氨水法焦炉煤气脱硫的基本原理

合集下载

氨吸收法脱硫

氨吸收法脱硫

氨吸收法脱硫氨吸收法是一种常用的脱硫技术,广泛应用于燃煤电厂等工业领域。

本文将介绍氨吸收法脱硫的原理、过程以及其优缺点。

一、原理:氨吸收法脱硫是利用氨水与烟气中的SO2进行化学反应,生成硫酸铵,从而实现脱硫的目的。

化学反应的主要方程式为:SO2 + 2NH3 + H2O → (NH4)2SO3。

二、过程:1. 氨水喷射:将氨水喷射到烟道烟气中,使氨水与烟气充分接触。

2. 化学反应:烟气中的SO2与氨水中的NH3发生反应,生成硫酸铵。

3. 除尘:通过除尘设备将烟气中的颗粒物去除。

4. 氨水再生:将含有硫酸铵的氨水通过加热使其分解,释放出NH3,用于下一轮的脱硫反应。

5. 硫酸铵处理:将生成的硫酸铵进行处理,可以制取硫酸或者用于农业肥料等用途。

三、优点:1. 高效脱硫:氨吸收法脱硫效率高,能够将烟气中的SO2去除率达到90%以上。

2. 适应性强:氨吸收法脱硫适用于不同燃料的燃烧系统,具有较好的适应性。

3. 产物利用:生成的硫酸铵可以进行资源化利用,制取硫酸或用作农业肥料,具有较好的经济效益。

四、缺点:1. 氨泄漏:氨吸收法脱硫需要大量氨水,存在氨泄漏的风险,对环境和人体健康有一定影响。

2. 高运维成本:氨吸收法脱硫设备需要进行定期的检修和维护,运维成本较高。

3. 产物处理:硫酸铵的处理也需要一定的成本和技术支持。

氨吸收法脱硫是一种高效的脱硫技术,具有高脱硫效率和产物利用的优点,但也存在氨泄漏和高运维成本的缺点。

在实际应用中,需要综合考虑经济、环境和安全等因素,选择合适的脱硫技术。

未来,随着环保要求的提高,氨吸收法脱硫技术也将进一步发展和完善。

脱硫技术之氨法脱硫工艺的基本原理

脱硫技术之氨法脱硫工艺的基本原理

脱硫技术之氨法脱硫工艺的基本原理在本质上氨法脱硫工艺是采用NH3来吸收净化烟气的,包含着复杂的物理、化学过程。

以下将从物理化学原理方面对工艺各阶段加以分析。

烟气中的SO2从烟气主体进入吸收液的过程是物理吸收和化学反应的过程,通过这个过程,使SO2从气相进入液相而被捕获。

该过程可分为如下几个步骤:氨法脱硫工艺中的化学步骤1.烟气中SO2溶解于水形成H2SO3。

2.氨吸收剂溶解于水形成NH3˙H2O。

3.溶解于水形成的NH3˙H2O与溶解于水形成的H2SO3开展化学反应形成(NH4)2SO3。

4.形成的(NH4)2SO3在氧化空气的作用下氧化形成(NH4)2SO4氨法脱硫过程的总化学反应式可以综合表示为:SO2+H2O+XNH3=(NH4)xH2-xSO3(NH4)xH2-xSO3+1/2O2+(2-x)NH3=(NH4)2SO4虽然该综合反应式中列出了主要的反应物和生成物,但整个反应过程非常复杂,可以通过以下的一系列反应过程表示:A:脱硫塔中SO2的吸收烟气中的二氧化硫(SO2)溶于水并生成亚硫酸。

SO2 + H2O →H2SO3 (1)B:亚硫酸同溶于水中的硫酸铵和亚硫酸铵起反应。

H2SO3 +(NH4)2SO4 →NH4HSO4 + NH4HSO3 (2) H2SO3+(NH4)2SO3 →2NH4HSO3 (3)C:吸收剂氨的溶解NH3 + H2O →NH4OH →NH4+ + OH- (4)由于反应(4)的开展,可以不断提供中和用的碱度及反应用的铵离子。

氨同溶于水中的亚硫酸、硫酸氢铵和亚硫酸氢铵起反应。

D:中和吸收的SO2SO2极易与碱性物质发生化学反应,形成亚硫酸盐。

碱过剩时生成正盐;SO2过剩时形成酸式盐。

SO2 + NH4OH→NH4HSO3 (5)SO2 + 2NH4OH →(NH4)2SO3 + H2O (6)由于反应(5)、(6)的开展,可以使更多SO2可被吸收。

焦炉煤气脱硫技术缩述

焦炉煤气脱硫技术缩述

脱硫新技术在焦化厂生产中,焦炉煤气中所含的硫化氢及氰化氢是有害的杂质,它们腐蚀化产回收设备及煤气储存输送设施,还会污染厂区环境。

用此种煤气炼钢、轧钢加热,会降低钢材产品的质量,腐蚀加热设备;用作城市燃气,硫化氢及燃烧生产的二氧化硫、氰化氢及其燃烧生成的氮氧化物均有毒,会严重影响环境卫生。

所以焦炉煤气中的硫化氢和氰化氢应予清除。

脱硫技术综述焦炉煤气脱硫方法分为:干法脱硫和湿法脱硫。

干法脱硫是一种古老的煤气脱硫方法。

这种方法的工艺和设备简单,操作和维修比较容易。

但该法为间歇操作,占地面积大,脱硫剂的更换和再生工作的劳动强度较大,现代化的大型焦化厂已不再采用。

干法脱硫通常是以氢氧化铁为脱硫剂,当焦炉煤气通过脱硫剂时,煤气中的硫化氢与氢氧化铁接触,生成硫化铁,这是吸收反应。

硫化铁与煤气中氧接触,在有水分的条件下,硫化铁转化为氢氧化铁并析出单质硫,这是再生反应。

干法脱硫的过程就是吸收反应和再生反应的多次循环。

目前仅使用于煤气流量不大,用户对煤气硫化氢含量要求非常高,需进一步精制脱硫的工艺,如涟钢的民用煤气和冷轧薄板所需的精制脱硫。

焦化净化煤气脱硫一般采用湿法脱硫:湿法脱硫又分为吸收法和氧化法,氧化法脱硫是对吸收法脱硫的改进和完善,是脱硫工艺更流畅,脱硫效果进一步提高。

焦炉煤气脱硫脱氰湿法工艺分类吸收法脱硫脱氰是以碱性溶液作为吸收剂,吸收煤气中的硫化氢和氰化氢,然后用加热气提的方法将酸性气体从吸收液中解吸出来,用以制造硫磺或硫酸,吸收剂冷却后循环使用。

