整流电力变压器简单移相方法

合集下载

220kV有载调压整流变压器技术方案_易梅生

220kV有载调压整流变压器技术方案_易梅生
第 !" 卷
第#期 "$$% 年 # 月
变压器
!"#$%&’"()"
&’()!" *+,-.
/’)# "$$%
!!"#$ 有载调压整流变压器技术方案
易梅生 !, 胡玉建 !, 朱志勇 "
(!" 特变电工衡阳变压器有限公司,湖南 衡阳 !"#$$%;"&特变电工新疆变压器厂, 新疆 昌吉 ’(##$$)
方案3采取外延三角形移相方式器身绝缘必须采取llokv全绝缘结构方案4采取曲折形移相方式器身绝缘可采取llokv分绝缘结构相比来说方案4的安全可靠性岛2从制造lt讲方案3采用外延三角形移卡i两个器身均为全绝缘结构外延三角形移相变压器ojn造工艺较麻烦但曲折形移相结构却相对简单3从制造成小米讲外延二角肜必须采取全绝缘结构基本绕组移相绕组的引线电压均是llokvru压等级的冈此引线绝缘方面需要采取更多的措施且油箱尺寸需更大些才能保证产品可靠性
整流变压器整流方式: 三相桥式
’’&9, 有 载 调 压 整 流 变 压 器 过 程 中 提 出 的 四 种 技
术方案及最终优选方案的过程。
"
!"#
使用条件和技术要求
环境温度 极端最高温度: 1%’: 极端最低温度: )!&:
!"!
正常使用条件 海拔: 低于 %+&; 使用条件: 户外式 外部冷却介质: 空气 污秽等级: !
A" 调压变压器联结组标号: /BC&D!! 线端有载粗细调压 E" 调压变压器调压方式: 有载开关调压级数: F? 级 调压范围: (!",,G!&+ ) > D" 额定容量: !!! *&&-.H 调压变压器补偿绕组额定容量: ’+ &&&-.H I" 单机额定直流电压: **&. 单机额定直流电流: ’J+’"+-H 单机脉波数: 单台 !’ 相 总脉波数: %J!’K%* 相 L" 整流变压器联结组别: 2 8 D)D 2 8 C)C 整流变压器移相角: =,"F+M、 =!!"’+M、 =!*"F+M、 =’N"’+M

z型变压器移相原理

z型变压器移相原理

z型变压器移相原理
Z型变压器是一种特殊类型的变压器,其结构与普通三相芯式电力变压器相同,但每相铁芯上的绕组分为上、下相等匝数的两部分,接成曲折形连接。

这种设计使得Z型变压器具有一些特殊的性能。

Z型变压器的移相原理主要基于其特殊的接线方式。

在Z型变压器中,同一柱上两半部分绕组中的零序电流方向是相反的,因此零序电抗很小,对零序电流不产生扼流效应。

这意味着当Z型变压器用于接地变压器时,中性点接入消弧线圈时,可以使消弧线圈补偿电流自由的流过。

这种特性使得Z型变压器广泛用于配电网中,主要用作接地变及所用变,它可以减小配电网中的电容电流,同时因为其零序阻抗大,中性点平衡电流小及防雷性能优良。

总的来说,Z型变压器的移相原理主要基于其特殊的接线方式和零序电流特性。

如需更多信息,建议查阅相关文献或咨询电气专家。

移相整流变压器课件

移相整流变压器课件

THANKS
感谢观看
日常维护与保养
定期检查
定期对移相整流变压器进行外观检查,查看是否 有异常声音、气味或渗漏现象。
清洁与除尘
定期清洁移相整流变压器的外壳和散热器,并清 除周围的杂物和灰尘。
温度监测
使用温度计或红外测温仪定期检查移相整流变压 器的运行温度,确保其不超过规定的上限。
故障诊断与处理
异常声音与振动
如果移相整流变压器发出异常声音或振动,应立即停机检查,找 出故障原因并修复。
工作原理
移相整流变压器通过改变变压器绕组 的匝数比,将输入的交流电进行移相 处理,然后通过整流器将移相后的交 流电转换为直流电。
移相整流变压器的应用
电力系统
新能源
在电力系统中,移相整流变压器被广 泛应用于高压直流输电和灵活交流输 电系统中,用于实现电能的高效传输 和调节。
在风力发电、太阳能发电等新能源领 域,移相整流变压器可用于实现能源 的并网传输和调节,提高新能源的利 用效率。
老化迹象 注意观察移相整流变压器是否有老化迹象,如绝 缘材料脆化、金属部件锈蚀等,及时采取措施延 长其使用寿命。
06
移相整流变压器的发展趋势与展 望
技术发展趋势
高效能
01
随着电力电子技术的进步,移相整流变压器将进一步提高转换
效率,降低能源损失。
紧凑化设计
02
为了满足日益增长的需求,移相整流变压器将趋向于更紧凑的
设计,减小体积和重量。
智能化控制
03
通过引入先进的控制算法和传感器技术,实现变压器的智能化
控制,提高运行稳定性和效率。
市场应用前景
新能源领域
随着新能源发电的普及,移相整流变压器在光伏、风电等系统中 将有广泛应用。

