子材料的黄金时期,随着新技术的推出与应用,高分子材料的研究也发生了很大的变化。
例如,大分子量聚合物、特殊结构的高分子材料、新型共聚物、纳米材料等。
目前,高分子材料的研究涉及到诸多领域,尤其是新型高分子材料的研究发展日新月异,不断涌现出很多新的领域。
二、高分子材料的应用高分子材料应用领域之一:航空航天高分子材料应用于航空航天领域是高分子材料应用的重要领域之一。
在航天器制造中,高分子材料具有较好的轻量化、强度高和抗疲劳能力,如复合材料,以及在热隔离和外表面保护方面,如耐高温塑料与涂料,既可以满足航天器的要求,又可以减轻重量,提高航天器性能。
高分子材料应用领域之二:新材料高分子材料作为新材料应用领域的优势体现在自身的可塑性、强度和生物可降解性上。
其中,聚合物材料可用于制备高分子电解质、有机发光材料、阻燃材料、抗氧化材料等,广泛应用于各种电子元器件、光电子器件等。
高分子材料应用领域之三:汽车高分子材料在汽车制造领域的应用更是广泛,其中重要的材料之一就是聚碳酸酯。
聚碳酸酯具有较好的加工可塑性、高强度、硬度高、优异的防冲击性和制品外观等。
在汽车制造中,可用于制作车身外壳、车灯、挡板、仪表盘等永久性部件。
另外,在橡胶轮胎的制造中,二苯乙烯-丁二烯-苯乙烯共聚物和高分子树脂材料作为橡胶的增强剂和黏合剂,广泛应用于轮胎增强、耐磨损,提高轮胎的安全性和使用寿命。
高分子材料的研究进展与应用前景
高分子材料的研究进展与应用前景随着社会的不断发展和科技的日新月异,高分子材料作为新兴材料,受到了越来越多的关注。
高分子材料具有重量轻、强度高、耐腐蚀、绝缘等优点,同时可通过改变其结构和性质,使其具备多种特殊性能。
因此,在材料科学领域,高分子材料引起了广泛的研究和应用。
一、高分子材料的研究进展1. 可控聚合技术可控聚合技术是高分子材料研究及应用的重要方向之一,主要是指通过控制聚合反应条件,使得高分子材料的分子量、分子量分布、结构和性质等方面得到精确控制。
目前可控聚合技术主要有原子转移自由基聚合、共聚合反应等。
原子转移自由基聚合(ATRP)是一种较为成熟的可控聚合技术,该技术可以合成具有精确结构和性质的高分子材料,因此被广泛应用于药物传输、催化剂、光电材料等领域。
共聚合反应是一种介于自由基聚合和离子聚合之间的聚合反应。
通过调节反应物的配比和反应条件,可以得到各种互不兼容的结构改性高分子材料。
共聚合技术被广泛应用于光学材料、生物材料以及涂料等领域。
2. 超分子化学超分子化学是高分子材料领域的一个重要分支,在该领域研究者通过设计合成各种分子间相互作用的高分子材料,使其具备特殊的结构和性能。
目前,超分子化学技术在生物材料、药物传输、光学材料等领域具有广泛的应用前景。
例如,在药物传输领域,超分子聚合物可通过靶向药物传输,提高药物传输的效率和减少副作用。
3. 功能化高分子材料功能化高分子材料是在高分子材料中引入功能单元,使其具备特殊的性质和应用功能,如光、电、磁、冷致形状记忆等。
目前,功能化高分子材料在生物医学、催化剂、传感器等领域具有广泛的应用前景。
二、高分子材料的应用前景1. 医学高分子材料在医学领域具有广泛的应用前景。
如通过改变高分子材料的结构和性质,可以将其应用于药物缓释、组织工程、医用器械等领域。
例如,聚丙烯酸羟乙酯(HPMA)聚合物可作为药物缓释载体,大幅提高药物传输效率;聚甲醛基乙二醇丙烯酸甲酯(PHEA)可用于人工骨骼的制备等方面。