吸收法按所用吸收剂的不同分为氨水法(A.S法)、真空碳酸盐法(V.A.S.C法)、单乙醇胺法(索尔菲班法)三种。

氧化法脱硫脱氰是以含有氧化催化剂的碱性溶液作为吸收剂,吸收煤气中的硫化氢和氰化氢,再在催化剂作用下析出元素硫。

吸收液用空气氧化法再生后循环使用。

氧化法按催化剂的不同,分为砷碱法、萘醌二磺酸法(塔—希法T.H)、苦味酸法(F.R.C法)、蒽醌二磺酸法(改良A.D.A法)、对苯二酚法、H.P.F法。

装煤过程高压氨水自动控制要点

装煤过程高压氨水自动控制要点

装煤过程高压氨水自动控制要点张长胜装煤过程跑烟冒火、一会黑烟、一会黄烟、百姓举报、环保罚款让无数焦化厂头疼不已。

经过多年的努力《装煤过程高压氨水自动控制系统》已经进入焦化厂,此套控制系统比较完美地解决了焦炉装煤过程跑烟冒火现象,深受焦化厂管理者的喜欢。

由于各地环保政策要求不同,很多焦化厂又在此基础上增设了炉头烟尘吸收小罩进一步消除装煤过程跑烟冒火现象。

一、高压氨水除尘原理及操作要点。

1、工作原理。

炭化室装煤时集气管压力短时内会达到400pa左右并使大量荒煤气外逸到空气中造成环境污染。

利用高压氨水在桥管内氨水喷头的喷洒,在上升管内产生较大的负压,在炭化室内靠近上升管底部形成负压,使荒煤气及烟尘由炭化室经上升管、桥管、吸入集气管内,以避免荒煤气从装煤口处溢出。

2、操作过程。

当煤饼进入炭化室800mm左右时,装煤车司机通知导烟车司机开启高压氨水阀门。

导烟车司机接到通知后通知炉盖工手动开启N-1号、N号、N+2号炭化室高压氨水阀门。

高压阀门开启后,DCS系统风机中控电脑会检测到高压氨水流量,启动高压氨水压力控制系统,随着煤饼的进入高压氨水压力从10kpa逐步上升到40kpa,当煤饼装到位开始抽回托煤板到机侧炉口过程,高压氨水压力从高向低减压,当机侧炉门挂好后,高压氨水压力恢复到10kpa。

整个装煤过程自动控制系统根据装煤速度进行设置,装煤过程高压氨水压力变化由现场操作工配合完成并养成规范的操作制度。

装煤过程中,在高压氨水吸力作用下,大部分烟尘经N号炭化室上升管进入集气管,另一部分经相邻炭化室的导烟筒由导烟车分别导入N-1、N+2号炭化室,经过N-1、N+2号炭化室上升管进入集气管,其它未进入炭化室的烟气经机侧炉头小罩被地面站处理外排到大气。

二、机侧跑烟冒火原因。

1、高压氨水喷头堵塞造成的影响。

高压氨水经喷头产生吸力是利用氨水消烟的主要措施,各炉号喷头产生吸力大小主要依靠氨水喷头雾化,因此必须严格把好喷头畅通这一关。

氨法脱硫工艺流程

氨法脱硫工艺流程

氨法脱硫工艺流程
《氨法脱硫工艺流程》
氨法脱硫是一种利用氨水溶液去除燃烧废气中二氧化硫的工艺。

下面是氨法脱硫的基本工艺流程:
1. 硫化物吸收
烟气中的二氧化硫通过吸收塔中的氨水溶液进行反应,生成硫代硫酸铵,并与氨水溶液中的氨气反应生成硫化氢,然后与氨溶液中的二氧化碳反应,得到硫化氢的盐类,而二氧化硫则转化为硫酸根离子。

2. 氧化还原
氨水溶液在吸收塔中通过喷嘴喷入气液混合器中,然后通过氨气/空气混合物中的氧气,将硫代硫酸铵氧化成硫酸铵,生成
氨气悬浮固体颗粒物。

3. 吸收液循环
循环泵将吸收液从吸收塔底部泵至氧化还原器中进行气液反应,然后再回到吸收塔中进行下一轮的吸收。

4. 氨水回收
再生氨水溶液通过蒸发器蒸发,然后通过冷却后得到纯净的氨水作为再生溶液。

以上就是氨法脱硫的基本工艺流程,通过这一系列的步骤,燃烧废气中的二氧化硫可以被有效去除,减少对环境的污染。

氨作碱源湿式氧化法焦炉煤气脱硫机理刍议

氨作碱源湿式氧化法焦炉煤气脱硫机理刍议

氨作碱源湿式氧化法焦炉煤气脱硫机理刍议以氨作碱源的湿式氧化法脱硫工艺,因其建设投资较少,运行费用较低,脱硫效率尚可而获得广泛应用。

然而,由于在设计上沿用了以碳酸钠为碱源的A.D.A脱硫工艺和设备配置,未能反映氨作碱源的工艺特点,以致大多未能达到设计的脱硫效率,尚有相当多的甚至仍未达到《焦化行业准入条件》(2008修订)中关于工业或其他用煤气H2S≤250mg/m3的要求。

因此笔者结合实践体会进一步深入探讨氨作碱源湿式氧化法焦炉煤气脱硫过程机理,揭示其与碳酸钠为碱源的湿式氧化法脱硫过程的机理差异,进而阐明改进工艺设计的理论依据,同时亦为促进既有装置达标指明技术改造和改善操作的方向,无疑具有现实意义。

1 氨作碱源湿式氧化法是湿式中和法脱硫过程的继续在焦炉煤气中主要的酸性气体有H2S、CO2、HCN,这些酸性气体在脱硫塔中虽皆能被氨水所吸收,亦均为弱酸碱反应,在初始阶段,当PH值≥12时且未达到解离平衡的条件下,溶液中的反应生成物实际上几乎全部以NH4+、HCO3-、CO32-、NH2COO-、HS-、CN-和 S2-等离子形态存在。