整流电力变压器简单移相方法

整流电力变压器简单移相方法
5
它串联联结在整流变压(气压变量)器二次绕组与整流器之间,流 过负载(load)电流(Electronflow);另一个是直流控制绕组,是由另外的 直流电源提供直流电流,其主要原理就是利用铁磁材料(Material)的非 线性变化,使工作绕组电抗值有很大的变化。调节直流控制电流,即 可调节相控角α,从而调节整流电压平均值。
wwwywxshcom整流电力变压气压变量器简单移相方法对于大功率highpower指物体在单位时间内所做的功的多少整流设备shbi需要脉波数也较多脉波数为182436等应用的日益增多这就必须在整流变压气压变量器一次侧设置移相绕组来进行移相
整流电力变压器简单移相方法
试验箱
/
3
用于电化学行业的整流变压(气压变量)器的调压范围(fànwéi) 比电炉变压器(Transformer)要大的多,对于化工食盐电解,整流 变压器调压范围通常是56%--105%,对于铝(Al)电解来说,调压范 围通常是5%--105%。绝缘油介损测试仪是用于绝缘油等液体绝 缘介质的介质损耗角及体积电阻率的高精密仪器。一体化结构。 内部集成了介损油杯、温控仪、温度传感器、介损测试电桥、交 流试验电源、标准电容器、高阻计、直流高压源等主要部件。常 用的调压方式方法如电炉变压器一样有变磁通调压,串联单移相方法 对于大功率(High-power)(指物体在单位时间内所做的功的多少)整 流设备(shèbèi),需要脉波数也较多,脉波数为18、24、36等应用的 日益增多,这就必须在整流变压(气压变量)器一次侧设置移相绕组来 进行移相。油介质损耗测试仪是用于绝缘油等液体绝缘介质的介质损 耗角及体积电阻率的高精密仪器。一体化结构。
6
谢谢观看
7
2
内部集成了介损油杯、温控仪、温度传感器、介损测试电桥、交 流试验电源、标准电容器、高阻计、直流高压源等主要部件。变压器 油耐压测试仪全自动测量:设置完毕,只需按测试键即可完成全部工 作(自动搅伴、自动静置、自动升压、自动降压、自动记录击穿电压值 、自动计算各次平均击穿电压值、自动打印测量结果)。试验完毕,声 音提示。移相绕组与主绕组联结方式方法有三种,即曲折线、六边形 和延边三角形。

移相变压器延边三角形接法

移相变压器延边三角形接法

移相变压器延边三角形接法移相变压器延边三角形接法移相变压器是电力传输和分配系统中常见的电力变压器之一,该种变压器可以实现增加或减小电压,同时也可以通过移相变换实现相位差的调整和控制。

在电力系统中,使用移相变压器常常涉及到多个变压器的并联或串联接法,其中较为常见的一种接法便是延边三角形接法。

延边三角形接法是指将两个移相变压器按照三角形的形式连接起来,并将两个变压器的中央节点连接在一起,用来实现电力系统中的相位控制和调整。

该种接法具有相对较高的稳定性和效率,因此得到了广泛的应用。

在移相变压器的延边三角形接法中,需要注意以下几点:1. 变压器的电压比需要匹配,且两个变压器的电压比需要相对应。

同时,变压器的额定容量和使用环境等因素也需要得到充分考虑和评估,以确保其电气性能和使用安全。

2. 在接线时,需要将两个移相变压器的高压绕组连在一起,低压绕组也连在一起,而中央节点则需要连接在一起,并保证电路的连通性。

3. 在实际应用中,还需要根据实际的电力需求和系统运行模式进行相应的相位控制和调整,以确保电力系统的稳定及运行效率。

延边三角形接法在电力系统中的应用非常广泛,其优点在于可以实现相位差的调整和控制,从而提高了电力系统的灵活性和可控性。

此外,该种接法还具有结构紧凑、效率高等优点,在电力系统中得到了广泛的应用和推广。

在实际应用中,延边三角形接法的设计和选型需要根据实际情况进行综合考虑和评估,以保证电力系统的安全运行和稳定性。

同时,还需要注意变压器的维护保养和故障排除等工作,以确保电力系统的可靠性和稳定性,保障工业生产和居民用电等需求。

一种高压变频器用移相整流变压器移相角的简易测量方法

一种高压变频器用移相整流变压器移相角的简易测量方法
A bs r c A i l t o f me s rn i h v la e c n e tr i r s n e .Th s me h d o l d p s a t a t: smp e me h d o a u ig hg o tg o v re s p e e td i t o ny a o t
i r a e pr c ia l . nc e s a tc lvaue ,
Ke r y wo ds: ih v la efe u n y c n e tr p a ec n r l hg ot g r q e c o v re ; h s o to
1 引言
在交 流 电机 的调 速与 控 制 中 , 采用 变频 调 速 技术 是 当今节 电、 改善 工 艺流 程 以提 高 产 品质 量和 改 善 环 境、 推动技 术进步 的一 种主要 手段 。 变频调 速技 术的调 速性 能优 异 , 高效 率 、 功率 因数 和节 电效果 显 著 , 高 使 用 范围广泛 , 是最 有发展 前途 的交 流 电机调 速方 式 。 采 用多重 化移 相整 流技术 和单元 电平 串联叠 加技 术研制 的高 压大 功 率变 频 器是 其重 大 成 果之 一 , 移相 整 流变 压 器起 着不 可 替代 的作 用 , 其移 相 角 的测量 因此 也 对
成, 其主 电路拓 扑 图见图 1 。
1k -  ̄ 电源j 0V — 1
Cm



1 r

…阿 圈
… L 一
…L …


} 叫嚷网 一

3. o

…’ L

童 豳 …阿 圜
, l.・ o I … 一

两种12脉波整流变压器分析与仿真

两种12脉波整流变压器分析与仿真

两种12脉波整流变压器分析与仿真葛笑寒【摘要】比较两种12脉波整流变压器的结构和设计原理.一种利用阀侧的星三角自动30度移相,电源侧采用延边三角形移相.第二种电源侧采用自耦调压绕组,整流分裂为高低压两套绕组,延边三角形在整流变高压侧,都为三角形联结,在整流绕组的高压侧实现相位的左右移相.前者结构简单,造价较低,电压可调性较差.后者变压器绕组增多,结构复杂,高度、造价增加,但调压灵活,多用于需要频繁调压的领域.【期刊名称】《安徽电子信息职业技术学院学报》【年(卷),期】2019(018)001【总页数】5页(P10-13,26)【关键词】整流变压器;12脉波整流变压器;三角形连接【作者】葛笑寒【作者单位】三门峡职业技术学院,河南三门峡 472000【正文语种】中文【中图分类】TM422近年来电力电子技术的发展,使得大功率整流设备普遍应用。