高分子材料的光催化性能研究
高分子材料的光催化性能研究随着环境污染和能源短缺问题的日益严重,高分子材料的光催化性能研究变得愈发重要。
光催化是一种利用光能促进化学反应的技术,其中高分子材料作为催化剂起着关键作用。
本文将介绍高分子材料的光催化性能研究的意义、主要研究方法和发展趋势。
首先,研究高分子材料的光催化性能对环境净化和能源转化具有重要意义。
高分子材料作为催化剂具有较大的比表面积和丰富的化学反应位点,能够吸收可见光、紫外光和红外光,从而驱动光催化反应。
光催化技术可以应用于有机废水处理、空气净化、有机物降解、光电子器件等多个领域。
因此,研究高分子材料的光催化性能对解决环境问题和推动可持续能源发展具有重要的现实意义。
其次,高分子材料的光催化性能研究需要综合应用多种研究方法。
首先,需要了解催化剂材料的物理化学性质,包括表面形貌、晶体结构、元素组成等。
这些性质对催化剂的光吸收和电子传输等过程有着重要影响。
常用的表征手段包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等。
其次,需要评估催化剂的光催化活性。
可以通过测量光催化剂在光照条件下的反应速率、反应产物种类和选择性等指标来评价光催化活性。
常用的实验方法包括紫外-可见光吸收光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)、气相色谱质谱(GC-MS)等。
此外,还可以采用电化学方法,如光电流-电压曲线、光电化学阻抗谱等。
最后,高分子材料的光催化性能研究面临着一些挑战和发展趋势。
一方面,需要进一步提高高分子材料的光催化活性和稳定性。
目前,许多高分子材料的光催化活性和稳定性仍然有待提高,特别是在可见光范围内的催化活性。
因此,需要设计新型的高分子材料,改善其光催化性能。
另一方面,需要深入研究高分子材料的光催化机制。
虽然已经取得了一些研究进展,但对于光催化反应的机理和光激发过程还存在很多未知之处。
因此,需要继续开展基础理论研究,探索高分子材料的光催化机制。
综上所述,高分子材料的光催化性能研究对环境净化和能源转化具有重要意义。
现代高分子材料发展前沿
高份子材料的发展前沿综述近年世界高份子科学在诸多领域取得重要发展,主要是控制聚合、超份子聚合物、聚合物纳米微结构、高通量筛选高份子合成技术、超支化高份子、光电活性高份子等方面。
1 高份子合成化学高份子合成化学研究从单体合成开始,研究高份子合成化学中最基本问题, 探索新的催化剂体系、精确控制聚合方法、反应机理以及反应历程对产物会萃态的影响规律等,高份子合成化学基础研究具有双重作用,一是运用已有合成方法研究聚合物结构调控;二是设计新的合成方法,获得新颖聚合物。
20 世纪 90 年代以来在高份子合成化学领域中,前沿领域是可控聚合反应, 包括立构控制,相对份子质量分布控制,构筑控制、序列分布控制等。
其中,活性自由基聚合和迭代合成化学研究最为活跃。
活性自由基聚合取得了许多重要的成果,但还存在一些问题。
活性自由基的发展前景,特殊是工业应用前景以及未来研究工作趋势是令人关心的问题。
对于活性自由基聚合反应机理的深入研究、在较低的温度下能快速进行聚合的研究是目前受到关注的研究方向。
迭代合成化学是惟一可用来制备多肽、核酸、聚多糖等生物高份子和具有精确序列、单分散非生物活性高份子齐聚物的方法。
