考研高数总复习数列的极限(讲义)
《高数》数列极限课件PPT
定义与其他概念的关系
极限与连续性的关系
函数的连续性是指在某一点处的极限 值等于该点的函数值,因此,函数的 连续性可以看作是极限的一种特殊情 况。
极限与可导性的关系
极限与积分的关系
积分是研究面积和体积的重要工具, 而积分的计算需要用到极限的概念。
可导性是指函数在某一点处的切线斜 率存在,而这个切线斜率可以通过函 数在该点的极限值来定义。
数列极限与其他数学概念的关系
数列极限与函数极限的关 系
函数极限是数列极限的一个特例,即当自变 量n趋于无穷大时,函数值趋于一个常数, 这个常数就是函数的极限值。函数极限和数 列极限有许多共同的性质和定理,如单侧极 限、连续性等。
数列极限与微积分学
微积分学中的许多概念都与数列极限有关, 如导数、定积分等。通过数列极限,我们可 以更好地理解这些概念的本质和性质。同时 ,微积分学中的许多问题也需要借助数列极
04
数列极限的应用
在数学分析中的应用
极限是数学分析的基本概念之一,数列极限在数学分析中有 着广泛的应用。通过研究数列极限,可以更好地理解函数的 变化趋势、导数和积分的定义和性质等。
数列极限在证明一些数学定理和推导数学公式中也有着重要 的作用。例如,利用数列极限可以证明实数的完备性定理、 级数收敛的判别法等。
数列极限的几何解释
数列极限的几何解释是通过图形直观 地理解数列收敛和发散的概念。在平 面坐标系中,我们可以绘制数列的图 像,通过观察图像的变化趋势来理解 数列的收敛性和发散性。
收敛数列的图像会趋近于一个固定的 点,而发散数列的图像则会远离这个 点。通过比较不同数列的图像,我们 可以更好地理解数列极限的性质和特 点。
闭区间套定理
总结词
闭区间套定理是数列极限存在的一个充分条件,它表明如果一个数列的项构成一个闭区 间套,则该数列收敛。
《数列的极限》课件
单调有界定理
总结词
如果一个数列单调增加或单调减少,且存在上界或下界,则该数列存在极限。
详细描述
单调有界定理是数列极限存在性定理中的一个重要推论,它表明如果一个数列单调增加或单调减少,并且存在上 界或下界,那么这个数列存在极限。这是因为单调性保证了数列不会无限增大或减小,而有界性则保证了数列不 会趋于无穷大或无穷小。
数列的极限
目录
CONTENTS
• 数列极限的定义 • 数列极限的性质 • 数列极限的存在性定理 • 数列极限的应用 • 数列极限的证明方法
01 数列极限的定义
CHAPTER
定义及性质
定义
对于数列${ a_{n}}$,如果当$n$趋于无穷大时,$a_{n}$趋于某个常数$a$,则称数列${ a_{n}}$收敛 于$a$。
05 数列极限的证明方法
CHAPTER
定义法
总结词
通过直接使用数列极限的定义来证明数列的极限。
详细描述
定义法是最基本的证明数列极限的方法,它基于数列 极限的定义,通过直接计算数列的项与极限值之间的 差的绝对值,并证明这个差可以任意小,从而证明数 列的极限。
柯西收敛准则证明法
总结词
利用柯西收敛准则来证明数列的极限。
性质
极限的唯一性、四则运算法则、夹逼准则等。
收敛与发散
收敛
当数列的项逐渐接近一个常数时,该 数列称为收敛的。
发散
如果数列的项没有收敛到任何值,则 该数列称为发散的。
收敛的几何意义
几何解释
在数轴上,如果一个数列的项逐渐接 近一个点,那么这个数列就是收敛的 ,而这个点就是它的极限。
举例
考虑数列${ 1, -1, 1, -1, ldots }$,该 数列在$x=0$处收敛,因为当$n$趋 于无穷大时,该数列的项逐渐接近0 。
《高数》数列极限》课件
详细描述
几何级数是每一项都等于前一项乘以一个固 定比例的数列。数列极限的概念用于计算几 何级数的和,帮助我们了解这种数列的增长
趋势和规律。
05
数列极限的扩展知识
无穷级数的概念
要点一
无穷级数定义
无穷级数是无穷多个数按照一定顺序排列的数列,可以表 示为$sum_{n=0}^{infty} a_n$,其中$a_n$是级数的项。
《高数》数列极限》ppt课件
• 数列极限的定义 • 数列极限的性质与定理 • 数列极限的运算 • 数列极限的应用 • 数列极限的扩展知识
01
数列极限的定义
定义及性质
定义
数列的极限是指当项数n无限增大时 ,数列的项无限趋近的数值。
性质
极限具有唯一性、有界性、局部保序 性等性质。
收敛与发散
收敛
如果数列的极限存在,则称该数列收敛。
单调有界定理
如果数列单调递增且有上界或单调递减且有下界,则 该数列收敛。
反例
举出一些不满足单调有界定理的数列,如无界且无周 期的数列等。
应用
单调有界定理在证明某些数学问题时具有重要应用, 如求函数的极值点等。
柯西收敛准则
柯西收敛准则
数列收敛的充要条件是对于任意 给定的正数$varepsilon$,存在 正整数$N$,使得当$n,m>N$时 ,有$|a_n - a_m|<varepsilon$ 。
幂级数求极限
幂级数求极限的方法
介绍如何利用幂级数的方法求极限,包 括将函数展开为幂级数,并利用幂级数 的性质求极限。
VS
举例说明
通过具体例子演示如何运用幂级数求极限 ,如求lim(x->0) (1+x)^1/x的极限值。
高等数学放明亮版课件1.2-数列的极限ppt.ppt
2024/9/27
17
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
xn
1
(1)n n
无限接近于常数1 .
怎样用精确的数学语言来阐述“当 n 趋于无穷大时,
数列 xn 无限接近一个确定的常数 a ”这一变化趋势? 我们知道,两个数 a 与 b 之间的接近程度可以用这两个
数之差的绝对值| b a | 来度量( | b a | 的几何意义表示点 a
与点 b 之间的距离),| b a | 越小,a 与 b 就越接近.为此,“数
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2. 收敛数列一定有界.
(Roundedness)
证: 设nl imxn a, 取 1, 则 N , 当 nN 时, 有 xn a 1,从而有
去求最小的 N.
2024/9/27
9
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例2 证明
lim
n
(1)n (n 8)3
0
证:
xn0
( 1) n (n 8)3
极限是唯一的.
2024/9/27
12
目录
上页
下页
高等数学随堂讲义数列极限(1).pptx
序列
x1, x2, x3 , xn ,
就叫做数列,记为 xn .
➢表示: (a) 数轴上的一系列点
(b) 平面上的一系列点
x3 x1 x2 x4 xn x
xn x1 x2 x3 x4
o
1 2 34 n
➢实质: 自变量为正整数的函数 xn f (n), n N
(二)数列极限的定义
1.数列的概念 2.数列极限的描述性定义 3.数列极限的精确定义 4.数列极限的意义
➢定理3
如果lim n
xn
a,且 a
0(或 a
0)
那么存在正整数 N 0, 当 n N时,都有
xn 0(或 xn 0)
➢推论 如果数列xn从某项起有 xn 0(或 xn 0)
且
lim
n
xn
a , 那么
a
0(或 a
0)
二、收敛数列的性质
(四)收敛数列与其子数列间的关系
➢子数列概念
在数列中任意抽取无限多项并保持这些项在原数列{xn}中
来 越
正十二边形:S3 …… Sn
接 近
S
当n无限增大时
Sn的变化趋势为S
2. “一尺之棰,日取其半, 万世不竭”
第一天后: 1/2 第二天后:
(一)引例
1. 求半径为r的 圆的面积S
作圆的内接正多边形
正三角形:S1 越
正六边形:S2
来 越
正十二边形:S3 …… Sn
接 近
S
当n无限增大时
Sn的变化趋势为S
(一)引例
1. 求半径为r的 圆的面积S
2. “一尺之棰,日取其半, 万世不竭”
作圆的内接正多边形
正三角形:S1 越
高等数学 第二节 数列的极限
lim
n
xn
a 的"
N" 定义 :
lim
n
xn
a
0, N N ,当n N 时, 有
| xn a | .