兼具变换电压和隔离作用的整流变压器的应用逐渐增多。

但是,随之带了谐波污染,导致电网波形畸变。

减小谐波的办法主要有有缘电力滤波器、感应滤波技术和多重化整流技术三种[1]。

在大功率整流领域,一般都采用多脉波的整流变压器降低谐波,12脉波整流变压器是经典的整流变压器[2]。

但是,随着电源容量的增大,电压的提升及调压的需求,另外一种12脉波整流变压器也迅速应用。

这种新的12脉波整流变压器的主要特点是,内部整流变压器和调压器绕组共油箱,即高压绕组采用自耦多级调压,低压绕组采用双分裂的独立铁芯的4套绕组,一次采用延边三角形实现移相,阀侧采用三角形接入整流绕组。

本文主要介绍这两种结构的整流变压器,并进行比较。

一、方案一整流变压器结构(一)脉波整流变压器的联结组别目前,常用轴向分裂变压器。

高压绕组星型或者延边三角形连接,低压绕组形成双分裂的星型和三角形联结的绕组接入整流柜,形成12脉波整流[3]。

工业中常把两个12脉波电路并联,形成24脉波电流。

如图1所示1号变压器采用Dy11d0联结,移相7.5°。

大容量移相整流变压器及变频器安装施工方案设计

大容量移相整流变压器及变频器安装施工方案设计

大容量移相整流变压器及变频器安装施工方案设计摘要:大功率变频器为了减少对电网的冲击,需要配用大容量移相整流变压器。

这类的特点是体积大、二次侧抽头多、结构复杂,本文就变频器安装及针对这类变压器二次电缆敷设相关经验进行了探讨。

同时,也针对高纬度地区冬季寒冷条件下的施工经验和教训进行了总结、分析。

关键词:移相;变压器;电缆敷设;冬季施工;大容量;变频器。

0引言大功率同步电机调速需要配备大功率的变频调速系统,本文探讨、分析一下30MW同步机组配套供电的变频器及变压器安装施工中的一些经验和不足。

该项目上级电网容量50000kVA,为减少对上级电网的影响采用移相整流变压器,该变压器输出波数达到36P,二次侧出线6组,共18个瓷瓶。

由于工期安排,变压器二次侧电缆在冬季施工,施工期间室外最低温度达到-24℃。

在施工中采取了保温遮蔽、整体加温、局部加温三种手段相结合的方式,满足了施工条件,保障了施工进度及施工质量。

1设备情况及施工条件概述1.1移相整流变压器简介1.1.1移相整流变压器原理简介整流变压器与电力变压器最大的不同点在于对等效相数的要求不同,为了提高电能质量,整流变压器的输出电压波形不像电力变压器,在一个周期内只有三个正弦脉波,而是根据网侧电压和装机容量确定在一周期内的脉波数。

该项目由于装机容量达到了单台36000kVA,对于这类大功率整流设备,为了提高功率因素,减小网侧谐波电流,必须提高整流设备的脉波数。

因此该项目使用的大型整流变压器,采用移相线圈的方式,脉波数达到36个。

该项目变压器在电网三相电压的基础上,为了获得均匀分布多脉波阀侧电压,将每相阀侧电压在120内均匀展开。

采用一次侧绕组联结成Y接、D接,二次侧由多个延边三角形的移相绕组并联在一台变压器上,由这些若干个延边三角形的移相绕组来得到所需要的不同的移相角度,从而使单台移相整流变压器输出的脉波数达到36P,即各个二次侧绕组的移相角度为+20°、0°、-20°。

移相变压器设计研究

移相变压器设计研究

高压变频装置配套用移相整流变压器的设计研究云南变压器电气股份有限公司柳溪摘要:本文介绍了高压变频器的工作原理,并论述高压变频器配套用移相整流变压器的移相原理,设计研究和技术特点,提出了相应的计算方法。

关键词:高压变频器移相整流变压器移相设计要点计算方法Design and Study on phase-shifting rectifier transformer for the supporting use of high-voltage frequency converter Yunnan Transformer and Electric Joint-stock Company Ltd.Liu XiAbstract: This article introduces the operating principle of the high-voltage frequency converter, expounds the rectifyingprinciple of the phase-shifting rectifier transformer forthe supporting use of high-voltage frequency converter, itsdesign and study and its technological characteristics andputs forward the relevant calculating methods.Key words: high-voltage frequency converter, phase-shifting rectiformer (rectifier transformer), phase-shifting, calculating methods,main design consideration1.前言随着电力电子技术、计算机技术、自动控制技术的迅速发展,带动了交流传动技术日新月异的进步,也使得高功率、大电流的功率器件制造技术日趋成熟。

高压变频器中移相整流变压器移相角的测量方法研究

高压变频器中移相整流变压器移相角的测量方法研究

高压变频器中移相整流变压器移相角的测量方法研究作者:陈栋来源:《科学与财富》2018年第10期摘要:在交流电机的控制中,变频调速技术因效率较高且不会产生谐波污染,成为最有前景的调速方式。

采用PWM技术的变频调速器是此技术的重点应用之一,其中移相整流变压器起到了不可或缺的作用,对此类特种变压器移相角的测量也显得相当重要。

关键词:移相整流变压器;变频器;移相角的测量1.变频器系统拓扑结构电动机的转速n=60*电源频率f(1-转差率S)/极对数P,变频调速技术是利用改变电动机定子电源频率f来改变电动机的转速n的调速方法。

转速n与频率f之间为线性关系,调速过程中没有节流作用以及励磁滑差产生的附加功率损耗,使得这种调速有无极、范围大、效率高、低损耗的特点。

采用PWM技术的变频调速器,是由多个功率单元串联多电平的拓扑结构。

以6kV五级变频器为例,每相有五个功率单元,每个功率单元输入经移相整流变压器移相的三相交流电压,经整流逆变后输出单相交流电压,五个功率单元串联叠加后输出改变频率的6kV电压,驱动电动机工作。

2.移相整流变压器的原理移相整流变压器的原理是将变压器副边分为多绕组形式,每个绕组采用延边三角形移相,从而使得二次绕组的同名端线电压之间有一个相位移。

根据变频器电压等级和容量大小的不同,整流脉波数各有不同:以ZTSGF_1600/6型6kV五级移相整流变压器为例,变压器原边绕组6kV,副边共15个绕组分为三相,通过延边三角形接法,分别有+24°、+12°、0°、-12°、-24°移相角度,每个绕组接一个功率单元。