树枝状超支化高份子的合成就是此合成策略的成功应用例证之一,是过去 10 年高份子合成中最具影响力的发展方向。
树枝状超支化聚合物由于其独特球形份子形状,份子尺寸,支化图形和表面功能性赋予它不同于线型聚合物的化学和物理性质。
高份子合成化学发展需注意以下几点:(1)与无机化学、配位化学、有机化学等的融合与渗透,吸取这些学科领域的研究成果开辟新的引起/催化体系,这是合成化学的核心,是高份子合成化学与聚合方法原始创新发展的关键。
对于传统的工业化单体,需要利用新型引起/ 催化体系和相应聚合方法,研究开辟合成新的微观结构的聚合物新材料。
(2)与有机合成化学和高份子化学密切结合,将有机合成化学的先进技术“嫁接”到高份子合成化学中,研发高份子合成的新方法,实现高份子合成的可设计化、定向化和控制化,这里包括通过非共价键的份子间作用力结合来“合成”超份子体系。
高分子材料的光学性质及其应用研究
高分子材料的光学性质及其应用研究高分子材料是一类具有广泛应用前景的材料,其独特的物理和化学特性使其成为现代工业生产中不可或缺的一部分。
其中,高分子材料的光学性质引起了人们的广泛关注和研究。
本文将从高分子材料的光学性质出发,探讨其在各种应用中的研究与应用现状。
1. 高分子材料的光学性质高分子材料具有独特的光学性质,其主要表现在如下几个方面:(1) 折射率和反射率高分子材料的折射率是其光学性质中最基本和最重要的参数之一,它影响着材料的透光性和反光性。
一般来说,高分子材料的折射率随波长的变化而变化,这种变化被称为色散现象。
例如,聚碳酸酯的折射率在可见光的波长范围内呈现出正向色散,而聚苯乙烯则呈现出负向色散。
与折射率相对应的是反射率,它是高分子材料的表面反射光线的能力。
一般来说,高分子材料的表面反射率随表面光洁度的提高而提高。
(2) 吸收、透过和散射高分子材料对不同波长的光有不同的吸收和透过特性。
这与材料的结构、取向和化学成分等有关。
例如,聚乙烯对紫外线和蓝色光的吸收很弱,而对红色光的吸收很强,所以聚乙烯制成的透明容器会让红色物体显得更鲜艳。
高分子材料中还存在着一种称为散射的现象,它是在材料中存在不均匀性时产生的。
例如,高分子材料的肌肉纤维状分子会在光线中散射,这使得材料在外界光线的照射下会出现云状或雾状的效果。
(3) 抗衰老性和稳定性高分子材料的抗衰老性和稳定性也是影响其光学性质的重要因素。
材料在长时间的使用中,会受到外界因素(如光、热、湿气等)的影响,从而使其光学性质发生变化。
为了提高高分子材料的抗衰老性和稳定性,需要加入稳定剂等添加剂来进行改性。
例如,聚脂类材料中加入的光稳定剂可有效提高材料的抗老化性能。
2. 高分子材料的应用研究在光电子、信息技术、传感器等领域,高分子材料的应用得到了广泛的研究和应用。
以下是其中的一些代表性应用:(1) 光学薄膜高分子材料的光学薄膜是一种常见的光学元件,它广泛应用于光学传感器、光学滤波器和太阳能电池等领域。
高分子纳米材料及其在光电领域中的应用研究
高分子纳米材料及其在光电领域中的应用研究随着科技的不断发展,高分子材料的应用越来越广泛。
而近年来,纳米技术的发展更是为高分子材料的应用带来了革命性的变化。
高分子纳米材料由于其特殊的结构、优异的物理性能和广泛的应用前景,受到了广泛的关注和研究。
本文将主要讨论高分子纳米材料及其在光电领域中的应用研究。
一、高分子纳米材料的研究现状高分子材料具有墨水效应和相容性差等问题,影响了其应用。