注意: (1) 0 的任意性; a xn a
(2) N 的存在性:N N ( ).
(3) 几何解释 当 x = n, 则 xn f (n)
第n 项 xn 叫 做 数 列 的 一 般 项.
例如:
1 , 2 , 3 ,, n ,: 2 3 4 n1
n n
1
;
2,
1 2
,
4 3
,,
n
(1)n1 n
,:
n
(1)n1 n
;
2,4,8,,2n ,:
{2n };
1,1,1,,(1)n1,: {(1)n1}.
注意: 1. 数列的每一项都是数.
n
2
2 n2
n n2
)
1 .
2
1. 证明lim( n2 1 n) 0. n
证 0,
n2 1 n 0 ( n2 1 n)( n2 1 n) n2 1 n
n2
1 1
n
1 2n
,
欲使 1 , 只须n 1 ,
2n
2
取
N
1
2
,
则当n N时,
n2 1 n 0 ,
lim
n
xn
a
f(n)
a
x1
a的邻域
x2
a
自然数 N
xn
对一切 n > N a
数学《数列极限》讲义
第二章数列极限1. 教学框架与内容教学目标①掌握数列极限概念,学会证明数列极限的基本方法.②掌握数列极限的主要性质,学会利用数列极限的性质求数列的极限.③掌握单调有界定理;理解柯西收敛准则.教学内容①数列极限的分析定义,数列发散、单调、有界和无穷小数列等有关概念与几何意义;利用放缩法证明数列收敛或发散.②数列极限性质(唯一性,有界性,保号性,保不等式性,迫敛性,四则运算法则)的证明与应用,数列的子列及有关子列收敛的定理.③单调有界定理的证明及应用;柯西收敛准则,用柯西收敛准则判别数列的敛散性.2. 重点和难点①数列极限的Nε-语言,数列极限证明中N的存在性.②数列极限性质的分析证明, 数列极限性质的应用.③数列单调有界定理的证明和应用,利用柯西收敛准则判别数列的敛散性.3. 研究性学习选题● 数列极限证明的技巧将书后习题分类,首先自己总结数列极限证明的技巧,然后进行小组交流和讨论.● 如何利用单调有界原理求迭代数列的极限课后自己总结单调有界原理求极限的方法与步骤,选用经典习题小组讨论,进行讲解并评分.4. 综合性选题,尝试写小论文:★不等式技巧在数列极限证明中的应用.★数列极限存在的常用结论.5. 评价方法◎课后作业,计20分.◎研究性学习选题计30分.◎小论文计20分.◎小测验计30分§1数列极限概念一、数列若函数f 的定义域为全体正整数集合Z +(或N ),则称:f N R → 或()f n n N ∈为数列. 通常记为()n a f n =.或 12,,,,n a a a ⋅⋅⋅⋅⋅⋅ .数列表示法:通项、递推公式、1{}n n a ∞=或0{}n n a ∞=.特殊数列:常数数列、单调数列、有界数列、等比数列、等差数列. 二、数列极限------反映变量在某个变化过程中的变化趋势 [作图]1{}n、(1){}n n -、 {}n 、{(1)}n -、 {(1)}n n - 变化趋势: 1) 有一定的变化趋势; 无限接近于某数a ----收敛;震荡、无限增大、无限减小----定向发散;2) 无一定变化趋势----不定向发散.数列{}n a 收敛于a ,||0n a a -→(n a 与a 的距离越来越接近). 1、定义下面我们首先给出数列收敛及其极限的精确定义.定义1 ()N ε- 设{}n a 为数列, a 为一定数, 若对任给的正数0ε>,总存在 正整数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ,而a 称为{}n a 的极限. 记作 lim n n a a →∞= 或 n a a →(n →∞).若数列{}n a 没有极限,则称{}n a 不收敛或发散, 也称{}n a 为发散数列.例1验证下列极限:1) 1lim 0n n →∞=;2) 1lim 02n n →∞=;3) lim 0n n q →∞=, ||1q <;4) 223lim 33n n n →∞=-.注1 ε的任意性.ε的作用在于刻画数列{}n a 与定数a 之间的接近程度.ε越小表示接近度越好,而正数ε—可任意小说明n a 与a 可以无限接近,ε虽具有任意性, 但一经给出,就可看作暂时固定的数,并由此确定N ,从而N 与ε有关系. 同时,ε主要用于刻画n a 与a 的逼近程度,因而n a a ε-<中的ε可用22εε,2,εk ε(0k >常数)等代替,同时n a a ε-<可改写成n a a ε-≤.注 2 N 的相应性. 前面说过N 与ε有关,可记作()N ε但并不意味着N 由ε唯一确定. 这里我们主要强调N 的存在性(一般来说,ε愈小,相应的N 越大),同时n N ≥时(对大于N 的任一n )有n a a ε-<.如对11,1000n a n ε==,相应的1001, 1002N =都可.例2 1) 0n →∞=;2) 1(1)n a =>;3) 1n =;4) 2lim 04n n n →∞=.思考 考虑1n =, 3lim 04n n n →∞=?2、几何意义 当n N >时,n a a ε-<d⇔所有下标大于N 的项n a 都落在a 的 邻域(,)U a ε内,而在(,)U a ε之外,数列{}n a 至多只有有限项(至多N 项). 定义1’任给0ε>,若在(,)U a ε之外{}n a 至多只有有限项,则称{}n a 收敛于a . 例3 改变或去掉数列的有限项,不改变数列的敛散性.例4 设n a a →,则n k a a +→. 这里k 为某固定的正整数.例5 设lim lim n n n n x y a →∞→∞==, 作数列{}n z 1122,,,,,,,n n x y x y x y ⋅⋅⋅⋅⋅⋅验证: lim n n z a →∞=. 思考 用N ε-定义如何证明?3、收敛的否定n a a →0, , ||dn N n N a a εε⇔∀>∃∀>-<:;0, (,)U a εε⇔∀>之外至多有{}n a 的有限项.n a →a 00000,, ||n N n N a a εε⇔∃>∀∃>-≥:; ⇔存在某00ε>,使数列{}n a 有无穷多项落在邻域0(,)U a ε之外.{}n a 收敛, 0, , ||n a R N n N a a εε⇔∃∈∀>∃∀>-<:. {}n a 发散0000, 0, , ||n a R N n N a a εε⇔∀∈∃>∀∃>-≥:.例6 验证 1) lim 01n nn →∞≠+;2) 2{}, {}n n (-1)为发散数列.4、N ε-定义的一些等价形式(变形)1D :20,, , (n N n N a a k εεε∀>∃≥-<:或. (k 为常数)2D :0(),, n c N n N a a εεε∀><∃>-<:. 3D :0,, n N n N a a εε∀>∃>-<有理数:. 4D :1,, n m N N n N a a m∀∈∃>-<:. 5、无穷小数列定义 若lim 0n n a →∞=,则称{}n a 为无穷小数列.定理 n a a →{}n a a ⇔-为无穷小数列.注 3 ||00n n a a →⇔→.例7 证明: 若lim n n a a →∞=,则lim ||||n n a a →∞=. 但反之未必成立,即||||n a a →⇒n a a →.习 题1. 用N -ε定义验证1) lim 12n nn →∞=+; 2) 2233lim 212n n n n →∞-=+;3) !lim 0n n n n →∞=; 4) limsin 0n nπ→∞=;5) lim cos1n nπ→∞=; 6) lim02nn n→∞=;2. 指出下列数列哪些是无穷小数列.; ; 11n ⎧⎫+⎨⎬⎩⎭; 32n n ⎧⎫⎨⎬⎩⎭; {}n n q α(,||1)R q α∈<.3. 证明:若a a n n =∞→lim ,则对任一正整数k , 有a a k n n =+∞→lim .4. 试用定义1'证明:1) 数列}1{n不以1为极限; 2) 数列}{)1(n n -发散.§2 收敛数列的性质一、收敛数列的性质1、唯一性 若数列{}n a 收敛,则它只有一个极限.2、有界性 若数列{}n a 收敛,则{}n a 为有界数列. 即0, , n M n N a M ∃>∀∈≤使得. (画图分析) 推论 无界数列必发散.注 1 有界数列未必是收敛的(定理2.3的逆未必成立).3、保号性 若lim 0 (0)n n a a →∞=><或,则对任何(0,)r a ∈(,0))a ∈(或r , 存在N ,使得n N >时,0 0n n a r a r >><<(或).推论 若lim 0n n a a →∞=>,则存在N ,n N >时,0n a > (保符号).若lim 0n n a a →∞=≠,则存在N ,n N >时,||||02n a a >>. 