移相整流变压器起到了电气隔离的作用,使得各功率单元相互独立从而实现电压串联,并且通过多重化整流逆变有效消除了谐波。

其副边绕组延边三角形联接及移相方式分为顺时针(正角度)和逆时针(负角度),联结及移相方式如图1:3.移相整流变压器移相角的计算方法本文以ZTSGF_1600/6型6kV五级移相变为例,讨论移相角的测量方法。

24脉波整流和移相整流变压器网侧绕组匝数和电流的确定

24脉波整流和移相整流变压器网侧绕组匝数和电流的确定

式中
I延 I基 I2 W2
绕组外延段电流, A 绕组基本段( 内三角) 电流 , A 阀侧绕组相电流, A 阀侧绕组匝数
4 网侧星形联结时移相整流变压器匝数和 电流的确定
前面已指出星形联结时应接成曲折形联结。 4. 1 匝数的确定 以移相 + 7. 5 联结为例, 相量图如图 6 所示。
3. 2
电流的确定 由图 4 节点 Z 得如图 5 所示的相量图。
收稿日期 : 2001- 06- 11 作者简介 : 陈华山 ( 1938- ) , 男 , 浙江镇海县 人 , 上海置信变压器公司总工程师 , 长期从事变压器技术工作。 现从事非晶 合 金铁心配变和箱变的技术工作。
第9期
钱章福 : 24 脉波整流和移相整流变压器网侧绕组匝数和电 流的确定
9
2
外延三角 波整流
第 38 卷 第 9 期 2001 年 9 月
变压器
TRANSFORMER
Vol. 38 Sept ember
No. 9 2001
设计计算
24 脉波整流和移相整流变压器 网侧绕组匝数和电流的确定
钱章福
( 上海置信变压器有限公司 , 上海 200335)
摘要: 概述了用移相 7. 5 叠加组成的 24 脉波移相整流原理, 介绍 了外延三角 、 星形 曲折联结 的移相整流 变
1
12 和 24 脉波整流特性的区别
为了提高直流成分的纯净要求 , 在整流线路中 ,
特别是在城市地铁、 轨道交通的牵引整流线路中, 往 往采用 12 和 24 脉波多脉波数的整流线路。脉波数 越多 , 则其整流元件的导通电角度的间隔越小 , 直流 成分也就越纯净。 在三相电源中, 每相一个周期的电角度为 360 ; 在一周中, 当整流后要获得 12 个脉波数, 则必须每 隔 30 就得有一个整流元件导 通。同理, 24 脉波的 整流必须每隔 15 就有一个整流元件导通。 要实现 12 脉波的整流, 其整流变压器的接线应

移相变压器的原理与用途

移相变压器的原理与用途

变压器中移相的形成及工作原理由于干式变压器的无油污染问题,防潮、耐热、阻燃、防腐蚀等特性,广泛应用于工业、生活的各个方面。

目前主要存在两种主流类型的干式变压器:一种是以欧洲为代表的树脂浇注式干式变压器(简称ordt),另一种是以美国为代表的浸漆式干式变压器(简称ovdt)。

而作为h级绝缘的干式整流变压器,以c级绝缘材料nomex纸作为绝缘介质,具有更高的可靠性和环保特性,而且具有更好的经济性,测功机系统受到广泛的欢迎。

干式移相整流变压器是一种专门为中高压变频器提供多相整流电源的装置,采用延边三角形移相原理,通过多个不同的移相角二次绕组,可以组成等效相数为9相、12相、15相、18相、24相以及27相等整流变压器。

变压器的一次侧直接入高压电网,法国车上必须携带酒精测试仪其二次侧有多个三相绕组,它按0°、θ°、…、(60-θ)°等表示延边三角连接变压器二次侧的各低压三相绕组,同时表示各低压三相绕组线电压相对对应绕组的移相角。

当每相由n电机试验个h桥单元串联时,θ=60°/n,实现了输入的多重化,形成6n脉波整流。

这样,如果各h桥单元功率平衡,电流幅值相同,理论上一次侧输入电流中不含有6n±1以下各次谐波,并可提高功率因数,一般不需再配备无功补偿和谐波滤波装置。

最适宜用于防火要求高、负荷波动大的环境中,如海上石油平台、火力发电厂、自来水厂、冶金化工、矿山建材等特殊的工作环境中。

多绕组干式移相整流变压器是根据不同的用户而设计,容量从200kva~10000kva不等,一次阻抗较大,变压器的效率>98%,采用h级绝缘系统,绕组温升限值120k。

为了提高电能质量,整流变压器的输出波形不像电力变压器在一个周期内只有三个正弦脉波,而是根据一次侧电压和装机容量,确定每台变压器在一个周期内的脉波数。

高压变频调速技术目前呈现多样化,以西门子技术为代表的级联式多重化技术,基本可以做到完美无谐波,它采用整流变压器将多个低压模块叠加(串联)而形成高压输出,功率器件采用igbt,目前国内绝大多数高压变频器厂家都是采用这种技术。

电力知识-变压器移相方法

电力知识-变压器移相方法

最简单的移相方法就是二次侧采用量、角联结的两个绕组,可以使整流电炉的脉波数提高一倍。

对于大功率整流设备,需要脉波数也较多,脉波数为18、24、36等应用的日益增多,这就必须在整流变压器一次侧设置移相绕组来进行移相。

移相绕组与主绕组联结方式有三种,即曲折线、六边形和延边三角形。

用于电化学行业的整流变压器的调压范围比电炉变压器要大的多,对于化工食盐电解,整流变压器调压范围通常是56%--105%,对于铝电解来说,调压范围通常是5%--105%。