然而,与常规高分子相比,高分子纳米材料有结构更加复杂、性能更优越、应用领域更广泛的优势。
高分子纳米材料可以提高高分子材料的力学性能、电学性能、热学性能、阻隔性能、耐腐蚀性能等多方面性能,从而实现高分子材料的全面优化。
在目前的研究中,高分子纳米材料的制备方法主要有两种:一种是原位合成法,另一种是后加入法。
原位合成法主要是将纳米材料在高分子中合成,这种方法的优势在于可以充分利用高分子与纳米材料的相容性,从而产生更好的相互作用;而后加入法则是将纳米材料通过物理或化学手段引入到高分子中,往往需要进行表面修饰以改善其在高分子中的分散性,但是这种方法的有效性与稳定性有时需要更多的考虑。
二、高分子纳米材料在光电领域中的应用研究光电领域是高分子材料的重要应用领域之一,而高分子纳米材料的应用则进一步加速了光电领域的发展。
下面就介绍一些高分子纳米材料在光电领域中的应用研究进展:1、能量转换高分子纳米材料在太阳能电池中的应用是目前的研究热点。
纳米材料在高分子基体中的分散和控制可以有效提高太阳电池的转换效率和耐久性。
而高分子纳米材料与其他材料的复合可以进一步提高太阳电池的性能。
2、显示技术高分子纳米材料在显示技术中的应用也引起了广泛关注。
受到纳米材料的影响,高分子的光电性能可以得到显著提高,特别是在柔性显示技术中应用更为广泛。
3、传感器高分子纳米材料在传感器中的应用也吸引了越来越多的关注。
以高分子纳米颗粒为基础的传感器具有更快的响应速度,更高的灵敏度和更广泛的适用范围。
光敏感高分子材料的研究及应用
光敏感高分子材料的研究及应用前言:光敏感高分子材料研究是光化学和光物理科学的重要组成部分,近年来随着现代科学技术的发展,光功能高分子材料研究在功能材料领域占有越来越重要的地位,其中光敏感高分子材料日益受到重视。
光敏感高分子材料的应用领域已从电子、印刷、精细化工等领域扩大到塑料、纤维、医疗、生化和农业等方面,正在快速发展之中,光敏感高分子材料研究与应用也将越来越广。
光敏感材料的分类光敏感高分子材料在光作用下能迅速发生化学和物理变化的高分子,或者通过高分子或小分子上光敏官能团所引起的光化学反应(如聚合、二聚、异构化和光解等)和相应的物理性质(如溶解度、颜色和导电性等)变化而获得的高分子材料。
目前,光敏高分子的合成已成为精细高分子合成的一个重要方面按高分子合成目的不同分类①在侧链或主链上含有光敏官能团的高分子;②由二元或多元光敏官能团构成的交联剂;③在高效光引发剂存在下单体或预聚体发生聚合和交联而生成的高分子。
按应用技术不同分类①成像体系,主要用于光加工工艺、非银盐照相、复制、信息记录和显示等方面;②非图像体系,大量用于光固化涂层、印刷油墨、粘合剂和医用材料等方面。
光敏感材料的发展史从十九世纪开始,人类开始使用改造过的天然高分子材料。
火化橡胶和硝化纤维塑料(赛璐珞)是两个典型的例子。
进入二十世纪之后,高分子材料进入了大发展阶段。
首先是在1907年,Leo Bakeland发明了酚醛塑料。
1920年Hermann Staudinger提出了高分子的概念并且创造了Macromolecular这个词。
二十世纪二十年代末,聚氯乙烯开始大规模使用。
二十世纪三十年代初,聚苯乙烯开始大规模生产。
二十世纪三十年代末,尼龙开始生产。