注 2 由lim 0n n a →∞≥不能推出 , , 0n N n N a ∃>≥.4、保不等式性 设{}n a 和{}n b 为收敛数列,若存在,,N n N >使得时n n a b ≤,则lim lim n n n n a b →∞→∞≤. [直接证明或反证法]定理 设lim , lim , n n n n a a b b a b →∞→∞==>, 则存在N ,n N >时,n n a b >.注 3 在定理2.5中,不等式若为n n a b <, 则不能推出a b <.例1 设0, 1,2,n a n ≥=⋅⋅⋅. 若n a a →.5、迫敛性 若数列{}n a 、{}n b 和{}n c 满足n n n a c b ≤≤,n N ∀∈,, n n a a b a →→, 则n c a →.注 4 用得较多的是0, 0 0n n n n c b b c ≤≤→⇒→.例2 1) 1lim sin 0n n n →∞=2) lim 3n →∞= .... 一般形式?思考 上述定理中若{},{}n n a b 均发散, 能否推出{}n c 发散? 6、四则运算定理 若, n n a a b b →→,则1) n n a b a b +→+, 2) n n a b a b ⋅→⋅,3) 若还有0,0n b b ≠≠,则n n a ab b→.思考 若{},{}n n a b 均发散或其中之一发散, 上述结论又如何?例3 求 11101110lim , , 0, 0m m m m m k k k n k k a n a n a n a m k a b b n b n b n b ---→∞-++⋅⋅⋅++≤≠≠++⋅⋅⋅++.例4 求 lim 1nn n a a →∞+ (1a ≠-).例5 求 1) (31)(5)lim (12)(25)n n n n n →∞++-+;2) 268n ;3) n .例6 求1) 21)sin(21)n n →∞+;2) 1lim nn i →∞=;3)1)21n n →∞⋅⋅⋅++.二、子列的收敛性定义(子列) 设{}n a 为一数列,{}k n N ⊂为无限子集,且12k n n n <<⋅⋅⋅<<⋅⋅⋅, 则数列 12,,,,k n n n a a a ⋅⋅⋅⋅⋅⋅, 称为数列{}n a 的一个子列,记作{}k n a .注 5 {}k n a 选自{}n a 中且保持{}n a 中的顺序不变, 注意k n a 为{}k n a 中的第k 项, 是{}n a 的第k n 项,故k n k ≥. 注意子列的子列仍为子列. 例 7 数列{(1)}n -,奇子列21{}k a +与偶子列2{}k a .注 6 平凡子列是指数列{}n a 本身或者去掉有限项得到的数列,易见平凡子列与 数列{}n a 本身的性质(态)完全一样.定理 数列{}n a 收敛⇔{}n a 的任一子列(非平凡子列)均收敛.⇔{}n a 的任一子列(非平凡子列)均收敛于同一个数.注 7 我们通常用上述定理来证明数列{}n a 不收敛,只需找到某个发散子列或某两个子列收敛但极限不同. 如{(1)}n -. 三、利用上述性质讨论极限*例8 证明: 数列2(1){}31n n nn +-⋅+发散.例9 1) 22231lim(12...)n n n→∞+++; 2) n ;3) n 11lim ()n nn n n a b a b a b++→∞+≠-+.例10 1) 1321lim 242n n n →∞-⋅⋅⋅⋅⋅⋅; 2) lim[(1)]n n n αα→∞+- 01α<<;3) 22lim(1)(1)(1)nn ααα→∞++⋅⋅⋅+ 1α<.例11 设1,...,m a a 为m个正数,则1max{,,}m n a a =⋅⋅⋅.例12 设lim nn na b →∞存在,则若0n b →,必有0n a →.例13 若1||||n n a q a +≤,01q <<,则lim 0n n a →∞=.例14 若0n a >,1lim1nn n a L a →∞+=>,则lim 0n n a →∞=, 并利用其求2lim 4n n n →∞, 3lim n n n q →∞以及213lim 22n →∞+ 212n n -+⋅⋅⋅+. 一般常用结论: 若1lim ||1n n na l a +→∞=<, 则lim 0n n a →∞=.习题1. 求下列数列的极限1) limn→∞(n2) limn→∞3) limn→∞(1n4) limn→∞11(2)3(2)3n nn n++-+-+5) limn→∞212232n nnn++++6) limn→∞12()22n nn+++-+7)limn→∞8) limn→∞11(1)nkk k=+∑2. 设{}n a为无穷小数列, {}n b为有界数列, 证明: {}n na b⋅为无穷小数列.3. 求下列极限1)122lim(2sin cos)nnn n→+∞+2)1lim(arctan)nnn→+∞3) 11lim(1)n n n→∞- 4) 22)nn →∞⋅5) 1!2!!lim!n n n →∞+++ 6) 1321lim 242n n n→∞-⋅⋅⋅4. 说明下列数列发散1) (1)1nn n ⎧⎫-⎨⎬+⎩⎭ 2) {}(1)n n- 3) sin 4n π⎧⎫⎨⎬⎩⎭5. 证明: 若0>n a , 且1lim 1>=+∞→l a a n nn , 则.0lim =∞→n n a6.设a a n n =∞→lim , 证明:1) a nna n n =∞→][lim;2) 若0,0>>n a a , 则1lim =∞→n n n a .§3 数列极限存在条件考察数列极限问题,首先应考察其极限是否存在 (极限存在性问题), 若极限存在,则应考虑如何求极限值(极限的计算问题). 一、单调有界原理 (充分条件)定理 (单调有界定理) 有界的单调数列必有极限.[上(下)有界的单调递增(递减)数列必有极限且极限为其上(下)确界] 例1 设111123n a nααα=+++⋅⋅⋅+, (2)α≥, 证明: {}n a 收敛.例2 设12,n a a a ==⋅⋅⋅=n 重根号), 证明:{}n a 单调有界, 并求其极限.注 1 在具递推关系式的数列{}n a 中,如1()n n a f a +=,若要求其极限,则我们可首先假定极限存在设为a ,则有()a f a =.由此方程解出a (此值一般即为极限), 其次一方面可考察n a a -(考虑用N ε-定义);另一方面,可考察是否有n a a ≤ (或n a a ≥)? 若n a a ≤,则一般证n a 递增(如n a a ≥,则证n a 递减),此时应考察1n n a a +-的符号(或1n na a +与“1”的大小关系).例3 设1, 0a x >,11()2n n nax x x +=+,n N ∈, 求证: {}n x 收敛,并求其极限.例4 证明: 极限1lim (1)n n n→+∞+存在,并利用其来求下列极限1) 1lim (1)n k n n +→+∞+ 2) 31lim (1)2n n n →+∞+3) 1lim (1)n n n -→+∞- 4) 1lim (1)n n n →-∞+5) 3lim ()2n n n n →+∞++ 6) 31lim (1)2n n n→+∞-.二、Cauchy 准则定义 (Cauchy 列) 如果数列{}n a 满足:0,,,:m n N m n N a a εε∀>∃>-<,则称 数列{}n a 为Cauchy 列或基本列.注 2 {}n a 为Cauchy 列0,,,:dn p n N n N p N a a εε+⇔∀>∃∀>∀∈-<. 定理 (Cauchy 准则) {}n a 收敛⇔{}n a 为Cauchy 列.注 3 Cauchy 准则方便之处在于无需知道具体极限值的情况下,就可以直接 判断{}n a 是否收敛.例6 利用Cauchy 准则证明:{}n a 收敛, 其中22211112n a n =++⋅⋅⋅+.例7 利用Cauchy 准则叙述{}n a 发散的条件, 并证明1112n a n =++⋅⋅⋅+发散.例8 利用Cauchy 准则证明limsin n n →∞不存在.三、邻域的语言*a R ∈,a 的邻域,(,)U a a εε=-+; ∞的邻域,(,)M -∞-⋃(,)M +∞,0M ∀>+∞的邻域, (,)M +∞,0M ∀> -∞的邻域,(,)M -∞-,0M ∀>lim n n a a →∞=0,,:n N n N a a εε⇔∀>∃>-<.⇔对a 的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=+∞0,,:n M N N n N a M ⇔∀>∃∈>>.⇔对+∞的任一邻域U ,∃+∞的邻域V ,:n n N V a U ∀∈⋂∈.lim n n a →∞=-∞⇔……记*{,}R R =⋃-∞+∞,*a R ∈.*lim n n a a R →∞=∈⇔对a 的任一邻域U ,存在+∞的邻域V ,:n n N V a U ∀∈⋂∈.习 题1. 