此时氨水吸收H2S、CO2、HCN为化学吸收过程。

其主要反应如下:NH3+H2S=NH4HS (NH4H S≒NH4++HS-)--------(1)ZNH3+H2S=(NH4)2S ((NH4)2S≒ZNH4++S-2)---(2)CO2+H2O=H2CO3 (H2CO3≒H++HCO3-)---------(3)NH3+H2CO3=NH4HCO3 (NH4HCO3≒NH4++HCO3-)--(4)2NH3+CO2=NH2COONH4(NH2COONH4≒NH2COO-+NH4+)---------------(5)NH3+HCN=NH4CN (NH4CN≒NH4++CN-)------(6)2NH2COONH4+H2O=(NH4)2CO3((NH4)2CO3≒2NH4++CO3-2)------ --------(7)(NH4)2S+H2CO3=NH4HS+NH4HCO3(NH4HS≒NH4++HS-、NH4HCO3≒NH4++HCO3-)------ (8)NH4HS+H2CO3=NH4HCO3++H2S(NH4HCO3≒NH++HCO3-) -----------------(9)由于气相中H2S被PH值≥12的氨水吸收后迅速电离成H+和HS-,在吸收液中H2S分子的电离速度远远高于气相H2S被吸收的速度,因此,氨水吸收煤气中H2S的传质过程受气膜阻力控制。

工艺方法——焦炉煤气脱硫技术

工艺方法——焦炉煤气脱硫技术

工艺方法——焦炉煤气脱硫技术工艺简介焦炉煤气常用的脱硫方法从脱硫剂的形态上来分包括干法脱硫技术和湿法脱硫技术。

一、干法脱硫技术干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,同时脱除氰化物及焦油雾等杂质。

干法脱硫又分为中温脱硫、低温脱硫和高温脱硫。

常用脱硫剂有铁系和锌系,氧化铁脱硫剂是一种传统的气体净化材料,适宜于对天然气、油气伴生气、城市煤气以及废气中硫化氢含量高的气体。

常温氧化铁脱硫原理是用水合氧化铁(Fe2O3·H2O)脱除H2S,其反应包括脱硫反应与再生反应。

干法脱硫工艺多采用固定床原理,工艺简单,净化率高,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。

但由于气固吸附反应速度较慢,工艺运行所需设备一般比较庞大,而且脱硫剂不易再生,运行费用增高,劳动强度大,不能回收成品硫,废脱硫剂、废气、废水严重污染环境。

二、焦炉煤气湿法脱硫技术湿法工艺是利用液体脱硫剂脱除煤气中的硫化氢和氰化氢。

常用的方法有氨水法、VASC法、单乙醇胺法、砷碱法、改良ADA法、TH 法、苦味酸法、对苯二酚法、HPF法以及一些新兴的工艺方法等。

(1)氨水法(AS法)氨水法脱硫是利用焦炉煤气中的氨,在脱硫塔顶喷洒氨水溶液(利用洗氨溶液)吸收煤气中H2S,富含H2S和NH3的液体经脱酸蒸氨后再循环洗氨脱硫。

在脱硫塔内发生的氨水与硫化氢的反应是:H2S+2NH3·H2O→(NH4)2S+2H2O。

AS循环脱硫工艺为粗脱硫,操作费用低,脱硫效率在90%以上,脱硫后煤气中的H2S在200-500mg·m-3。

(2)VASC法VASC法脱硫过程是洗苯塔后的煤气进入脱硫塔,塔内填充聚丙烯填料,煤气自下而上流经各填料段与碳酸钾溶液逆流接触,再经塔顶捕雾器出塔。

煤气中的大部分H2S和HCN和部分CO2被碱液吸收,碱液一般主要是Na2CO3或K2CO3溶液。

吸收了酸性气体的脱硫富液与来自再生塔底的热贫液换热后,由顶部进入再生塔再生,吸收塔、再生塔及大部分设备材质为碳钢,富液与再生塔底上升的水蒸汽接触使酸性气体解吸。

氨水法焦炉煤气脱硫的基本原理

氨水法焦炉煤气脱硫的基本原理

范守谦(鞍山立信焦耐工程技术有限公司)1 气体在液体中的溶解度——亨利定律任何气体在一定温度和压力下与液体接触时,气体会逐渐溶解于液体中。

经过相当长的时间,气相和液相的表观浓度不再发生变化,即处于平衡状态。

这时,对于不同气体,如果组分在气相中的分压(对单组分气体即为总压)保持定值,则不同气体在液体中的浓度称为气体在液体中的溶解度。

该组分在气相中的分压称为气相平衡分压,表示了气相的平衡浓度。

很多气体的液相平衡浓度X与气体的平衡分压P*有定量关系。

如:二氧化碳为直线关系,硫化氢和氨只有在较大浓度范围时不呈直线关系,在浓度较小时,可视为直线关系。

因此,在一定温度下,对于接近于理想溶液的稀溶液,在气相压力不大时,气液平衡后气体组分在液相中的浓度与它在气相中的分压成正比,即亨利定律。

P* =EX式中的P* 为气体组分在气相中的分压,大气压;X为气体组分在液相中的浓度,分子分数;E 为亨利系数(与温度有关)。

上式经浓度单位换算后可改写为:C =HP*式中的P*为气体组分在气相中的分压,mmHg;C 为气体组分在液相中的浓度,gmol;H为亨利系数,gmol/mmHg。

注:①亨利定律是一个稀溶液定律,它只适用于微溶气体;②只适用于气相和液相中分子状态相同的组分。

如:NH3(气态)↔ NH3(溶解态)NH3(溶解态)+H2O ↔ NH4OH ↔ NH+4 + OH-用亨利定律时,应把NH+4的量减去,才能得到水溶液中氨的浓度C 氨C氨=H0P *氨式中的H0为氨在纯水中的亨利系数,kgmol/(m3·mmHg)。

温度,℃H020 0.09940 0.039560 0.01780 0.007990 0.0058在氨水脱硫过程中C氨=H氨·P *氨式中的H氨为氨在氨水脱硫中的亨利系数,可用下式估算:Lg(H0/H氨) =K″I+K′C nI 为溶液的离子强度;C n为被溶解的中性分子浓度(在此等于游离氨的浓度)在氨水脱硫系统中,对于氨来说,K″ =0, K′ =0.025, 则上式变为:Lg(H0/H氨) =0.025C氨2 氨水脱硫的化学原理系统中的NH3、H2S、CO2和H2O之间所发生的反应可以下列方程式表示:NH3+H2S =NH4HS2NH3+H2S =(NH4)2S2NH3+CO2=NH2COONH4NH3+CO2+H2O =NH4HCO32NH3+CO2+H2O =(NH4)2CO3NH2COONH4+H2O =(NH4)2CO3(NH4)2CO3+H2S =NH4HCO3+NH4HS(NH4)2S+H2CO3=NH4HCO3+NH4HSNH4HS+H2CO3=NH4HCO3+H2S在平衡条件下,NH+4、HCO-3、NH2COO-与CO3-2离子及未离解的氨能在水溶液中以可测量的数量存在。