随着工业企业现代化的发展,设备的集群规模和自动化程度越来越高,同时针对设备的安全连续生产的要求也越来越高,传统的以金属修复方法为主的设备维护工艺技术已经远远不能满足针对更多高新设备的维护需求,对此需要研发更多针对设备预防和现场解决的新技术和材料,为此诞生了包括高分子复合材料在内的更多新的维护技术和材料,以便解决更多问题,满足新设备运行环境的维护需求。
光化学固定法表面改性医用高分子材料研究进展
光区域 , 这样可 以避免因紫外光能量过高而对生 物分子造成破坏。二苯酮类化合物可利用其三线 态从高分子材料表面提取氢 原子 而嵌入碳 一氢 键, 然后经过分解产生一对 自由基 , 并形成新 的 碳一碳键。与叠氮基化合物不同的是二苯酮类化
+ 稿 日期 : 0 70 —8 收 2 0 —80
刘庆 丰 冯胜 山
( 湖北工业大学 机电研究院 武汉 4 0 7 ) 3 00
褚 衡 严 海彪
( 湖北工业大学化学与环境 工程学院 武汉 4 06 ) 3 0 8
摘 要 关键词
综述 了光化学 固定法表 面改性医用高分子材料方面的研究进展 , 介绍 了光化学 固定法的原理和优点。 表面改性 ; 光化学固定法 ; 光偶联剂 ; 生物相容性
第 4期
刘庆丰等 : 光化学 固定法表面改性 医用高分子材料研究进展
3 1
固定 法 在 聚 合物 表 面 引 入 具 有 或 间 接具 有 抗 凝 血活性 物质可 以赋予 材料 抗凝 血功 能 。一些 抗凝
材料 形 成 的聚 氨 酯
乙烯 基 吡 略 烷 酮 的共 聚
物 , 明 显改 善 血 液 相 容性 , 且 改 性 后 材料 的 能 而
地 实现 光化 学 固定 的高分 子有 聚 乙二 醇 、 聚丙 烯 酰胺 、 乙烯 吡 咯烷 酮 、 聚 胶原 、 素 、 连蛋 白 、 肝 纤 透
擦 系数 的降 低 , 活性 高 分 子 (A P P的衍 生 光 P A、V
物)涂层现已用于降低各种医用高分子材料的摩
擦系 数【 。
2 形成具 有抗 凝作 用 的表面 . 2
21 提高 材料 表面 的润滑 性 .
提高材料表面的润滑性可减少组织粘附、 降
新型功能性高分子材料的研究进展
新型功能性高分子材料的研究进展近年来,新型功能性高分子材料一直是材料科学研究的热点之一、这些材料不仅具有传统高分子材料的可塑性和可加工性,还具有特殊的功能性能,广泛应用于电子、光电、传感、医学等领域。
在新型功能性高分子材料的研究中,涉及到材料的合成、性能调控和应用等多个方面。
首先,材料的合成是新型功能性高分子材料研究的基础。
随着合成技术的不断发展,研究者们能够合成出具有特殊结构和性能的高分子材料。
例如,通过调节合成条件和材料配方,可以合成具有高分子链刚性的聚合物材料,如刚性-柔性链段共聚物。
这些材料不仅具有柔软的特性,还能够在特定条件下变得刚性,具有强韧性和抗疲劳性能。
其次,材料的性能调控是为了满足各种应用需求而进行的。
例如,研究者们通过改变高分子材料的分子结构、添加功能性团簇或掺杂其它材料,可以调控材料的光学、电学、热学和力学性能等。
这样的调控可以使材料具有特殊的感应、传感、发光、自修复和形状记忆等功能。
同时,通过改变高分子链的Mobility、charge transport和空间排布等参数,可以实现材料的电子传导性的调控和优化,有望推动有机电子器件的发展。
最后,新型功能性高分子材料的应用领域也在不断扩展。
例如,在电子领域,这些材料可以用于制备有机薄膜太阳能电池、柔性显示器和可穿戴电子设备等。
在光电领域,这些材料可以用于制备光电器件,如光电探测器、光伏器件和传感器等。