证明}{n a 收敛,并求其极限,,其中11n a a +==1,2,n =.2. 设c a =1)0(>c , 11,2...n a n +==, 证明数列}{n a 极限存在并求其值.3. 求下列极限1) 1lim(1)nn n→∞-; 2) 21lim(1)n n n →∞+; 3) 241lim ()2n n n n +→+∞++.4. 证明: 若单调数列}{n a 含有一个收敛子列, 则}{n a 收敛.5. 证明: 若}{n a 为递增(递减)有界数列, 则{}{}).(inf sup lim n n n n a a a =∞→又问逆命题成立否?7. 应用Cauchy 准则证明{}n x 收敛,其中 1) 2sin1sin 2sin 222n n nx =++⋅⋅⋅+2) 0.90.090.0009n x =++⋅⋅⋅+⋅⋅⋅(n 个0)8. 利用Cauchy 准则叙述数列}{n a 发散的充要条件,并用它证明下列}{n a 发散:1) n a nn )1(-=; 2) 2sinπn a n =.习题课一、知识复习1、n a a →d⇔0,,:n N n N a a εε∀>∃>-< ⇔{}n a 的任一子列均收敛于a ⇔{}n a 的奇偶子列均收敛于a . n a a →⇔2、 {}n a 收敛 ⇔{}n a 的任一子列均收敛⇔{}n a 的任一子列均收敛并且收敛于同一个数.⇔0,,,:n m N m n N a a εε∀>∃>-<. {}n a 发散⇔3、单调有界数列必收敛 1lim(1)n n e n →∞+=.4、n a a →的几何意义.5、收敛数列的性质及其证明. 二、典型方法 1、求极限的方法 1) 利用定义a) 观察确定极限值,利用定义验证.b) 对递推数列,可先假定极限存在,利用递推关系,求得极限,再用定义验证.2) 利用10nα→ (0)α>,0n a → (1)a <, 1(0)a →>,1及四则运算法则.3) 利用已知极限,如1lim(1)n n e n →∞+=.4) 利用单调有界原理(如何求极限).5) 利用适当的变换或变形(拆项、插项、裂项).2、证明极限存在方法 1) 用定义(先求极限值). 2) 利用单调有界原理. 3) 利用Cauchy 准则.3、证明极限不存在的方法 1) 定义.2) 找一个发散子列或两个收敛子列但极限不等. 3) 利用Cauchy 准则.4、一些常用结论1) lim 0n n a →∞=,{}n b 有界,则lim 0n n n a b →∞=.2) limnn na b →∞存在,且lim 0n n b →∞=,则lim 0n n a →∞=. 3) 设1lim ||1n n na l a +→∞=<,则lim 0n n a →∞=.4) 若数列满足{}n a 满足1n n a a q a a +-≤-, 01q <<,则lim n n a a →∞=.5) 若{}n x 满足11n n n n x x q x x +--≤- 01q <<,则{}n x 收敛. 6) 1,...,m a a 为m个正数,则1lim max{,,}m n a a =⋅⋅⋅.思考: 设{}n a为有界正数列,则?n =. 7) 设n n x a y ≤≤,0n n x y -→,则,n n x a y a →→.8) 设{}n x ↑,{}n y ↓, 0n n x y -→, 则{},{}n n x y 均收敛,且极限相同. 9) 0,n n a a b b →>→,则n b b n a a →.10) , n n a a b b →→,则max{,}max{,}n n a b a b →, min{,}min{,}n n a b a b →. 11) 设lim n n a a →∞=,则i) 12limnn a a a a n→∞++⋅⋅⋅+=,ii) 若0n a >,则n a =.并考察下列极限(教材43页第四题)(1)1112n n ++⋅⋅⋅+(2) 0)a >(3)……12) (Stolz 定理) 设{},{}n n x y 满足i) 1n n y y +>, ii) lim n n y →∞=+∞,iii)11lim n n n n n x x l y y +→∞+-=-,(l 为有限数), 则lim n n nxl y →∞=.并利用Stolz 定理求下列极限 i) 设n x a →,求1222limnn x x nx n →∞++⋅⋅⋅+.ii) 112lim p p pp n n n +→∞++⋅⋅⋅+ (0)p >.iii)113(21)lim p p pp n n n+→∞++⋅⋅⋅+- (0)p >.利用单调有界原理或Cauchy 准则考察下列命题.13) 设10x >,13(1)3n n n x x x ++=+,证明: lim n n x →∞存在并求极限.14) 证明: 若}{n a 为递增数列,}{n b 为递减数列,且0)(lim =-∞→n n n b a , 则n n a ∞→lim 与n n b ∞→lim 都存在且相等.15) 设011>>b a , 记 211--+=n n n b a a , 11112----+=n n n n n b a b a b .,3,2 =n 证明: 数列}{n a 与}{n b 的极限都存在且等于11b a .16) 给定正数1a 与)(111b a b >,作出等差中项2112b a a +=与等比中项112b a b =, 一般地令 21n n n b a a +=+, n n n b a b =+1, ,2,1=n . 证明: n n a ∞→lim 与n n b ∞→lim 皆存在且相等.17) 设0,0>>σa ,1111(), (), 1,2,.22n n n n a a a a n a a σσ+=+=+=证明: 数列}{n a 收敛, 且其极限为σ.18) 设数列}{n a 满足: 存在正数M , 对一切n 有 .12312M a a a a a a A n n n ≤-++-+-=-证明: 数列}{n a 与}{n A 都收敛.19) 若单调数列有一子列收敛,则该数列收敛.20) 若S 为有界集,则存在数列{}n x S ⊂,使得sup n x S →.21) 若S 为有界集,如果sup S S ∉,那么存在严格递增数列{}n x S ⊂,使得sup n x S →.22) 设S 为无界集,则存在{}n x S ⊂,使得n x →∞23) 若S 为无上界集, 则存在严格增的{},n n x S x ⊂→+∞.24) 证明: 任一数列必有单调子列.25) 证明: 任一有界数列必有收敛子列.。
考研数学数列极限内容概括及考点总结
1考研数学数列极限内容概括及考点总结来源:文都教育数列极限的概念和判断极限存在的夹逼准则和单调有界准则也是考研数学的重要考点,下面文都考研数学教研室老师为大家总结了数列极限部分的知识和考点题型,希望对同学们有帮助。
一、数列极限1. 数列极限的定义设{}n a 为一数列,若存在常数A ,对任意的0>ε,总存在0>N ,当N n >时,有ε<-||A a n ,称A 为数列{}n a 的极限,或称数列{}n a 收敛于A ,记为A a n n =∞→lim 。
2. 收敛数列的性质(1)收敛数列极限存在且唯一.(2)收敛数列必为有界数列.(3)收敛数列的保号性.3. 极限存在准则(1)夹逼准则如果数列{}{}{},,n n n a b c 满足下列条件:从某项起,即0n N ∃∈,当0n n >时有,n n n c b a ≤≤,且A c a n n n n ==∞→∞→lim lim , 则A b n n =∞→lim 。
(2)单调有界准则单调增加(或单调减少)且有上界(或有下界)的数列{}n x 必有极限。
【注】此准则只给出了极限的存在性,并未给出极限是多少。
此时一般是在判定了“极限存在”以后通过数列的递推表示,在等式两边取极限得到。
4. 重要结论2 (1)若lim lim n n n n a a a a →∞→∞=⇒=.(2)lim 0lim 0n n n n a a →∞→∞=⇔=.(3)221lim lim ,lim n n n n n n a a a a a a -→∞→∞→∞=⇔==.【考点一】数列极限的概念与性质例1设().lim 0,n n n n n x a y y x a →∞≤≤-=且为常数,则数列{}n x 和{}n y ( )。
(A )都收敛于a (B )都收敛,但不一定收敛于a (C )可能收敛,也可能发散 (D )都发散 例2设(){}{}.lim 0,,n n n n n n n n x a y y x x y →∞≤≤-=且和{}n a 均为数列,则lim n n a →∞ ( )。
《高数教学课件》第二节之一1.数列的极限
05
习题与解答
习题部分
02
01
03
判断下列数列哪些是收敛的,哪些是发散的 数列1, 1/2, 1/3, 1/4, ... 数列1, -1, 1, -1, 2, 3, 4, ...