氨水法焦炉煤气脱硫的基本原理

氨水法焦炉煤气脱硫的基本原理

范守谦(鞍山立信焦耐工程技术有限公司)1 气体在液体中的溶解度一一亨利定律任何气体在一定温度和压力下与液体接触时,气体会逐渐溶解于液体中。

经过相当长的时间,气相和液相的表观浓度不再发生变化,即处于平衡状态。

这时,对于不同气体,如果组分在气相中的分压(对单组分气体即为总压)保持定值,则不同气体在液体中的浓度称为气体在液体中的溶解度。

该组分在气相中的分压称为气相平衡分压,表示了气相的平衡浓度。

很多气体的液相平衡浓度X与气体的平衡分压P*有定量关系。

如: 二氧化碳为直线关系,硫化氢和氨只有在较大浓度范围时不呈直线关系,在浓度较小时,可视为直线关系。

因此,在一定温度下,对于接近于理想溶液的稀溶液,在气相压力不大时,气液平衡后气体组分在液相中的浓度与它在气相中的分压成正比,即亨利定律。

P* = EX式中的P*为气体组分在气相中的分压,大气压;X为气体组分在液相中的浓度,分子分数;E为亨利系数(与温度有关)。

上式经浓度单位换算后可改写为:C = HP*式中的P*为气体组分在气相中的分压,mmHg ; C为气体组分在液相中的浓度,gmol ;H为亨利系数,gmol/mmHg。

注:①亨利定律是一个稀溶液定律,它只适用于微溶气体;②只适用于气相和液相中分子状态相同的组分如:NH3 (气态)? NH 3 (溶解态)NH3 (溶解态)+H2O ? NH 4OH ? NH +4 + OH -用亨利定律时,应把NH+4的量减去,才能得到水溶液中氨的浓度C氨C氨=H°P *氨式中的H o为氨在纯水中的亨利系数,kgmol/(m 3• mmHg)。

温度,C H0200.099400.0395600.017800.0079900.0058在氨水脱硫过程中C氨=H氨• P氨式中的H氨为氨在氨水脱硫中的亨利系数,可用下式估算:Lg(H o/H 氨)=K〃l+K n'CI为溶液的离子强度;C n为被溶解的中性分子浓度(在此等于游离氨的浓度)在氨水脱硫系统中,对于氨来说,K = 0, K = 0.025,则上式变为:Lg(H o/H 氨)=0.025C 氨2氨水脱硫的化学原理系统中的NH3、H2S、CO2和出0之间所发生的反应可以下列方程式表示:NH3+H2S = NH4HS2NH3 + H2S = (NH4)2S2NH3+CO2= NH2COONH4NH3+CO2+H2O = NH4HCO32NH3+CO2 + H2O = (NH4)2CO3 NH2COONH4 + H2O =(NH4)2CO3 (NH4)2CO3+H2S = NH4HCO3+NH 4HS(NH4)2S+H2CO3= NH4HCO3+NH 4HS NH4HS+H2CO3 =NH4HCO3+H 2S在平衡条件下,NH+4、HCO -3、NH2COO-与CO3-2离子及未离解的氨能在水溶液中以可测量的数量存在。

氨法脱硫工艺原理

氨法脱硫工艺原理

氨法脱硫工艺原理
氨法脱硫工艺原理
氨法脱硫是一种有效的脱硫技术,它可以有效地降低烟气中的硫化物排放。

氨法脱硫的原理是将烟气中的硫氧化物转化为氨气,然后经过过滤、分离和净化,最终形成纯净的氨气。

氨法脱硫的技术流程包括烟气脱硫前处理、烟气脱硫后处理和氨气处理。

烟气脱硫前处理主要是将烟气中的污染物分离出来,然后进行烟气脱硫。

烟气脱硫后处理是指当烟气中的污染物被氨气吸收后,进行的进一步处理,以避免烟气中的有害物质污染环境。

最后,氨气处理是指在氨气排放前,将氨气中的污染物进行进一步的净化处理。

氨法脱硫具有优势和劣势。

优势有:(1)反应速度快,可以有效减少烟气排放;(2)产生的氨气可以用作农业肥料,从而节约资源;(3)可以降低污染物排放标准。

劣势则有:(1)子颗粒物质的排放量较高,对环境影响较大;(2)需要大量能源;(3)生产成本较高。

氨法脱硫是一种有效的脱硫技术,但也有局限性,应根据不同的应用场景选择最佳的脱硫方案。

氨法脱硫工艺介绍

氨法脱硫工艺介绍
5182.50(+)
每天价 28,080 33,840 756 108,720 297,600 1,824 173,220 297,600
124,380(+)
300 天 / 年 价
3.900kw/hr 0.3/kw 4,700kw/hr 0.3/kw 63 t/hr 15.1 t/hr 15.5 t/hr 1.52 t/hr 0.5/t 300/t 800/t 50/t
喷射到脱硫塔底部的氧化空气,会按照如下方式 将亚硫酸盐氧化为硫酸盐: (NH4)2SO3+1/2O2——(NH4)2SO4 至此,脱硫塔中生成了大量的硫酸氨,硫酸氨溶 液饱和后,使硫酸氨从溶液中以结晶形状沉淀出 来。汽化热由烟气的残余热量按照如下方式提供: (NH4)2SO4 (液态)+汽化热--> (NH4)2SO4 (固体) 脱硫塔中的盐要么以离子形式溶于溶液中,要么 以结晶形状沉淀出来。产品浆液与正在进行化合 的系统中的主要成分、结晶的硫酸氨盐一起充分 地氧化。
8,424,000 10,152,000 226,800 32,616,000 89,280,000 547,000 51,966,000 89,280,000
37,314,000(+)
(-) (+) (+)
石灰石法( 1.5% 煤中含硫量 由 ZAMAX 公司提供) (人民币) NO 1 2 3 4 5 总计 总计 净值 项目名称 风机功耗 工程功耗 工艺水耗量 石灰石耗量 副产品 (-) (+) (-) 消耗量 3.800kw/hr 3,600kw/hr 140 t/hr 13.6 t/hr 22.9 t/hr 单价 0.3/kw 0.3/kw 0.5/t 30/t 20/t 每小时价 1,140 1,080 70 408 458 2,698 458 2,240(-) 每天价 27,360 25,920 1,680 9,792 10,992 64,752 10,992