常用的调压方式如电炉变压器一样有变磁通调压,串联变压器调压和自耦调压器调压。

湖南电力安装另外,由于整流元件的特性,可以在整流电炉的阀侧直接控制硅整流元件导通的相位角度,可以平滑的调整整流电压的平均值,这种调压方式称为相控调压。

实现相控调压,一是采用晶阀管,二是采用自饱和电抗器,自饱和电抗器基本上是由一个铁心和两个绕组组成的,一个是工作绕组,它串联联结在整流变压器二次绕组与整流器之间,流过负载电流;另一个是直流控制绕组,是由另外的直流电源提供直流电流,其主要原理就是利用铁磁材料的非线性变化,使工作绕组电抗值有很大的变化。

调节直流控制电流,即可调节相控角α,从而调节整流电压平均值。

长沙艾克松电力设备安装有限公司:我们是专业承接电力设备安装,变压器安装,箱变安装,临时用电,永久用电,杆线迁移等。

24脉波移相整流变压器技术研究综述

24脉波移相整流变压器技术研究综述

24脉波移相整流变压器技术研究综述孙玉伟;潘天雄;严新平;袁成清;汤旭晶;潘鹏程【摘要】在解决大功率电力系统整流谐波问题方面,多脉波整流技术因其谐波抑制率高、设备成本低和运行可靠性高而具有显著优势.然而,随着电力系统的谐波控制标准不断提升,特别是在解决城市轨道交通直流牵引供电系统谐波方面,传统的12脉波整流器难以有效解决输出高品质稳定直流电的问题.在介绍24脉波整流技术的原理及分类的基础上,分别就基于隔离型、自耦型、直线式和圆形变压器的24脉波整流器移相变换原理、拓扑结构及性能特点进行了对比分析,探讨了柱式、直线式和圆形移相变压整流器在铁磁结构、绕组布设和匝数计算等方面的差异.【期刊名称】《武汉理工大学学报(交通科学与工程版)》【年(卷),期】2019(043)003【总页数】5页(P438-442)【关键词】24脉波整流器;谐波;自耦变压器;圆形变压器;直线式变压器【作者】孙玉伟;潘天雄;严新平;袁成清;汤旭晶;潘鹏程【作者单位】武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063;武汉理工大学交通部船舶动力工程技术交通行业重点实验室武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063;武汉理工大学交通部船舶动力工程技术交通行业重点实验室武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063;武汉理工大学交通部船舶动力工程技术交通行业重点实验室武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063;武汉理工大学交通部船舶动力工程技术交通行业重点实验室武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063【正文语种】中文【中图分类】U665.10 引言整流变换作为最常用的电能变换之一,已广泛应用于直流电机、电镀、新能源、航天等各个领域,而整流器件的强非线性给电网带来了大量的谐波污染[1-2],为此许多国家都相继制定了限制电力系统谐波的标准,如IEC555-2,IEEE519等[3].大功率整流工程实践中主要采用LC滤波、功率因数校正、PWM整流和多脉波整流等谐波控制方法,其中:尤以具有谐波抑制率高、低噪声、低电磁干扰(EMI)和射频干扰(RFI)、实现简单、可靠性高等特点的多脉波整流技术应用最为广泛.随着多脉波整流技术的发展,整流系统脉波数增多,电网总谐波畸变率(total harmonic distortion,THD)得以有效控制,但脉波数过多会使系统过于复杂,制造精度和对称性难以得到保证[4].24脉波整流系统在兼顾了设备复杂度和成本等因素的同时,具有良好的系统谐波抑制能力,而成为多脉波整流技术发展的主流[5].本文首先阐述了24脉波整流技术的原理及分类,从移相变压器的结构形式出发,分别介绍了基于隔离型、自耦型、直线式和圆形移相变压器24脉波整流系统的拓扑结构和变换原理,并对其结构和性能做了对比分析,最后对该领域进行了总结和展望.1 24脉波整流技术原理及分类24脉波整流器通常由移相变压器和多个整流桥构成,在一个三相电源系统中,输出直流电压在一个交流周期内有24个波头[6-7].其原理是通过移相变压器,实现交流线电压移相,多相输出到若干个三相整流桥,通过各整流桥的谐波叠加抵消,抑制输入电流中23次以下的谐波,从而减小交流输入系统中的谐波含量和直流输出电压中的波纹[8].24脉波整流器的类型很多,根据不同的特性可以作如下归类:根据内置移相变压器有无电隔离可以分为隔离型和非隔离型,根据整流器中电力电子器件是否可控可以分为可控型和不控型[9].移相变压器是其中的关键设备,原边绕组与副边绕组的联结方式有很多种,包括△/Y、延边三角形、曲折形、多边形等[10].其移相原理都是通过绕组的不同联结方式,改变原副边绕组电压的相位,图1和表1分别介绍了几种绕组的联结方式和相应的原副边匝数计算公式.限于篇幅,本文主要以延边三角形接法为例介绍相应的整流拓扑结构.图1 移相变压器的原副边绕组联结方式表1 移向变压器原副边匝数比关系及相角度[10]△/YN2=n·3·N1±30°3·sin α·N3=sin(30°-α)·N2N2+2·N3=2·n·cos α·N130°-30°<α<30°sin α·N2=sin(60°-α)·N3(n·N1)2+N22-N32=2·n·N1·N2·cos α60°-60°<α<60°sin α=k·sin(120°-α)·(n·N1)2+N22-(k·N2)2=2·cos α·n·N1·N2-60°<α<60°注:n-变压器的变压比;α-移相角;N1-原边匝数;N2、N3-副边匝数;“k”-多边形绕组上抽头两端绕组的匝数比.2 基于隔离变压器的24脉波整流技术概况2.1 24脉波隔离式不控型整流器24脉波不控型整流器目前已广泛应用于国内城市轨道交通牵引供电系统,这种整流装置可靠性更高,更加经济,缺点是电能只能单向流动且整流器体积庞大,图2为几种典型的不控型24脉波整流系统.图2a)整流机组主要由两台12脉波轴向双分裂式牵引整流变压器和四组全波整流桥组成,变压器原边采用延边三角形,副边绕组分别采用△,Y接法,输出4组线电压相位差15°,通过整流桥整流后实现了24脉波整流[11-13].该系统采用的轴向双分裂式结构的变压器,增大了其抗干扰能力,原边采用延边三角形移相,一次侧3次谐波电流不注入电网,二次侧形成多脉波输出,使直流波形更加平缓,谐波含量更低.图2b)4组整流桥为串联联结,该电路的副边相比图2a)的对称性更好,它们共同的缺点是变压器体积庞大且效率低[14].图2c),变压器采用Y/Y/△联结,两个副边绕组的交流线电压相位相差30°,引入变抽头均衡电抗器后,产生不流经负载的附加环流以11、13次谐波为主要成分,与网侧11,13次谐波相位相反,从而相互抵消形成24脉波整流[15-17].该系统在设计变压器时,要求副边两绕组对称性好,必须注意铁芯结构及副边三角形绕组和星形绕组的匝数设计,变抽头均衡电抗器起电压均衡、电流平波等作用,合理的均衡电抗器设计能提高并联双桥的利用率,维持电流连续及减小直流脉动.图2d)经过整流桥和2抽头变换器形成24脉波整流,该整流变压器副边都采用延边三角形联结,从而对称性更好,更有利于谐波的抑制.图2 隔离式不控型24脉波整流系统2.2 24脉波隔离式可控型整流器24脉波隔离式可控型整流器主要应用于大功率场所,如高压直流输电 (high-voltage direct current,HVDC)、大型直流电机驱动、可再生能源转换系统等.图3a)移相变压器原边绕组为△,Y接法,副边绕组采用4组延边三角形接法,分别移相-22.5°,-7.5°,+7.5°,+22.5°[19].图3b)2抽头变换器采用晶闸管取代了二极管,通过晶闸管的闭环控制,使2个整流桥输出的电流平均值相等,从而避免了抽头变换器饱和,减小了抽头变换器的电感值[20].图3 隔离式可控型24脉波整流系统3 基于自耦变压器的24脉波整流技术概况隔离型的多脉波整流器实现了输入输出的隔离,结构比较简单,但是其输入的能量完全通过磁耦合到输出端,导致变压器等效容量大,造成整流器的体积庞大.在不要求电气隔离的情况下采用自耦变压器,通过变压器磁耦合的能量仅占输出功率能量的一小部分,从而减小变压器容量,减小整流器的体积与成本.图4a)为一种采用自耦变压器的24脉波整流系统[21],其特点是采用的单台自耦变压器,输入端电流经过变压器移相后,形成四组三相电路线电压依次相差15°,四组整流桥电路分别通过平衡电抗器并联联结,输出24脉波直流.此电路中采用的自耦变压器的等效容量仅为输出功率的17.3%,整流器体积大大减小,在大功率整流场合下优势尤为显著.图4b)为三角形连接自耦变压器24脉波整流系统[22],与图4a)不同的是,它由两台12脉波自耦变压整流器并联构成,通过相间变压器分别移相±7.5°,分别接入两台延边三角形变压器,输出4组相位依次相差15°,幅值相等的整流桥输入电压.