02
数列1, 1/2, 1/3, 1/4, ...
求下列数列的极限
03
习题部分
数列n的平方加3,n从1到 无穷大
《高数教学课件》第二节之一 1.数列的极限
目
CONTENCT
录
• 数列极限的定义 • 极限的求解方法 • 极限的应用 • 数列极限的性质 • 习题与解答
01
数列极限的定义
定义及性质
定义
数列的极限是指当数列的项数n趋于无穷大时,数列的项x_n趋于 某一固定值A的性质。
性质
极限具有唯一性、有界性、局部保序性、局部可加性和局部可乘 性等性质。
收敛与发散
收敛
如果数列的极限存在,则称该数列收 敛,其极限值称为该数列的极限。
发散
如果数列的极限不存在,则称该数列 发散。
极限的四则运算
01
02
极限的四则运算法则是: 加减乘除,先算括号内的 ,再从高阶到低阶依次计 算。
加法法则:lim(x>a)[f(x)±g(x)]=lim(x>a)f(x)±lim(x->a)g(x)
数列n的平方减5,n从1到 无穷大
数列n的平方,n从1到无 穷大
01
03 02
答案及解析
对于第一个数列1, 1/2, 1/3, 1/4, ...,这是一个收敛的数列, 因为它的通项公式为1/n,当n 趋向于无穷大时,通项公式趋 向于0。
对于第二个数列1, -1, 1, -1, ..., 这是一个发散的数列,因为它 的通项公式没有趋向于一个确 定的数值。
2023考研高等数学全考点精讲-第二讲 极限部分
第二讲 极限部分【考试要求】1.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.2.掌握极限的性质及四则运算法则.3.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.4.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.考点:极限的定义1.数列极限的定义及存在的充要条件{}{}{}0,,.,lim ;,.,n n n n n n n n N n N x a a x n x a x a a x x a N x a x εεεεεε→∞>>-<→∞=-<(1)定义中的是衡量必须且只需可以任意足够小;(2)定义中的正整数如果对于任意给定的总存在正整数当时,恒有成立则称常数是数列在时的极限,或称数列收敛于记为如果不存在这样的常数则称数列发散与无限接近的一个标准所以是保证不等式成立的分界点,它随的给定而选定;(3)数列注:定义1{}{},n n x 是否有极限如果有极限其极限值为多少,跟的前有限项无关.{}1,0,,, ;0,,, 1,,.n n n n n x a N N n N x x a N N n N x a c c m N N N n N x a mεεεε++++⎡⎤⎣⎦>∈>-<>∈>-<∈∈>-<例下列关于数列的极限是的定义哪些是对的,哪些是错的?说明理由.(1)对于任意给定的存在当时,有无穷多项使不等式成立(2)对于任意给定的存在当时,不等式成立其中为某个正常数;(3)对于任意给定的存在当时,不等式成立2lim 0,lim ,n n n n u a u a →∞→∞=≠=⎡⎤⎣⎦例若证明并举例说明反之不对.{}{}{}n n n x x x 在数列中任意抽取无限多项并保持这些项在原来数列中的先后次序,这样得到的一个数列称为原数列的子数列(或子列).定义2{}{}{},,.,n n n x a a x x 如果数列收敛于那么它的任一子列也收敛且极限也是若数列的某子列发散或某两个子列极限值不相等则数列发散.定理1注:221lim lim lim .n n n n n n x A x x A -→∞→∞→∞=⇔==定理2{}()()()()2212213313312015,____.lim ,lim lim lim lim ,lim lim ,lim lim lim lim ,lim n n n n n n n n n n n n n n n n n n n n n n n n n x A x a x x aB x x a x aC x a x x aD x x a x a -→∞→∞→∞-→∞→∞→∞-→∞→∞→∞-→∞→∞→∞⎡⎤⎣⎦============例2,数三设是数列则下列不正确的是若则若则若则若则()11lim ____.nn n n -→∞+⎛⎫=⎡⎤ ⎪⎣⎦⎝⎭例32.函数极限的定义()()()()()()000000,0,0,lim .lim .x x x x x x x f x a a f x x x f x a f x x f x f x x εδδε→→>><-<-<→=如果对于任意给定的总存在当满足时,恒有成立则称常数是在时的极限,记为在处的极限是否存在与在处是否有定义无关定义3注:()()()()()000lim lim .lim lim lim .x x x x x x x x x x x x x x f x f x f x A f x f x A -+-+-+→→→→→→→=⇔==类似可定义和时的和单侧极限定理1()()1,040,0,:0.1,0x x f x x x f x x x -<⎧⎪==→⎡⎤⎨⎣⎦⎪+>⎩例设证明当时的极限不存在()()()0,0,lim .x X x x X f x a a f x x f x a εε→∞>>>-<→∞=如果对于任意给定的总存在当满足时,恒有成立,则称常数是在时的极限,记为定义3()()()()()lim lim .lim lim lim .x x x x x x x f x f x f x A f x f x A →+∞→-∞→∞→+∞→-∞→+∞→-∞=⇔==类似可定义和时的和单侧极限定理225____,____lim arctan .2x ax xa b x bx x π→∞+===-⎡⎤⎣⎦-例当时,有()()011110112sin lim lim lim ,0arctan arctan ,arctan 211limarctan limarctan 2.1x xx x x x x xe e e xe e x x ππ∞+∞-∞→-→→→→→+∞→∞+=--∞∞=-需要分别考察左右极限的情形有(即何时使型型 用定理与定理)(1)分段函数的分段点处(包含带有绝对值的情形);如;(2);如和;(3)如和;总结:()()()()12116112 0 x x x e x A B C D --→⎡⎤⎣⎦-∞∞例当时,函数的极限____.等于等于为不存在但不为考点:极限的性质 1.数列极限的性质{},.n x 如果数列收敛那么它的极限唯一性质1(唯一性){}{},.n n x x 如果数列收敛那么数列一定有界性质2(有界性)lim 00,,, 00.lim ,,,n n n n n n x a N n N x x a b b N n N x b b →∞→∞=><>><=><>><如果(或)那么存在正整数当时有()如果()那么存在正整数当时都有().性质3(局部保号性)注:2.函数极限的性质()lim ,.f x 如果存在那么这极限唯一性质1(唯一性)()()0000lim ,.,x x f x x x f x x x x x x →+→→→→∞如果存在那么当时,有界可以改成其他方式如,等,结论也对应改之即可, 下面的保号性也一样.性质2(局部有界性)注:()()()()000lim 00,00.lim ,.x x x x f x a x x f x f x a b b x x f x b b →→=><→><=><→><如果(或)那么当时,()如果(或)那么当时,()性质3(局部保号性)注:()()()()()()()()31110,lim 2,1____.1x f x f f x x x A B C D →''===⎡⎤⎣⎦-例设且则在处不取极值取极大值取极小值是否取极值无法确定3.函数与数列极限的关系(归结原则、海涅定理)()(){}{}{}{}()(){}{}{}{}{}{}()00000lim ,,lim lim .lim lim lim ,lim .n n x x x n n n x x x n n n n n n n n n x x f x x x x x f x f x f x x x f x x x y f x f y f x →→∞→∞→→∞→∞→∞→∞→→∞=如果存在则对任一收敛于但又不等于的数列(或)其所对应的函数值数列必收敛,且若存在某收敛于数列使不存在或存在某两个收敛于数列和使和不相等则不存在注:012limsin x x→⎡⎤⎣⎦例证明不存在.ln 3lim .n n n →∞⎡⎤⎣⎦例求考点:无穷小与无穷大 1.无穷小的定义()()0000,,f x x x f x x x x x x x x +→→→→→∞如果在时极限为零,那么称为时的无穷小,当然,这里的可以是其他情形如等.