焦炉煤气净化生产设计手册

焦炉煤气净化生产设计手册

焦炉煤气净化生产设计手册焦炉煤气净化是指对焦炉煤气中的有害气体进行处理,使其达到环境排放标准的工艺过程。

这个设计手册将介绍焦炉煤气净化生产的基本原理、流程和常用设备。

一、焦炉煤气净化的基本原理焦炉煤气主要由一氧化碳(CO)、氢气(H2)、二氧化碳(CO2)、氨(NH3)、硫化氢(H2S)等成分组成。

这些成分中的一氧化碳、氨和硫化氢是有害气体,需要进行净化处理。

焦炉煤气净化的基本原理是通过物理、化学和生物方法将有害气体转化为环境友好的成分或将其吸附、吸附、分离、催化转化,使焦炉煤气达到环境排放标准。

二、焦炉煤气净化生产流程焦炉煤气净化生产一般包括多个步骤,具体流程如下:1.预处理:对焦炉煤气进行除尘、除水处理,去除颗粒物和水分。

2.脱硫:利用脱硫剂将焦炉煤气中的硫化氢去除,常用的脱硫方法包括吸收液法、氧化法和吸附法。

3.脱氨:将焦炉煤气中的氨去除,通常采用选择性催化还原法或选择性吸附法。

4.脱氢:将焦炉煤气中的一氧化碳去除,主要采用低温选择性氧化法或催化剂法。

5.脱硅:将焦炉煤气中的二氧化硅去除,常用的方法包括吸附法和融化深度过滤法等。

6.处理后气体的净化:对净化后的焦炉煤气进行除尘、除水处理,使其达到排放标准。

7.尾气处理:焦炉煤气净化后产生的尾气进行处理,通常采用焚烧、吸附、催化转化等方法。

三、常用的焦炉煤气净化设备焦炉煤气净化过程中常用的设备包括:1.脱硫设备:常见的有洗涤塔、吸收塔等。

其中,洗涤塔主要用于脱硫剂与焦炉煤气的接触和反应,吸收塔用于吸收和去除硫化氢。

2.脱氨设备:常见的设备有选择性催化还原装置和选择性吸附装置。

选择性催化还原装置通过催化剂将氨转化为氮气和水,选择性吸附装置通过吸附剂将氨吸附。

3.脱氢设备:常见的有低温选择性氧化装置和催化剂装置。

低温选择性氧化装置通过催化剂将一氧化碳转化为二氧化碳,催化剂装置通过催化剂将一氧化碳转化为二氧化碳和水。

4.脱硅设备:常见的有吸附装置和融化深度过滤装置。

模块五 第五讲 氨水法脱硫.

模块五 第五讲 氨水法脱硫.
第五讲
氨水法脱硫
氨水脱硫法是中和脱硫法的一种,可以使用焦化厂
自产的碱源——氨回收硫化氢,并生产一定数量的元素
硫或硫酸。此工艺可同硫铵或弗萨姆无水氨生产工艺结 合起来使用,具有一定的优越性。
第五讲
氨水法脱硫
一、生产工艺原理
1.氨水脱硫是用喷洒的循环氨水于脱硫塔内与焦炉煤 气逆流接触,氨与煤气中所含的硫化氢等酸性气体反应生 成相应的盐。过程中发生的主要化学反应为: H2S+ NH4OH NH4HS+ H2O 2NH3+CO2+ H2O (NH4)2 CO3
第五讲
氨水法脱硫
离开脱硫塔的吸收液大约含氨 20 ~ 24g/l、硫化氢 7g/l和二氧化碳13g/l,泵送至分解器6进行分解。在从蒸 氨塔中部和塔顶送来的氨汽作用下,其中的大部分硫化氢、 二氧化碳和氰化氢被脱除,同时也有一定量的氨随同逸出。 由器底排出的部分脱酸氨水经冷却后送回脱硫塔循环喷洒。 其余部分脱酸氨水经直冷分缩器3后送往蒸氨塔5。由器顶 逸出的混合蒸汽则进入硫铵饱和器,用循环母液将氨回收 下来,余下的酸性气体送往湿式催化法生产硫酸装置或克 劳斯(cLus)法制取硫磺装置处理.
第五讲
氨水法脱硫
从气体吸收机理来看,氨被水吸收的速度非常快,是 典型的气膜控制系统。当气液两相界面上氨的浓度足够时, 硫化氢被氨水吸收基本上也受气膜阻力控制。而当用水或 弱碱溶液吸收二氧化碳时,虽然其气膜阻力并不比吸氨和 硫化氢时低,但由于其液膜阻力非常高,可认为是液膜控 制系统。所以,用氨水喷洒焦炉煤气时,氨和硫化氢的吸 收率要比与二氧化碳的吸收率高得多,当采用有助于降低 气膜阻力或增加液膜阻力的设备或操作条件时,还可以加 大这个差别。
3
[ H 2 S ] [CO2 ] [ HCN ]

焦炉煤气脱硫及硫回收工艺介绍及特点分析

焦炉煤气脱硫及硫回收工艺介绍及特点分析

焦炉煤气脱硫及硫回收工艺分析(冶金工业规划研究院)潘登摘要:简述了几种具有代表性的脱硫、脱氰工艺,分析了不同工艺特点。

介绍了常用的几种硫回收工艺,并总结了脱硫工艺组合硫回收工艺的原则和方法,为企业选择焦炉煤气净化工艺提供参考依据。

关键词:焦炉煤气,脱硫,硫回收,工艺分析一.前言炼焦煤在干馏过程中,煤中全硫的20~45%会转到荒煤气中,荒煤气中的硫以有机硫和无机硫两种形态存在,有机硫主要有二硫化碳、噻吩、硫醇等,煤气中95%以上的硫以H2S无机硫形态存在,由于荒煤气中的有机硫含量很少而且在煤气净化洗涤过程中大部分会被除去,因此焦炉煤气的脱硫主要是脱除煤气中的H2S,同时除去同为酸性的HCN。