此方案的自耦变压器等效容量为输出功率的17.04%,且其变压器结构对称,易于谐波抑制.图4 自耦变压器24脉波整流系统4 基于直线式移相变压器的24脉波整流系统孙盼等[23-24]设计了一种基于直线式移相变压器的多脉波整流器,提出了一种基于直线感应电机原理的直线式移相变压器拓扑.图5为3相/12相直线式移相变压器结构图.图中阴影部分构成了一次侧A相绕组,一次侧与二次侧铁心长度、宽度尺寸相同,分别采用短距绕组和整距绕组,各开有12个槽和12套绕组,其极对数为1.一次侧12个绕组采取60°相带分相,将对称的三相交流电通入一次侧三相绕组,在变压器气隙间将生成一个平移的正弦磁场,二次侧的 12 套绕组感应出相位依次相差30°的电动势,将产生的12相输出分成4组三相电源,并联后接入至整流桥向负载供电,输出的电压含有24个脉波,与传统的隔离式柱形24脉波整流系统相比,其谐波畸变率THD更低.图5 直线式移相变压器结构[25]5 基于圆形移相变压器的24脉波整流系统王铁军等[25]设计了应用于24脉波整流系统的圆形移相变压器,采用圆柱式铁芯结构,利用旋转磁场实现多组移相.图6为圆形移相变压器结构示意图,其机构与感应电机相似,变压器原边固定,放置一组星形连接的3相对称绕组,副边(即定子)放置4组星形连接的3相绕组,副边a1至a4相位依次相差15°,槽口位子见图6,各绕组的b,c相对应于a相上相移120°和240°.根据旋转磁场原理,通电后原边绕组在铁芯内产生旋转磁场,副边绕组将依次产生四组15°移相的三相感应电动势,将四组三相输出分别接入桥式整流电路,4组整流桥串联叠加后得到24脉波直流输出.图6 3相/12相圆形变压器结构[26]6 整流变压器的对比分析传统的柱形移相变压器为了保持输出三相的对称性并实现正确的移相,需要特殊设计绕组的匝数比、联结方式和串联次序等.变压器的结构随着脉波数的增多更复杂,体积更庞大,且不同的联结方式只能实现一种角度的移相.基于直线电机结构的直线式移相变压器,其绕组布设更为方便,除了可以用于整流外,还可以用于逆变电路,通过模块的叠加能应用于大功率整流场合.该变压器内部的铁芯存在纵向和横向两个边端,产生边端效应,会影响其效率和谐波分量[27].通过减小气隙宽度和增加边齿宽度削弱边端效应,使直线式移相变压器工作在最佳状态,其效率和电压调整率与柱形变压器相比稍低,但抑制谐波效果更好. 圆形移相变压器因其采用圆形电机式铁芯结构,原副边绕组均匀分布于铁芯内部,磁路更加紧凑和对称,移相更为准确.该变压器同侧匝数相同,原副边匝数比计算更为简单,电压调整率较大,适合于可控整流.在效率、功率因数等方面,其性能较柱形变压器略低,在电磁设计方面仍有进一步改善的空间.7 结论1) 移相变压器是24脉波整流系统的必需器件,采用自耦变压器大大减小了整流器的体积,提高了整流器的整体性能,但其非隔离因素和相对复杂的绕组结构使其成为大范围应用的一个瓶颈.2) 随着多脉波整流技术的发展,通过改进移相变压器的电磁结构,基于直线式移相变压器和圆形移相变压器等新型的整流装置,减少了设备元件数量,降低了设计和制造成本.3) 在24脉波整流电路理论设计的基础上,将其与直流侧有源谐波抑制方法相结合,可得到更好的波形.参考文献【相关文献】[1]陈坚.电力电子变换和控制技术[M].北京:高等教育出版社,2002.[2]黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社,1992.[3]孟凡刚,杨世彦,杨威.多脉波整流技术综述[J].电力自动化设备,2012,32(2): 922-927.[4]周帅. 城市轨道交通多脉波整流技术研究[D].大连:大连交通大学,2011.[5]任志新.多脉冲自耦变压整流器(ATRU)的研究[D].南京:南京航空航天大学,2008.[6]马化盛,张波,易颂文,等.二十四脉波整流器四种结构形式的分析[J].华南理工大学学报(自然科学版),2003(4):61-65.[7]SINGH B, GAIROLA S, SINGH B N, et al. Multipulse AC-DC converters for improving power quality: a review[J]. IEEE Transactions on Power Electronics, 2008, 23(1):260-281. [8]WEN J, QIN H, WANG S, et al. Basic connections and strategies of isolated phase-shifting transformers for multipulse rectifiers: a review[C].Symposium on Electromagnetic Compatibility, New York, 2012.[9]孟飞.城市轨道交通24脉波整流机组的研究[J].电气化铁道,2011,22(4):43-45.[10]李智威,邱瑞昌,李淑英,等.城市轨道交通24脉波整流机组的机理分析[J].电子设计工程,2014,22(11):57-60.[11]董海燕,田铭兴,杜斌祥,等.地铁24脉波整流机组的仿真及谐波电流分析[J].电源技术,2011,35(5):593-594,611.[12]DOMINGUES E G, OLIVEIRA J C, DELAIBA A C. Three-phase timing domain modelingof special transformers in the SABER simulator[J]. IEEE, Washongton D C,1998.[13]潘启军,马伟明,刘德志.变抽头六相整流系统均衡电抗器临界值的确定[J].电工技术学报,2004(5):10-14.[14]潘启军,刘德志.换相过程对变抽头六相整流电路的影响[J].海军工程大学学报,2003(5):26-32.[15]潘启军,刘德志.变抽头六相整流电路的分析[J].中国电机工程学报,2003(12):149-155.[16]CHOI S, BANG S L, ENJETI P N. New 24-pulse diode rectifier systems for utility interface of high-power AC motor drives[J]. IEEE Transactions on Industry Applications, 1997, 33(2):531-541.[17]JOSEPH A, WANG J, PAN Z, et al. A 24-pulse rectifier cascaded multilevel inverter with minimum number of transformer windings[C].Industry Applications Conference, London, 2005.[18]ARRILLAGA J, VILLABLANCA M. A modified parallel HVDC convertor for 24 pulse operation[J]. IEEE Transactions on Power Delivery, 1991, 6(1):231-237.[19]曹承洁. 基于自耦变压器的24相整流电路研究[D].武汉:华中科技大学,2005.[20]马西庚,白丽娜.一种新型24脉波整流电路的设计及仿真[J].计算机仿真,2009,26(5):262-265.[21]王恒,崔雪,冯云斌,等.应用于轨道交通中24脉波自耦变压整流器的仿真研究[J].电测与仪表,2017,54(7):1-6,15.[22]熊欣,赵镜红,丁洪兵,等.直线式移相变压器边端效应研究[J].西安交通大学学报,2017,51(8):110-115.[23]孙盼,赵镜红,熊欣,等.用于多脉波整流的直线式移相变压器[J].电工技术学报,2017,32(S1):169-177.[24]YANG L, ZHANG J H, XU-SHENG W U, et al. A round-shaped phase-shift transformer applied in 24-pulse rectifier[J]. Journal of Naval University of Engineering, 2016(2):457-463.[25]王铁军,方芳,姜晓弋,等.圆形变压器在24脉波整流系统中的应用[J].电工技术学报,2016,31(13):172-179.[26]方芳,王铁军,姜晓弋,等.新型二十四脉波整流器的谐波问题[J].海军工程大学学报,2016,28(1):7-10,47.[27]唐建湘,蒋新华,邓江明,等.一种改进状态滤波的单边直线感应电机穿越边端效应控制[J].中国电机工程学报,2015,35(23):6179-6187.。