定义1(1)有限个无穷小的和仍是无穷小;(2)有限个无穷小的积仍是无穷小;(3)有界函数与无穷小的乘积仍是无穷小.注:()()lim ,.f x A f x A αα=⇔=+其中是无穷小定理1(无穷小与极限的关系)()323112007lim sin cos ____.2x x x x x x x →+∞+++=⎡⎤⎣⎦+例(数三)2.无穷小的比较lim 0,lim 0,0lim0,2lim 0,3lim 1,4lim 0,.k o c c k αβαββαβααββααββααβαββαα==≠===≠==≠设且(1)若则称是比的高阶无穷小,记为();()若则称与是同阶无穷小;()若则称与是等阶无穷小,记为;()若则称是的阶无穷小12,3,,.αααββααββγαγ等价无穷小具有以下性质()(自反性);()(对称性)若则;()(传递性)若则注:()()()()()()()()()()()()()222232235235222,.0;2.x o x o x o x o x o x o x x o x o x o x o x o x o x o x →⎡⎤⎣⎦±=±=⋅=⋅==例判断下列等式是否正确并说明理由()(1);(2)(3);(4);(5)()()()()()()()()()3232,0.x xf x x A f x x B f x x C f x x D f x x =+-→⎡⎤⎣⎦例设则当时,有____与是等价无穷小与同价但非等价无穷小是比高阶的无穷小是比低阶的无穷小3.无穷大的定义()()()00,00,0,,M X x x x X x f x f x M f x x x x δδ>><-<>>→→∞如果对于任意给定的正数(不论它多么大)总存在(或)对适合(或)的一切对应的函数值总满足那么称是(或)时的无穷大.定义2ln !,,0, 1.nn n nn a n n a αβαβ→∞∀>>时,有其中注:()()()()(),1,10,.f x f x f x f x f x ≠在自变量的同一变化过程中如果为无穷大那么为无穷小;反之,如果为无穷小,且那么为无穷大定理2(无穷小与无穷小的关系)4.无穷大与无界的关系()00.x x x x f x M x x x x →→∞⇒⎧>∀⎨→→∞⇒⎩要求或的一切这是无穷大对成立要求或的某一这是无界()114sin 0,10x x x+→⎡⎤⎣⎦例证明函数在内无界,但时这函数不是无穷大.()5cos ,y x x x =-∞+∞→+∞⎡⎤⎣⎦例函数在内是否有界?这函数是否为时的无穷大?考点:极限的四则运算法则()()()()()()()()()()()()()()()lim ,lim ,lim lim lim lim lim lim lim lim 0.lim f x A g x B f x g x f x g x A B f x g x f x g x A B f x f x A B g x g x B ==±=±=±⎡⎤⎣⎦=⋅=⋅⎡⎤⎣⎦==≠如果那么数列对应有以上运算法则.定理1注:()()()()()()()()()()()()()()()()1,,1lim ,lim lim 2lim lim lim 3lim lim lim 4lim lim lim f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x ⎡⎤⎣⎦±⎡⎤⎣⎦±⎡⎤⎣⎦⋅⎡⎤⎣⎦⋅⎡⎤⎣⎦例下列陈述中哪些是对的哪些是错的?()如果存在但不存在,那么不存在;()如果和都不存在,那么不存在;()如果存在,但不存在,那么不存在;()如果和都不存在,那么不存在.32212lim .53x x x x →-⎡⎤⎣⎦-+例求)3223233103342 31lim2lim.09753133lim4lim.11x xx xx x xx x xx xx x→→∞→+∞→-∞++⎡⎤⎣⎦-∞+-⎛⎫⋅∞∞-∞-⎪--⎝⎭例求()(型);()(型)()(0型);()(型)()()()()()()()()4:1lim,lim0,lim0,2lim0,lim0,lim0.f xA g x f xg xf xA f x g xg x===⎡⎤⎣⎦=≠==例证明()若且则()若且则考点:极限存在准则1.夹逼准则{}{}{}{}10,,2lim lim .lim .n n n n n n n n n n n n n x y z N n N x y z x z a y y a →∞→∞→∞∃>>≤≤===如果数列,,满足以下条件:()从某项起,即当时有;()则数列有极限,且函数对应有以上夹逼准则.注:01:lim 1.x x x +→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦例1证明222111:lim 1.2n n n n n n πππ→∞⎛⎫+++=⎡⎤ ⎪⎣⎦+++⎝⎭例2证明12,,,,0.n m m n a a a a ++≥⎡⎤⎣⎦例3求其中2.单调有界准则{}{},lim ,lim n n n n n n x x x x →∞→∞若数列单调增加且有上界,则极限存在;若数列单调减少且有下界,则极限存在.函数对应有以上单调有界准则.注:{}11112,1,2,.2n n n n x x x n x x +⎛⎫==+=⎡⎤ ⎪⎣⎦⎝⎭例4设(),证明数列有极限{}11342,1,2,.1n n n nx x x n x x ++===⎡⎤⎣⎦+例5设(),证明:数列有极限{}116,sin 1,2,,.n n n x x xn x π+<<==⎡⎤⎣⎦例设0()证明:数列有极限考点:用等价无穷小求极限1.常用的等价无穷小()()()21.0sin arcsin tan arctan ln 1111cos ,1ln ,11.22.,,,0.x x m n m x xx x x x e x x x a x a x x o x x x m n x ααβαβααβα→---+-=±→±<时,;若即是的高阶无穷小则特别地时,()+2.等价无穷小替换原则111111,,lim lim lim lim .ββββααββαααα===若则30sin 1lim .3x x x x→⎡⎤⎣⎦+例求极限tan 302lim ____.x xx e e x→-=⎡⎤⎣⎦例20ln cos 3lim ____.x x x→=⎡⎤⎣⎦例4x →⎡⎤⎣⎦例求极限215lim ln 1.x x x x →∞⎡⎤⎛⎫-+⎡⎤ ⎪⎣⎦⎢⎥⎝⎭⎣⎦例求极限()2032sin 36lim .tan xxx x x →+-⎡⎤⎣⎦例求极限考点:幂指函数的极限()()()()()()()()000000,lim ,,lim lim .x x x x x x y f g x y f u u g x g x u y f u u u f g x f g x f u →→→====⎡⎤⎣⎦⎡⎤====⎡⎤⎣⎦⎢⎥⎣⎦设是由与复合而成若而函数在连续则定理1)1limsin .n n n →∞⎡⎤⎣⎦例求()()()()()()lim lim 0,lim ,lim lim .v x v x b u x a v x b u x u x a =>===若则定理2(幂指函数极限运算法则)()()()20cos ,02,lim ____.2,0x x x x f x f x a x π-→⎧<<⎪==⎡⎤⎨⎣⎦⎪=⎩例设则1000lim ____; lim ____;1 lim 1____.x xx x x x x x x +→+∞→∞→∞=∞=⎡⎤⎣⎦⎛⎫+= ⎪⎝⎭例3(1)(0型)(2)(型)(3)(1型)tan4lim____.xx+→=⎡⎤⎣⎦例()()()()()()()1tan251,,lim,lim1,lim,,0lim sin.3v x Ax x x xxx xu x v x u x e A v x u xa b ca b c xπ→→→→∞==-⎡⎤⎡⎤⎣⎦⎣⎦⎛⎫++>⎪⎝⎭例设证明:其中并用此公式计算()和。
高数课件-数列的极限
2.1.3 數列極限的性質
2021-10-3
定理2.1.1(唯一性) 如果數列收斂,則其極 限必惟一。
證
设
lim
n
xn
a,
又
lim
n
xn
b,
由定義,
0,正整数N1, N2.使得当n
N
时恒有n
N
时恒有
2
xn
b
;
取N
maxN1 ,
N 2 ,
则当n N时有 a b ( xn b) ( xn a)
定义 2.1.3 从数列{xn} 中任选出无限多项,并按下
标从小到大排成一列,记作
xk1 , xk2 , , xkn , ,
称此数列{xkn } 为数列{xn} 的一个子数列,其中 xkn 为 数列{xn} 的第 kn 项,为数列{xkn } 的第 n 项。 特别地,分别称数列{x2n1} 和数列{x2n} 为数列{xn}
xn b xn a 2. 上式仅当a b时才能成立., 故收斂數列極限唯一.