据生产统计焦炉炼焦生产的荒煤气中H2S 含量为2~15g/m3,HCN含量为1~2.5 g/m3。

荒煤气中H2S在煤气处理和输送过程中,会腐蚀设备和管道危害生产安全,未经脱硫的煤气作为燃料燃烧时,会生成大量SO2,造成严重的大气污染,同时H2S含量较高的焦炉煤气用在冶炼,将严重影响钢材产品质量,制约高附加值优质钢材品种的开发。

出于生产安全,环保要求及煤气有效利用方面考虑,那种五、六十年代老焦化厂采用荒煤气→冷凝鼓风工段→硫铵工段→粗苯工段的无脱硫工段老三段模式与绿色环保的现代生产理念相悖,这样焦炉煤气脱硫已经成为煤气净化不可或缺的重要组成部分。

焦炉煤气脱硫,不但环保,而且还可以回收硫磺及硫酸等化学品,产生一定的经济效益。

在淘汰落后产能以及清洁生产政策下,对煤气脱硫的要求是越来越高,《焦化行业准入条件》已明确要求焦炉煤气必须脱硫,脱硫后煤气作为工业或其它用时H2S含量应不超过250 mg/Nm3,若用作城市煤气,H2S含量应不超过20mg/Nm3。

本文将对焦炉煤气常用脱硫工艺进行介绍,分析不同工艺的特点,同时对硫回收工艺作简要说明。

二.工艺概述近年来,焦炉煤气脱硫技术经不断发展与完善已日益成熟和广泛应用,脱硫产品以生产硫磺和硫酸工艺为主。

脱硫脱硝工作原理

脱硫脱硝工作原理

脱硫脱硝工作原理
脱硫脱硝是一种常用的大气污染物治理技术,主要用于去除烟气中的二氧化硫(SO2)和氮氧化物(NOx)。

其工作原理如下:
脱硫工作原理:
1. 湿法脱硫:将烟气与液体吸收剂(通常为石灰石浆或氨水)反应,在反应过程中,SO2与吸收剂中的氢氧根离子结合生成硫酸根离子,实现SO2的去除。

2. 干法脱硫:将烟气与干法脱硫剂(如石灰石或活性炭)接触,在高温下进行反应,SO2被吸附在脱硫剂表面或内部,从而去除SO2。

脱硝工作原理:
1. 选择性催化还原(SCR):将烟气中的NOx与氨(NH3)
或尿素(CO(NH2)2)在催化剂的作用下进行反应。

在SCR反
应器中,NOx与NH3发生催化还原反应生成氮气和水,从而
将NOx去除。

2. 选择性非催化还原(SNCR):在高温烟气中喷射氨水、尿
素水或氨气,NH3与NOx进行非催化还原反应,生成氮气和水,从而实现NOx的去除。

以上是脱硫脱硝工作原理的简要描述,具体的技术细节和工艺参数会基于具体的设备和工作要求而有所不同。

焦炉煤气脱氨的工艺设计

焦炉煤气脱氨的工艺设计

焦炉煤气脱氨的工艺设计
焦炉煤气脱氨是指将焦炉煤气中的氨气去除,以防止氨气对环境造成污染。

下面是一个可能的工艺设计方案:
1. 初步处理:将焦炉煤气先通过除尘器进行除尘处理,去除其中的颗粒物和灰尘。

2. 脱硫处理:将焦炉煤气送入脱硫塔,通过注入氨水或碱性溶液来吸收煤气中的硫化氢和二氧化硫。

脱硫塔内同时也会吸收一部分氨气。

3. 进一步脱氨:将脱硫后的煤气送入脱氨塔,通过在塔内喷淋硫酸或酸性溶液,来吸收煤气中剩余的氨气。

吸收液中的氨气会与硫酸反应生成硫酸铵。

4. 氨气回收:将吸收液送入氨气蒸发器进行蒸发,得到氨气和浓缩后的硫酸。

氨气经过冷却和压缩,可回收利用,用于其他工艺或部分回收到焦炉煤气中。

5. 产品处理:从氨气蒸发器中得到的浓缩硫酸可以进行中和处理,以稀释到合适的浓度后进行后续处理或回收利用。

需要根据具体情况来确定工艺参数,例如处理能力、吸收液的浓度、吸收塔的塔高等。

同时需要考虑操作和维护的便捷性,以及处理后废液的处置方式等。

氨法烟气脱硫技术工作原理

氨法烟气脱硫技术工作原理

氨法烟气脱硫技术工作原理由于氨法脱硫工艺属于化肥工业范围,目前该技术在电力行业得到广泛的应用,随着合成氨工业的不断发展以及对氨法脱硫工艺的不断完善和改进,目前,氨法烟气脱硫工艺应用的范围比较广泛。

氨法烟气脱硫技术工作原理在烟气与脱硫浆料倒流接触、清洗整个过程中,发生反应如下所示:一、SO2吸收发生反应:SO2+2NH3+H2O=(NH4)2SO3SO2+(NH4)2SO3+H2O=2NH4HSO3NH3+NH4HSO3=(NH4)2SO3二、氧化反应2(NH4)2SO3+O2=2(NH4)2SO4烟气脱硫塔按倒流式喷洒吸收塔制作,塔底端为氧化池,上端安排了三层循环喷洒层。