移相整流变压器设计与试验

移相整流变压器设计与试验

移相整流变压器设计与试验汪明伟摘要:介绍36相整流变压器设计,试验,六边型自耦移相调压和共轭铁心应用。

关键词:谐波;移相;自耦调压;共轭铁心;半成品、成品试验2016.10.101. 前言由于电网对谐波的限制越来越严格,并制定了国家标准GB/T14549-93《电能质量 公用电网谐波》,对整流变压器抑制谐波措施要求越来越高。

消除低次谐波的办法之一就是增加变压器输出相数,即直流脉波数。

本文就有关36相整流变压器设计,制造及试验等问题做一些探讨。

原公司2005年接到氯碱化工行业电解整流变压器订单,由三台ZHSPTZ-12500/10整流变压器组成,单机组等效12脉波,三机组合成36脉波。

整流方式为桥式整流,冷却方式为强油循环水冷,变压器为主调合一式免吊心结构。

网侧电压: 10KV 直流工作电压: 400V 直流电流: 2×13000A调压范围: 10%~105% 调压级数 40级 短路阻抗: 10% 主要参数确定空载直流电压 U do =43~450V额定容量 S N =1.05U do I d =1.05×450×26=12285KV A 一次额定电流 I 1N =310N S =31012285=709.3A2. 设计方案 2.1 移相方案选择变压器由调压变压器和整流变压器两部分组成,为便于设计和制造,三台调压变压器分别移相+10°、0°、-10°,三台整流变为同一形式即有星、角绕组桥式整流回路。