21-1
2021-10-3
定理2.1.2(有界性) 如果數列收斂,則必有界.
即存在正数 M,使得对于一切 n=1,2,…,恒有|xn|≤M.
證
设
lim
n
xn
a,
由定義,
取 1,
则N ,使得当n N时恒有 xn a 1,
則不要求它們一定成立
數列極限的幾何意義
0,N , 使得 N 項以後的所有項
xN 1 , xN 2 , xN 3 ,
a ε 都落在 點的 鄰域
(a ,a )内
因而在這個鄰域之外至多能有數列中的有限個點
高数讲稿(数列极限)1
xn − a <
ε
2M
,
同时 ∃N 2 ∈ N, ∀n > N2 , 有
yn − b <
证明:对任意的 G>0, |xn|=|2n|>G , nlog22 >log2G, 即 n> log2G, 取 N=[ log2G]+1 所以 当 n>N 时,有 2n>G
lim 2 n = +∞ 故
n→∞
∴ n>N=[ log2G]+1, ∵ 2n>2N>2[logG]>G
数列极限的性质 定理 1(唯一性)若数列 {xn } 的极限存在,则极限值是唯一的。 证 设数列 {xn } 有两个不相等的极限值 a、b,则对应于
1 1 a − , a + 内。但这是不可能的,因为 n 3 3
→ ∞ 时, xn 无休
止地一再反复取得 1 和-1 这两个数, 而这两个数不可能同时属
2 1 1 a − , a + 内。因此这数列发散。 于长度为 3 的开区间 3 3
定理 2(有界性)若数列 {x n } 有极限,则 {xn } 有界。即
xn 落在以 a 为中心ε为半径的开区间(a-ε, a+ε) 内, 这就意味着 a-ε< xn < a+ε,即不等式|xn-a|<ε成立. 因此 |xn-a|<ε〈≡〉 xn 落在以 a 为中心ε为半径的 开区间(a-ε, a+ε)内
我们先从最简单的例子入手,从中找出它们共有的 特性,然后引出数列{xn}极限的严格描述。 请看下面的例子 设数列的一般项为
考研数学极限知识点总结
考研数学极限知识点总结一、数列极限1. 数列的概念数列是由一列数按照一定的规律排列组成的数集,用{an}或an来表示。
其中,an为数列的第n个元素。
2. 数列极限的定义对于一个数列{an},如果存在一个常数a,当n趋于无穷大时,数列的元素an无限地接近于a,那么称a为数列{an}的极限,记作lim(n→∞)an=a。
即对于任意正数ε,总存在正整数N,使得当n>N时,有|an−a|<ε。
3. 数列极限存在的判别法(1)夹逼定理:如果数列{an}、{bn}、{cn}满足an≤bn≤cn,且lim(n→∞)an=lim(n→∞)cn=a,那么必有lim(n→∞)bn=a。
(2)单调有界准则:如果数列{an}单调增加且有上界(或单调减少且有下界),那么该数列收敛。
4. 收敛数列的性质(1)收敛数列的极限唯一。
(2)收敛数列的有界性:收敛数列必有界,即存在正数M,使得|an|≤M。
(3)子数列的极限:如果数列{an}的极限为a,那么{an}的任意子数列也收敛且极限为a。
5. 重要极限(1)正整数幂极限:l im(n→∞)(1+1/n)n=e。
(2)调和数列极限:lim(n→∞)1/nlnn=0。
(3)几何数列极限:当−1<l<1时,lim(n→∞)ln=0。
二、函数极限1. 函数极限的概念设函数f(x)在点x0的某个去心邻域内有定义,如果存在常数A,对于任意的ε>0,总存在δ>0,使得当0<|x-x0|<δ时,有|f(x)-A|<ε,则称当x趋于x0时,函数f(x)的极限为A,记作lim(x→x0)f(x)=A。
2. 函数极限性质(1)函数极限的唯一性:如果lim(x→x0)f(x)存在,则其极限唯一。
(2)两函数之和的极限:lim(x→x0)(f(x)+g(x))=lim(x→x0)f(x)+lim(x→x0)g(x)。
(3)函数与常数的乘积的极限:lim(x→x0)c⋅f(x)=c⋅lim(x→x0)f(x)。
高数讲义系列之二
高数讲义系列之二高数讲义系列之二第二章极限与连续2.1数列的极限1、数列:按照某一规律排列的无穷多个数,叫无穷数列,记为{a n}=a1,a2,a3…a n…,其中每一个数叫做数列的项,第n项a n叫数列的通项。
2、观察一组数列,当项数n无限增大时,a n是否无限趋近于一个常数①0,1/2,1/22…1/2n-1… 该数列数值越来越趋近于0,极限等于0②1,-1/2,1/3,-1/4…(-1)n+11/n…该数列数值越来越趋近于0,极限等于0③1,1/2,2/3,3/4…n/n+1…该数列数值越来越趋近于1,极限等于1④1,-1,1,-1…(-1)n+1…该数列数值越来越趋近的数不唯一,极限不存在⑤1,3,5,7…2n-1…该数列数值越来越趋近无穷大,极限不存在(或∞)3、数列极限的定义:对于数列{a n},当项数n趋近无穷大时(n→∞),若通项a n无限接近于一个确定的常数A(a n→A),则A是{a n}的极限。
记为:lim a n = A 含义是:n→∞,a n→A注意:①极限是一个常数,极限是A,并不表示取到了A,而是无限趋近于A。
②极限不存在有两种情况:1)无穷大2)不唯一③常数的极限在任何情况下都等于常数本身。
④若极限存在,则数列收敛,若极限不存在,则数列发散。
4、几个常用极限①n→∞, q n→0 (|q|<1),即-1与1之间的数乘无穷大次方趋近于0②n→∞,a开n次方→1 (a>0),即大于0的数开无穷次方趋近于1③n→∞,a→a,即常数的极限在任何情况下都等于常数本身。
作业:习题2-1(P21):1、22.2 数项级数的基本概念1、数项级数的定义:给定一个数列:{u n}=u1,u2,u3…u n…,将所有项相加:∑u n= u1+u2+u3+…+u n+…形成的式子叫数项无穷级数,简称级数,u n是一般项或通项。
2、级数与数列的区别与联系:①数列关注的是某一项的值,级数关注的是所有项的和。
高数数列的极限宣讲
(2)截丈问题
“一尺之棰,日截其半,万世不竭”
第一天截下的杖长为
X1
1; 2
第二天截下的杖长总和 为
X2
1 2
1 22
;
第n天截下的杖长总和为
Xn
1 2
1 22
1 2n
;
1
Xn 1 2n
1
2 数列旳定义
定义 按自然数1,2,3, 编号依次排列的一列数
x1 , x2 ,, xn ,
(1)
称为无穷数列,简称数列.其中的每个数称为数列
只要 n 1000时,
有
xn
1
1, 1000
给定 1 , 10000
只要 n 10000时,
有
xn
1
1, 10000
给定 0,
只要 n N ( [1])时,
有
xn 1 成立.
定义 设{ xn}为一数列,对于任意给定的正数 (不论它多么小),总存在正数 N ,使得当n N
时,不等式 xn a 都成立,那末就称常数a 是 数列 xn的极限,或者称数列 xn收敛于a ,记为
, 只要
1
n 1
,
即
n
1 1.