在医学领域,这些材料可以用于制备医用高分子材料,如纳米药物传递系统、生物可降解支架和组织工程材料等。
除了以上提到的研究方向外,还有一些新型功能性高分子材料的研究趋势,如研究高分子自组装和超分子自组装等方向。
同时,应用于柔性电子器件的高分子材料的研究也受到广泛关注,这些材料在柔性电路、柔性电池、柔性传感器等领域具有广阔的应用前景。
总之,新型功能性高分子材料的研究进展不仅涉及材料的合成和性能调控,还包括材料的应用拓展。
随着材料科学研究和合成技术的不断进步,我们相信新型功能性高分子材料将在各个领域展现出更广泛的应用前景。
高分子材料的光学性能研究
高分子材料的光学性能研究随着科技的进步和应用的不断拓展,高分子材料在日常生活中扮演着越来越重要的角色。
从塑料袋到手机壳,从光纤到液晶屏幕,高分子材料的应用范围广泛。
在这些应用中,光学性能是高分子材料至关重要的一个方面。
光学性能是指材料对光的响应和作用。
高分子材料的光学性能研究主要包括折射率、透过率、发光性能等方面。
折射率是介质对光传播速度的影响。
在光学器件中,材料的折射率会直接影响到设备的性能。
因此,对高分子材料的折射率进行研究是十分重要的。
科学家通过改变高分子材料的组成、结构等因素,来调控其折射率。
例如,通过增加高分子材料中的钙离子含量,可以提高其折射率,从而使其在光电子器件中发挥更好的性能。
透过率是指材料对光的透过程度。
高分子材料中的透过率通常由材料的结构和厚度等因素决定。
对于透明材料的研究,科学家尤其关注其透过率和热传导性能之间的关系。
通过合理设计高分子材料的结构和控制其厚度,可以实现更高的透过率和较低的热传导性能,从而提高材料的光学性能。
发光性能是高分子材料的一个重要特性,也是近年来研究的热点之一。
高分子材料的发光性能可以通过不同的方法来实现,例如通过添加特定的发光剂、调控材料的结构等。
通过对高分子材料的发光性能研究,科学家们可以深入了解材料的发光机制,并进一步优化材料的性能。
而要对高分子材料的光学性能进行研究,首先需要合适的测试方法。
光学性能的测试可以采用光谱仪、拉曼光谱仪、电镜等仪器设备。
这些仪器设备可以帮助科学家们对高分子材料的光学性能进行准确的测量和分析。
在研究高分子材料的光学性能时,科学家们还需要考虑材料的稳定性和可持续性。
高分子材料在不同环境条件下的性能如何变化,是否具有长期稳定性等问题都需要被考虑。
这将有助于科学家们更好地预测和控制高分子材料在实际应用中的性能。
总的来说,高分子材料的光学性能研究对于提高材料的应用性能、拓展新的应用领域具有重要意义。
通过对折射率、透过率、发光性能等方面的深入研究,科学家们可以不断改进高分子材料的性能,并进一步推动科技的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光活性高分子材料的研究进展
具有光学活性的高分子( 又称旋光性聚合物) 是上世纪五十年代中期发展起来的一类
新型功能高分子材料。
从结构上看, 旋光性聚合物分子主链上带有不对称因素, 它或者含有带手性原子的基团而具有构型上的特异性, 又或者可以形成相对稳定的单向螺旋链而具备
构象上的特异性。
这种结构上的特点赋予了聚合物材料的旋光性能, 即可以使通过它的偏振光发生偏转。
在自然界的生物体中, 旋光性大分子特有的不对称结构在维持生命过程、新陈代谢、物种繁衍、进化等方面都起着决定性的作用。