因整流变压器短路阻抗为10%,所以低压星角输出经整流元件后并联,不需另加平衡电抗器。

单台整流变提供12脉波直流电流,接调变后三台变压器可提供36脉波直流电流。

2.2 调压变压器设计方案目前,一般采用自耦移相调压于一身,来达到移相和调压目的。

如按用法较普遍的曲折移相方式,有载开关通过的网侧线电流大于600A,超出三相有载开关使用范围;如为了满足开关电流要求去自耦升压,还是会增加调压变的电磁容量。

变压器侧原边侧相位调整方法

变压器侧原边侧相位调整方法

变压器侧原边侧相位调整方法
1. 嘿,你知道吗?变压器侧原边侧相位调整可以通过改变绕组接法来实现呢!就像搭积木一样,换个方式搭就可能有不同效果。

比如在某个电力工程中,我们就是这样巧妙调整,搞定了相位问题。

2. 哇塞,还有使用相位补偿器也行呀!这就好比给变压器穿上了一件特殊的“衣服”,让它更完美。

之前碰到一个棘手情况,就是靠这一招解决的呢!
3. 嘿呀,调整变压器分接头也是个办法哟!这不就像是给变压器这个“大力士”调节力量的输出嘛。

记得有一次,就通过这个方法让一切变得顺利起来。

4. 呀,利用移相变压器也超有用的!就像变魔术一样,把相位神奇地变一变。

那次在大项目里,这可是立了大功呀!
5. 你可别小看了调整输入电源的相序哦!这就像是给火车调整轨道,方向一变,效果就不同啦。

有一回厂里出现问题,就是靠这个简单方法解决的呢!
6. 哈哈,改变控制系统的参数也能起到作用呢!这就像是给电脑换了个设置,立马不一样了。

有个案例中,这个方法真的太妙啦!
7. 哇哦,采用并联补偿装置也是可以的呀!就像是给变压器找了个好伙伴一起干活。

在很多工程中都少不了它帮忙呢!
8. 呐,还有通过调整负荷分布来影响相位呢!这就像给任务分配不同的人去做一样。

实际应用中,这一招也经常很管用呀!
我的观点结论:变压器侧原边侧相位调整方法有很多,需要我们根据具体情况灵活选择和运用,每一种方法都可能成为解决问题的关键呢!。

移相控制方法

移相控制方法

移相控制方法
移相控制方法
移相控制是一种重要的现代电力控制技术,它是指利用变压器的逆变器功能,通过动态改变输出电压的相位,从而控制负荷的电流水平,从而调节系统交流电的平衡和可靠性,实现系统电流的有效控制。

移相控制的主要特点是负荷的控制相关性高,可以有效地控制相关负荷的支配和均衡,这样可以改善系统的性能,并且可以大大提高系统的电力质量。

移相控制的工作原理为:当电力系统中有变压器时,负荷的电流会随着变压器的相位变化而变化,当电力系统中发生电压失衡时,就可以采用移相控制的方法,通过改变变压器的相位,使电流变化剧烈,从而实现电力系统的负荷平衡。

移相控制可以分为电力系统内部移相控制和电力系统外部移相
控制两种。

电力系统内部移相控制是指在系统内部进行移相控制,主要是通过改变相位来调节功率,在一定程度上调节电力系统的功率、电压、电流和温度。

电力系统外部移相控制是指以外部的电源为基础,利用变压器的可变性来实现移相控制,从而保证系统实现给定的功率参数,从而实现系统的安全运行。

移相控制具有较好的可靠性、易操作性以及操作经济性等优点,它可以有效地改善系统的电力质量,在电力系统中有较为重要的作用,是实现电能质量优化的有力手段。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
它串联联结在整流变压(气压变量)器二次绕组与整流器之间,流 过负载(load)电流(Electronflow);另一个是直流控制绕组,是由另外的 直流电源提供直流电流,其主要原理就是利用铁磁材料(Material)的非 线性变化,使工作绕组电抗值有很大的变化。调节直流控制电流,即 可调节相控角α,从而调节整流电压平均值。
3
用于电化学行业的整流变压(气压变量)器的调压范围(fànwéi) 比电炉变压器(Transformer)要大的多,对于化工食盐电解,整流 变压器调压范围通常是56%--105%,对于铝(Al)电解来说,调压范 围通常是5%--105%。绝缘油介损测试仪是用于绝缘油等液体绝 缘介质的介质损耗角及体积电阻率的高精密仪器。一体化结构。 内部集成了介损油杯、温控仪、温度传感器、介损测试电桥、交 流试验电源、标准电容器、高阻计、直流高压源等主要部件。常 用的调压方式方法如电炉变压器一样有变磁通调压,串联变压器 调压和自耦调压器调压。
4
另外,由于整流元件的特性,可以在整流电炉的阀侧直接控 制(control)硅(silicon)整流元件导通的相位角度(angle),可以平滑的 调整整流电压的平均值(Theaveragevalue),这种调压方式方法称为 相控调压。实现相控调压,一是采用晶阀管,二是采用自饱和 (saturation)电抗器,自饱和(saturation)电抗器基本上是由一个铁心 和两个绕组组成的,一个是工作绕组。
6
谢谢看
7
2
内部集成了介损油杯、温控仪、温度传感器、介损测试电桥、交 流试验电源、标准电容器、高阻计、直流高压源等主要部件。变压器 油耐压测试仪全自动测量:设置完毕,只需按测试键即可完成全部工 作(自动搅伴、自动静置、自动升压、自动降压、自动记录击穿电压值 、自动计算各次平均击穿电压值、自动打印测量结果)。试验完毕,声 音提示。移相绕组与主绕组联结方式方法有三种,即曲折线、六边形 和延边三角形。
整流电力变压器简单移相方法
试验箱
/
1
整流电力变压(气压变量)器简单移相方法 对于大功率(High-power)(指物体在单位时间内所做的功的多少)整 流设备(shèbèi),需要脉波数也较多,脉波数为18、24、36等应用的 日益增多,这就必须在整流变压(气压变量)器一次侧设置移相绕组来 进行移相。油介质损耗测试仪是用于绝缘油等液体绝缘介质的介质损 耗角及体积电阻率的高精密仪器。一体化结构。
相关文档
最新文档