取
N
[ 1 1] ,
则当
nN
时, 就有
xn 0 ,
故
lim
n
xn
lim
n
(1)n (n 1)2
0
也可由
xn 0
1 (n1)2
阐明: N 与 有关, 但不唯一. 取
N
1
1
x不n 一 0定取n1最1 小1n旳, 故N 也. 可取
N
[
1
]
《高数数列极限》PPT课件
如果数列没有极限,就说数列是发散的.
注意:
1. 不等式 xna 刻 画了xn 和a 的“无限接近”,
2. 必须是可以任意小的,不能只是局限于某些个别的;
2. N与 有关, 通常随着 的不同而变化; 3. 但对于固定的, N又是不唯一的!
n 3. nN 刻画了变标 的变n 化程度, 与 N 无关! 10
12
上下
例2.
xn (n(11)n)2 , 证明 n l i m xn0.
证:
xn0
(1)n (n1)2
0
(n
1 1)2
1 n 1
0(设 1),
欲使
xn0,只要
1
n1
,
即
1
n
1.
取 故
Nn l i[ 1m xn1 ],n l 那 当i m 么(n ( 1 n1 ) n )2N 0 时,
就有
上下
➢几何解释:
a 2 a x 2 x1 xN1 a xN2 x 3 x
当 nN 时 ,所 有 x n 都 的 ( 落 a 点 ,a 在 )内 ,
只有 (至 有多 限 N 个 )落 只 个 在 有 . 其外
➢.符号定义: ln i m xn a
0 , N 0 , 当 n N 时 , 有 x n a .
取 N m N 1 ,N a 2 ,及x b2a
则n 当 N时有 b 2axnab 2a
xn
ab 2
b 2axnbb 2a
xn
ab 2
矛盾. 故收敛数列极限唯一.
15
上下
二、收敛数列的性质
2.有界性 【定理2】 收敛的数列必定有界.
只 要 n 1 0 0 0 0 时 ,有xn1100 100;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1,
则有 | xn -1| 成立,
因此,取N
max{ 11,1}证 对 0, 取N max{ 1 1,1}, 则当n N时,
总有:| xn
- 1 ||
n 1| n 1
1 n 1
,
因此,lim n 1. n n 1
例2. 证明 lim 2n 0. n n!
0, N 0, 使得当n N时,恒有| 2n -0|<成立.
的极限,或者称数列 xn收敛于 A ,记为
lim
n
xn
A,
或 xn A (n ).
如果数列没有极限,就说数列是发散的.
N定义:
lim
n
xn
A
0, N 0, 使n N时,恒有 xn A .
其中 : 任给定的; : 至少有一个或存在.
几何解释:
A+ A
A-
N
注意:
1. 不等式 xn A 刻划了xn与A的无限接近;
无界数列.
定理2
收敛数列必定有界.即如果
lim
n
xn
A,则存在M
0,
使的对一切n,有 | xn | M .
分析.
因为lim n
xn
A,
则 0,N 0,当n N时,恒有 | xn - A | , | xn| | A | .
证明.
因为lim n
xn
A,
则对 1,存在N 0,使得当n N时,
恒有 | xn A | 1. 于是 | xn|= | xn A A || xn A | | A | 1 | A | .
取M max{| x1 |,| x2 |, ,| xN |,1+ | A |}
则对于一切n,都有 | xn | M . 因此,收敛数列必定有界.
例3. 证明数列xn (1)n1是发散的.
极限
y
oa
bx
(四个小矩形面积和A4)
极限
y
oa
bx
(九个小矩形面积和A9)
割圆术:
“割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣”
——刘徽 Start
正六边形的面积 A1
正十二边形的面积 A2
R
正 6 2n1形的面积 An
A1 , A2 , A3 ,, An ,
S
柯西
魏尔斯 特拉斯
1.数列的概念
定义:按一定的规律排列的无穷多个实数:
x1, x2 , x3 , , xn , 称为数列,简记为{xn },xn称为数列的一般项, n称为数列的下标.
例如
1, 1 , 1 , 1 , , 1 , ; 234 n
1,1,1, 248
,
1 2n
,
;
{1} n
1 {2n }
二、数列的定义
给定 = 1 ,
100
由于
|
xn
1|
=|1+
(-1)n1 n
-1|=
1 n
,
只要取N
100,则当n
N时,恒有:| xn
1 |
1 100
.
给定 = 1 ,
1000
由于
|
xn
1|
=|1+
(-1)n1 n
-1|=
1 n
,
只要取N
1000,则当n
N时,恒有:| xn
1 |
1 1000
2. N与任意给定的正数有关; 3.数列极限的定义未给出求极限的方法.
数列极限的证明
例1.
设xn
n , 观察得数列的极限为1,请验证 lim
n 1
n
xn
1.
0, N 0, 使得当n N时,恒有|xn -1|<成立.
由|xn -1|=|
n -1|= n 1
1 可知:如果 n 1
1 < ,即n
xn
1
(1)n1 n
无限接近于 1.
记作:lim n
xn
1, 或
xn
1, (n
).
问题: “无限接近”意味着什么?如何用数学语 言刻划它.
数列 {1 (1)n1 } 2, 1 , 4 , 3 , 6 , 5 , 8 , .
n
234567
1+ 1-
N
对 0, 都N 0, 使得当n N时,恒有 | xn - A |
a b ( xn b) ( xn a)
xn b xn a 2.
上式仅当a b时才能成立. 故收敛数列极限唯一.
(2) 有界性
数列{ xn }称为有界数列: 如果存在M 0, 使的对一切n,有 | xn | M .
例如,数列{
xn
}
{
n n
} 1
有界数列.
例如,数列{ xn } {2n }
二、数列的定义
1,1,1,, (1)n1 ,;
{( 1)n1 }
2, 1 , 4 ,, n (1)n1 ,;
n (1)n1
{
}
23
n
n
3, 3 3,, 3 3 3 ,
注意: 数列是整标函数 xn f (n).
观察数列 {1 (1)n1 }当 n 时的变化趋势. n
Start
当 n 无限增大时,
证明.
设
lim
n
xn
A,
由定义,取 1 ,
2
则N
0, 使得当n
N时,有 |
xn
A |
1, 2
即当n
N时,xn
(A
1 2
,
A
1 ), 2
区间长度为1,
而{xn }=1,-1,1,-1, ,即反复取1, 1两个数,
不可能同时位于长度为1的区间内,
因此,该数列是发散的.
事实上,{ xn }是有界的, 但却发散.
数列的极限
4.数列收敛的准则
设{xn}为一数列,如果xn xn1 则称数列{xn}为单调增数列;
如果xn xn1 则称数列{xn}为单调减数列;
(n 1, 2, (n 1, 2,
), ),
单调递增数列与单调递减数列统称为单调数列。
定理4 (单调有界准则)单调增加(或减少)且有上界(或下界) 的数列必收敛.
.
任意给定
0,
由于 |
xn
1|
=|1+
(-1)n1 n
-1|=
1 n
,
只要取N
1
,则当n
N时,恒有:| xn
1| .
三、数列极限定义
定义 如果对于任意给定的正数(不论它多么
小),总存在正数 N ,使得对于n N 时的一切 xn,
不等式 xn A 都成立,那末就称常数 A 是数列 xn
n!
n
n n!
数列的极限
3. 数列极限的性质
(1) 唯一性 定理1 每个收敛的数列只有一个极限.
证
设 lim n
xn
a,又 lim n
xn
b,
由定义,
0, N1, N 2 .使得 当n N1时恒有 xn a ;
当n N2时恒有 xn b ;
取N maxN1, N2,则当n N时有
n!
由| 2n -0|= 2n = 2 2 2 2 < 2 11 1 2 = 4 ,
n! n! 1 23 n 1
nn
只要让 4 < ,
n
即n 4 ,
总有,| 2n - 0 | ,
n!
因此,取N 4 即可.
证 对 0, 取N 4 , 则当n N时,
总有:| 2n 0 | 4 , 因此,lim 2n 0.