烟气由下而上流经喷洒吸收区,经清洗脱硫、除雾器除雾后流出吸收塔。

氨气烟气脱硫技术优势(1)氨法烟气脱硫工作效率高:在液汽之比2.5时,脱硫工作效率就可以达到95%以上。

(2)氨法烟气脱硫技术工程项目投资、运作成本较低,为石灰-石膏技术的40%上下。

(3)氨法烟气脱硫技术生产工艺流程比较简单,操作系统机器设备少,进而增强了操作系统的稳定性,减少了维护和检修成本。

(4)氨法烟气脱硫技术占地面小,且操作系统安排便捷,比较适合目前系统软件的改造和场地紧缺的新建机组。

(5)氨法烟气脱硫技术能耗低,如耗电量、耗水量等。

(6)氨法烟气脱硫技术对锅炉负载变化的适用范围强,负载追踪特性好,起停便捷,可在40%负载时投入使用,对基本负载和调峰系统软件均有很好的适用范围。

(7)氨法烟气脱硫技术对燃煤硫分的适应能力强,可用以0.3%~6.5%的燃煤硫分。

且使用于中高硫煤(≥2%)时,副产品价值能够超出运作成本,其费用效益十分突出。

(8)氨法烟气脱硫技术可以通过科学制作,使操作系统做到完全水平衡,无脱硫废水排出,并不会产生二次污染。

氨法脱硫工艺原理

氨法脱硫工艺原理

氨法脱硫工艺原理
该工艺利用氨液吸收烟气中的SO2生成亚硫酸铵溶液,并在富氧条件下将亚硫酸氨氧化成硫酸铵,再经加热蒸发结晶析出硫酸铵,过滤干燥后得化肥产品。

主要包括吸收过程、氧化过程和结晶过程。

(1)吸收过程
在脱硫塔中,氨和SO2在液态环境中以离子形式反应:
2NH3+H2O+SO2 → (NH4)2SO3
(NH4)2SO3+H2O+SO2 → 2NH4HSO3
随着吸收进程的持续,溶液中的NH4HSO3会逐渐增多,而NH4HSO3已不具备对SO2的吸收能力,应及时补充氨水维持吸收浓度。

(2)氧化过程
氧化过程主要是利用空气生成(NH4)2SO4的过程:
(NH4)2SO3+O2 → (NH4)2SO4
NH4HSO3 +O2 → NH4HSO4
NH4HSO4 +NH3 → (NH4)2SO4
(3)结晶过程
氧化后的(NH4)2SO4经加热蒸发,形成过饱和溶液,(NH4)2SO4从溶液中结晶析出,过滤干燥后得到化肥产品硫酸铵。

设备清单。

焦炉循环氨水和高压氨水的作用是什么?

焦炉循环氨水和高压氨水的作用是什么?
高压氨水的左右主要有两个:无烟装煤和清扫集气管。前者是出于改善焦炉操作环境考虑,只在焦炉装煤时使用;后者属于日常维护作用,可以定期在焦炉检修期间 操作。
主要利用氨气挥发需要吸收大摄氏度左右以利于后续处理
焦炉循环氨水和高压氨水的作用是什么?
循环氨水的作用是用来冷却从焦炉出来的煤气,是荒煤气净化前必须要进行的一步工艺操作。主要利用氨气挥发需要吸收大量热的原理,把荒煤气从600摄氏度左 右,降低到80摄氏度左右,以利于后续处理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

范守谦(鞍山立信焦耐工程技术有限公司)1 气体在液体中的溶解度——亨利定律任何气体在一定温度和压力下与液体接触时,气体会逐渐溶解于液体中。

经过相当长的时间,气相和液相的表观浓度不再发生变化,即处于平衡状态。

这时,对于不同气体,如果组分在气相中的分压(对单组分气体即为总压)保持定值,则不同气体在液体中的浓度称为气体在液体中的溶解度。

该组分在气相中的分压称为气相平衡分压,表示了气相的平衡浓度。

很多气体的液相平衡浓度X与气体的平衡分压P*有定量关系。

如:二氧化碳为直线关系,硫化氢和氨只有在较大浓度范围时不呈直线关系,在浓度较小时,可视为直线关系。

因此,在一定温度下,对于接近于理想溶液的稀溶液,在气相压力不大时,气液平衡后气体组分在液相中的浓度与它在气相中的分压成正比,即亨利定律。

P* =EX式中的P* 为气体组分在气相中的分压,大气压;X为气体组分在液相中的浓度,分子分数; E 为亨利系数(与温度有关)。

上式经浓度单位换算后可改写为:C =HP*式中的P*为气体组分在气相中的分压,mmHg;C 为气体组分在液相中的浓度,gmol;H为亨利系数,gmol/mmHg。

注:①亨利定律是一个稀溶液定律,它只适用于微溶气体;②只适用于气相和液相中分子状态相同的组分。

如:NH3(气态)↔ NH3(溶解态)NH3(溶解态)+H2O ↔ NH4OH ↔ NH+4 + OH-用亨利定律时,应把NH+4的量减去,才能得到水溶液中氨的浓度C氨C氨=H0P *氨式中的H0为氨在纯水中的亨利系数,kgmol/(m3·mmHg)。

温度,℃H020 0.09940 0.039560 0.01780 0.007990 0.0058在氨水脱硫过程中C氨=H氨·P *氨式中的H氨为氨在氨水脱硫中的亨利系数,可用下式估算:Lg(H0/H氨) =K″I+K′C nI 为溶液的离子强度;C n为被溶解的中性分子浓度(在此等于游离氨的浓度)在氨水脱硫系统中,对于氨来说,K″=0, K′=0.025, 则上式变为:Lg(H0/H氨) =0.025C氨2 氨水脱硫的化学原理系统中的NH3、H2S、CO2和H2O之间所发生的反应可以下列方程式表示:NH3+H2S =NH4HS2NH3+H2S =(NH4)2S2NH3+CO2=NH2COONH4NH3+CO2+H2O =NH4HCO32NH3+CO2+H2O =(NH4)2CO3NH2COONH4+H2O =(NH4)2CO3(NH4)2CO3+H2S =NH4HCO3+NH4HS(NH4)2S+H2CO3=NH4HCO3+NH4HSNH4HS+H2CO3=NH4HCO3+H2S在平衡条件下,NH+4、HCO-3、NH2COO-与CO3-2离子及未离解的氨能在水溶液中以可测量的数量存在。

硫化氢完全以HS-离子存在,而硫化物离子S-2的浓度可忽略不计,甚至pH值为12时,这些离子仅为固定硫化氢的0.1%,这是因为:上式表示硫化氢的一次电离,由于HS-二次电离的平衡常数很小(10-15左右),所以一般可忽略不计。

用稀氨水脱硫的主要反应是:NH4OH+H2S =NH4HS+H2O+10900(放热反应)离子反应:NH3+H2S ↔NH+4 +HS-平衡常数:上式应用于理想溶液,对于非理想溶液需引入活度a i概念。

非理想溶液与理想溶液的偏差可用活度系数r i表示,其定义为:a i = r i·C i上式可变为:当溶液很稀时,a i=C i r i=1则K C1=Kai K ri=1因此,非理想溶液与理想溶液之间要用一个校正系数K r进行调整。

一般认为盐或单种离子的活度系数(r i)主要决定于离子间的静电引力。

则所有一价离子或所有二价离子之间的影响都相同,所以活度系数是离子强度(I)的函数。

它等于溶液中的每种离子(C i)乘以该离子的价数(Z i)的平方所得诸项之和的一半,即:I =1/2∑C i Z i2式中的C i 为溶液中离子的浓度,gmol/L;Z i为该离子的价数。