在人工合成领域, 旋光性聚合物也已经在手性识别和对映体拆分方面得到广泛应用, 并在手性催化剂、液晶、生物医药、光学开关和非线性光学等领域展现出良好的应用前景。
随着材料科学的飞速发展, 设计合成具有新型结构的聚合物, 并研究其独特的性质和功能已成为当今高分子科学领域研究的热点。
从聚合方法的角度, 可以把旋光性聚合物的合成方法分成几大类, 主要有自由基聚合、离子引发聚合、缩合聚合、催化偶联聚合、配位聚合、非旋光性聚合物的手性修饰法、模板印记聚合等方法。
其中, 通过缩合聚合的方法来获得旋光性聚合物的途径最为普遍。
对于具有羧基、氨基、酰氯、醇、酸酐等双活性基团的手性单体, 都可以通过缩合聚合的方法得到旋光性聚合物。
本文主要介绍由此类活性官能团单体聚合得到的高性能旋光性聚合物, 如聚酯酰亚胺、聚酰胺、聚酰胺酰亚胺等的研究进展。
一、螺旋链光活性高分子材料
自60年代烯类单体的Ziegler-Natta催化聚合得到立体规整性聚合物以来,聚合物的立体化学研究引起了广泛地兴趣。
我们知道很多有规立构的天然和合成高分子,其结晶的固态以螺旋结构存在,螺旋链结构是高聚物的基本结构之一。
然而,绝大部分全同立构螺旋链烯类聚合物像聚苯乙烯、聚丙烯在溶液中不具有光学活性,原因是由于这种高分子在熔融或溶液中很快达成热力学平衡而成无规线团。
然而,如果聚合物具有的侧基足够大,链旋转受到阻碍,以致能保持稳定的螺旋结构,那么,得到的螺旋聚合物具有光学活性。
具有单向螺旋链结构的新型光学活性高分子的出现,对于深人了解和研究高分子的立体化学有着重要学术意义之外,它们的实际应用前景也已引起关注。
Yuki和okamoto等人首先将具有单向螺旋链结构的光学活性高分子PTrMA作手性固定相,在高效液相色谱(H PLC ) 中用于各种不同外消旋化合物的拆分,日本Daicel化学工业公司己有商品名CHIRAPAK OT (+)的手性HPLC柱,可以分离20多种外消旋化合物,如碳烃类、酷类、酞胺和醇类等,特别是含有芳香基的外消旋化合物更为有效,它们当中有一些是不能采用其它固定相予以分离的。
光学活性的聚三氯乙醛作为吸附介质也成功地采用在消旋化合物色谱分离中阅。
进一步的应用可能包括:(l) 用于不对称合成的手性试剂;(2) 手性催化剂或模拟酶;(3) 作为合成功能膜和泡囊的组份。
在这些可能的应用中,从合成上可以将螺旋链光学活性结构( 即主链手性) 与侧链手性结构结合起来以进一步提高选择性。
一般来讲,可以预料一个纯的光学活性高分子的物理性质将会明显地不同于外消旋高分子混合物的物理性质,这种差异已在光
学活性的聚甲基丙烯酸,一甲基节醋中观察到。
因此,目前对这类新型的光学活性高分子的另一个特殊的兴趣是基于它们的压电、铁电和非给扰仁光学性质方面的可能的应用,目前,国际上有几个实验室正对光学活性高分子的非线性光学性质进行广泛的研究。
为了获得非线性效应,必须使高分子具有一个非中心对称相的结构,为此可以将取向的棒状分子排列形成薄层来解决,预计具有螺旋链结构的光学活性高分子也可以被采用。
二、可溶性研究
旋光性功能高分子在其优良的耐热性基础上又具有光学活性,因此在电子器件、光学开关、生物材料方面都具有巨大的潜在利用价值。
但是,由于聚酯酰亚胺类分子链本身的刚性、结构的规整性以及分子间的相互作用,使普通的聚酯酰亚胺类聚合物很难溶解,造成其加工和成型困难。
因此在保证耐热性的基础上,提高旋光性高分子的可溶性非常重要。
通过对结构控制,如引入柔性链、大的侧基、扭曲和非共平面结构等,都可以改善其可溶性。
通常的聚酯酰亚胺类高分子只有在强极性溶剂中才可溶解,如DMF、DMAc、NMP、H2SO4、DMSO 等。
Abdol R H对比了以PMDA-Lleu直接同二酚单体聚合所得的产物与PMDA-L-leu同带烷氧链的二醇反应后再同二酚聚合所得的产物,发现含有柔性烷氧链的共聚产物,其溶解性比直接聚合所得的产物好,共聚产物在常温下可以溶解在极性溶剂中,而直接缩聚产物在相同溶剂中加热条件下才能溶解。
三、热性能分析
聚酯酰亚胺、聚酰胺酰亚胺、聚酰胺类高分子通常具有较好的耐热性,在较高温度下可以保持性质的稳定,这主要归功于其分子主链上刚性的芳族结构。
优良的热稳定性可以为此类材料用做光学器件提供有力保证;同时在手性分离柱固定相方面,温度对手性柱的分离因子有重要影响,常温下难以分离的手性对映体通过适当提高温度可以实现分离,而且耐热性材料可以减少较高柱温时流动相对固定相的损耗,延长其使用寿命。
因此耐热性是旋光性高分子材料一个重要性能指标。
通常采用热重分析仪在氮气气氛下,以10℃/ min~ 20℃/ min 升温速率测量材料的热降解性能。
对于相同单元合成的旋光性聚合物,通常聚合度越高,材料的耐热性越好。
Shadpour E M以相同单体不同溶剂经溶液聚合得到相同单元的聚合物,发现以氯化亚砜/ 吡啶为溶剂所聚合得到的聚合物比以对甲苯磺酰氯/ DMF/ 吡啶为溶剂所得聚合物特性黏数大,且降解温度也随之提高。
氨基酸的种类对聚合物的热稳定性也有明显影响。
目前由于官能团的限制,引入到聚酯酰亚胺类旋光性高分子的氨基酸主要有亮氨酸、苯丙氨酸、甲硫氨酸、异亮氨酸、组氨酸等,其中含甲硫氨酸单体的聚合物热稳定性较差。
通常其5% 失重温度在300℃左右,10%失重温度在330℃左右;这可能是由于甲硫氨酸本身分解温度比较低,在聚合物中最先分解,影响了聚合物的整体热稳定性。
Abdol R H对全芳族聚酯酰亚胺与中间含烷氧链的聚酯酰亚胺进行比较,发现含烷氧链的聚合物热稳定性有所下降,说明柔性链段会降低聚合物的热稳定性。
而且,柔性链段的引入降低了聚合物的结晶度,有利于分子链段的运动,使聚合物出现
了明显的玻璃化转变。
四、旋光性研究
比旋光度是评价旋光性高分子材料的重要参数。
一般情况下,手性分子都呈现旋光性,所以很多学者认为手性结构的存在是聚合物具有旋光性的根本原因。
然而,某些手性分子却没有旋光性,如4-乙基癸烷、5-甲基-1-辛醇等。
尹玉英等认为导致这些聚合物具有旋光性的根本原因是分子链形成了一定的螺旋结构。
光学家导出了旋光度和旋光方向的螺旋模型计算公式,当分子中含有多个螺旋结构时,则所有螺旋旋光度的代数和为正是右旋的,为负是左旋的;但测定旋光度的溶剂不同及pH值微小变化都可能对螺旋结构进而对旋光度的值产生较大影响。
刘引烽等合成了一系列旋光性的聚酰胺,其旋光性与所用的单体的旋光方向相反,说明聚合物的旋光方向与单体构型间没有简单直接的对应关系。
所设计的聚合物的分子主链由2, 3-二乙酰氧基丁二酰氯和四种二胺( 乙二胺、丁二胺、己二胺或癸二胺) 组成;随着二胺单体中亚甲基个数的增加,聚酰胺的旋光度值减少;这是因为在聚合物分子结构中,亚甲基的个数增加会使不对称单元的密度有所降低,同时增加分子链柔性,使其在溶液中的构象稳定性降低。
刘引烽认为虽然构型的不对称性是导致聚合物旋光性的根本原因,但往往构象对旋光性的贡献会超过构型。