试验得知,活度系数的对数(在一定浓度范围)与离子强度呈直线关系,因此,可用离子强度来校正,而:K l实际上是平衡常数的另一种表示形式,可用I来校正,K l也就可以用I来校正。

Lg K l和离子强度I的直线函数可写作:Lg K1 = a + 0.089 I式中的a为常数,随温度变化而不同:t℃a20 -1.140 -1.760 -2.19对于无限稀的溶液,K C1≈K ai,所以K1亦仅与温度有关的常数。

3 吸收反应与平衡NH3+H2S ↔ NH4+ + HS-设总氨含量为A gmol/L, 总硫化氢含量为S gmol/L, 其他铵盐(如硫代硫酸铵等)的当量阴离子浓度为Z 当量/升时,可写出下列方程式:[NH3]=A-S-Z[HS-]=S[NH+4]=S + Z(1)当溶液中仅含氨和硫化氢时,Z=0,则所以,只含氨和硫化氢的水溶液中,I等于S(总硫化氢浓度)lg K1 = a +0.089 S(2)当原料气中含有二氧化碳时,氨水吸收硫化氢和二氧化碳后,在含NH3、CO2和H2S的水溶液中,建立了如下的化学平衡:NH3+H2S =NH4+ + HS-NH3+CO2+H2O =NH4+ + HCO3-NH3+HCO3-=NH2COO-+H2ONH3+HCO3-=NH4+ + CO3-2上述各式的平衡常数如下:式中的S为溶液中总硫化氢浓度,gmol/L;C为溶液中总二氧化碳浓度,gmol/L;a 、m 为与温度有关的系数。

t℃ a m20 -1.1 0.08940 -1.7 0.2160 -2.19 0.31K3、K4-与温度T的关系符合lg K i = 1/TT℃K3K420 3.4 0.1430 2.71 0.08340 2.2 0.0560 1.5 0.02溶液中含有HCO3-、CO3-2、NH2COO-、NH4+、NH3、CO2、H2S、HS-等8个组分,当氨水循环溶液中总氨浓度为A gmol/L、总二氧化碳浓度为C gmol/L、总硫化氢浓度为S gmol/L时,可写出下列方程式。

①硫化氢平衡S =[H2S]+[HS-](1)②氨平衡A=[NH3]+[NH4+]+[NH2COO-](2)③二氧化碳平衡C=[CO2]+[CO3-2]+[HCO3-]+[NH2COO-](3)④离子电荷平衡[HS-]+[HCO3-]+2[CO3-2]+[NH2COO-]=[NH4+](4)⑤[NH2COO-]——[HCO3-]平衡K3·[NH3]·[HCO3-]=[NH2COO-](5)⑥[CO3-2]——[HCO3-]平衡K4·[NH3]·[HCO3-]=[NH4+]·[CO3-2](6)由式(1)、(2)、(3)、(4)可得:[NH3]=[HCO3-]+A-2C-S (I)由式(3)、(4)、(6)可得:[CO3-2]·{[CO3-2]+S+C}=K4·[NH3]·[HCO3-]因为[CO3-2]较小,[CO3-2]2可忽略不计,则:[CO3-2]=K4·[NH3]·[HCO3-]/(S +C)(II)由式(3)、(4)得:[NH4+]=C+S+[CO3-2](III)由式(5)得:[NH2COO-]=K3·[NH3]·[HCO3-](IV)令[HCO3-]为x, 将式(I)、(II)、(III)、(IV)代入式(2)得:解上式求得x, 取正值即为[HCO3-],代入式(I)、(II)、(III)、(IV),依次可求得液相之平衡组成,然后再根据下式求出气相平衡分压:气相硫化氢平衡分压随液相硫化氢含量增加而升高(几乎成直线关系),随液相中[NH3]的减少、碳化度R=C/A的增加而显著升高。

故维持溶液较低的R值对脱硫是有利的。

氨水中二氧化碳含量取决于补充氨中的二氧化碳含量以及煤气中二氧化碳含量和吸收、再生的操作条件。

在实际生产中,循环吸收系统为了提高脱硫效率,补充氨水时,尽可能采用碳化度低的氨水或气相直接加氨。

4 计算实例已知:氨水溶液的温度为30℃,其主要成分为A=0.5gmol/L, R=0.7, 硫化氢含量为0.2g/L,求气相平衡分压。

解:溶液的主要成分如下:A=0.5gmol/LC=AR=0.5×0.7=0.35 gmol/LS=0.2/34=0.0058 gmol/L30℃时,K3=2.71, K4=0.083设:[HCO3-]=x gmol/L2.9432x2+0.3941x-0.35=0x=0.2843[NH3]=[HCO3-]+A-2C-S=0.2843+0.5-2×0.35-0.0058=0.07842 gmol/L[CO3-2]=K4[NH3][HCO3-]/(S +C)=(0.083×0.2843×0.07842)/(0.0058+0.35)=0.005194 gmol/L [NH4+]=C+S+[CO3-2]=0.35+0.0058+0.005194=0.3611 gmol/L[NH2COO-]=K3[NH3][HCO3-]=2.71×0.2843×0.07842=0.06042 gmol/L氨平衡核验:A=[NH3]+[NH4+]+[NH2COO-]=0.07842+0.3611+0.06042=0.5 gmol/L说明计算液相组成正确。

由lg K1 = a +0.089 S+ mC 求K130℃时,a = -1.4, m=0.1495若总压为1000mmHg, 则出口气相中的硫化氢平衡浓度为:Y *硫化氢=(0.6023/1000)×100%=0.06023%(V)相当于(0.06023×1000×34)/(22.4×100)=0.915 g/Nm3氨的气相平衡分压:30℃时,H0=0.0693 kgmol/(m3·mmHg)H氨=0.0693×0.9954=0.0695 kgmol/(m3·mmHg)P *氨=0.07842/0.0695=1.134 mmHg出口气相中氨的平衡浓度为:Y*氨=(1.134/1000)×100%=0.1134%(V)相当于(0.1134×1000×1)/(22.4×100)=0.861 g/Nm35 氨水对气态硫化氢的选择吸收在含有大量二氧化碳的煤气中吸收硫化氢时,发现用氨水溶液在短时间内(5秒)的气液接触便能完成从二氧化碳气体中选择性地除去硫化氢。

相关文档
最新文档