移相整流变压器设计与试验
35kV 12脉波移相整流变压器电磁与结构设计
- 45 -工 业 技 术1 项目背景多脉波移相整流变压器广泛应用于各行各业的变频调速系统中,电压等级一般为10 kV~35 kV,低压侧输出脉波数以6脉波和12脉波为主,12脉波整流变压器高压侧经移相后,2台可组成24脉波输出,大大降低整流装置注入电网的谐波,提高电能质量[1]。
该项目所设计的35 kV 12脉波整流变压器,安装地点位于海拔高达4 600 m 的西藏地区,外绝缘距离与变压器温升需要特殊考虑,同时,该地区运行的变压器遭受大气过电压概率大,需要对变压器绕组进行必要的保护。
目前国内外市场上的35 kV 高压外延三角形移相整流变压器,基本绕组与高压移相绕组都采用辐向排列方式,在雷电冲击电压下,高压移相绕组尾端与高压基本绕组首端连接处冲击电位震荡很大,绝缘性能不易保证,需要增大绝缘距离以保证绝缘强度[2]。
为了解决上述技术问题,该项目通过技术研究与电磁仿真技术,将高压基本绕组与移相绕组调整为轴向排列,经仿真计算与测试,移相绕组尾端与基本绕组首端连接处的冲击电位震荡明显下降,提高了绝缘可靠性,高压移相绕组引线与其它绕组引线连接更加方便,器身的布置结构更加紧凑合理,器身机械稳定性得到提高。
2 产品开发与设计针对项目技术协议中所需特点,研究采用合理的结构满足实现35 kV 高压外延三角形移相,单器身输出12脉波的整流变压器。
并可以D (+7.5°)d0y11配合D (-7.5°)d0y11组成24脉波整流变压器。
2.1 电磁设计部分采用了组合式双分裂绕组结构,高压线圈4个绕组采用轴向排列后,器身布置更加紧凑,机械强度较原辐向排列结构大大提高。
经波过程电磁分析软件仿真分析,改进后结构在大气过电压下,绕组中的电位振荡大为降低,由原来电位幅值达到入波的约150%以上降低到入波的约115%,如图1所示,降低了绝缘设计的难度。
经电磁场仿真软件进行器身的详细磁场仿真计算,绕组结构与布置改进后油箱中磁密有一定程度的增大,如图2所示,右侧绕组磁通密度明显高于左侧绕组。
双分裂移相整流变压器短路阻抗的仿真研究
双分裂移相整流变压器短路阻抗的仿真研究作者:吴文辉来源:《城市建设理论研究》2013年第24期摘要:整流变压器是交流变频调速中的关键设备,而整流变压器具有很复杂的结构,为了促进交流变频调速技术的发展,本文将简要介绍整流变压器的类型和组成部分,并在此基础上,通过对短路抗阻的计算分析,进一步探析双分裂移相整流变压器在短路抗阻方面的仿真研究和仿真结果。
关键词:双分裂移相;整流变压器;短路阻抗;计算;仿真研究中图分类号: TM4 文献标识码: A 文章编号:就现今来看,传统高耗能企业普遍都采用了交流变频调速这一项技术,并在这项技术的隔离电源方面大力推广了整流变压器。
1整流变压器的种类和构成1.1整流变压器的类型整流变压器有很多种,可分为二十四脉波、十八脉波、十二脉波以及六脉波等类型的整流变压器。
而二十四脉波、十八脉波以及十二脉波等整流变压器能够有效控制网侧的谐波含量,使其控制在相关标准要求的最高限值以内。
1.2整流变压器的组成部分关于整流变压器,不同脉波的变压器之间又产生相互的联系,如二十四脉波的整流变压器的设备里面就包含了一个十二脉波的整流变压器,而十二脉波型的整流变压器主要靠两台网侧移相的轴向分裂变压器所组成的。
而每台十二脉波变压器中除了包括一个Y接阀侧绕组之外,还包含了一个D接阀侧绕组,其中网侧绕组的移相分别为负的7.5度以及正的7.5度,而二十四脉波类型的整流变压器主要是通过把两台十二脉波类型的整流变压器进行并联组合而成。
关于整流变压器,其十二脉波双分裂移相这一类型变压器的接线方式至关重要,它接线方式会在很大程度上影响到短路阻抗。
因此针对双分裂移相的变压器而言,通过有关的电磁场分析软件,即可对其在不同界限条件下所出现的短路阻抗实现了仿真计算,而该计算的结果会和实际测试的结果进行相关方面的比较。
2相关的阻抗计算在具有双分裂移相的变压器当中,其阀侧绕组的排列方式主要是沿着轴向排列的,而这两个阀侧绕组,一个作为Y接头,另一个作为D接头,在电气方面,这两个阀侧绕组是相互独立进行的。
移相整流变压器课件
THANKS
感谢观看
日常维护与保养
定期检查
定期对移相整流变压器进行外观检查,查看是否 有异常声音、气味或渗漏现象。
清洁与除尘
定期清洁移相整流变压器的外壳和散热器,并清 除周围的杂物和灰尘。
温度监测
使用温度计或红外测温仪定期检查移相整流变压 器的运行温度,确保其不超过规定的上限。
故障诊断与处理
异常声音与振动
如果移相整流变压器发出异常声音或振动,应立即停机检查,找 出故障原因并修复。
工作原理
移相整流变压器通过改变变压器绕组 的匝数比,将输入的交流电进行移相 处理,然后通过整流器将移相后的交 流电转换为直流电。
移相整流变压器的应用
电力系统
新能源
在电力系统中,移相整流变压器被广 泛应用于高压直流输电和灵活交流输 电系统中,用于实现电能的高效传输 和调节。
在风力发电、太阳能发电等新能源领 域,移相整流变压器可用于实现能源 的并网传输和调节,提高新能源的利 用效率。
老化迹象 注意观察移相整流变压器是否有老化迹象,如绝 缘材料脆化、金属部件锈蚀等,及时采取措施延 长其使用寿命。
06
移相整流变压器的发展趋势与展 望
技术发展趋势
高效能
01
随着电力电子技术的进步,移相整流变压器将进一步提高转换
效率,降低能源损失。
紧凑化设计
02
为了满足日益增长的需求,移相整流变压器将趋向于更紧凑的
设计,减小体积和重量。
智能化控制
03
通过引入先进的控制算法和传感器技术,实现变压器的智能化
控制,提高运行稳定性和效率。
市场应用前景
新能源领域
随着新能源发电的普及,移相整流变压器在光伏、风电等系统中 将有广泛应用。
两种12脉波整流变压器分析与仿真
两种12脉波整流变压器分析与仿真葛笑寒【摘要】比较两种12脉波整流变压器的结构和设计原理.一种利用阀侧的星三角自动30度移相,电源侧采用延边三角形移相.第二种电源侧采用自耦调压绕组,整流分裂为高低压两套绕组,延边三角形在整流变高压侧,都为三角形联结,在整流绕组的高压侧实现相位的左右移相.前者结构简单,造价较低,电压可调性较差.后者变压器绕组增多,结构复杂,高度、造价增加,但调压灵活,多用于需要频繁调压的领域.【期刊名称】《安徽电子信息职业技术学院学报》【年(卷),期】2019(018)001【总页数】5页(P10-13,26)【关键词】整流变压器;12脉波整流变压器;三角形连接【作者】葛笑寒【作者单位】三门峡职业技术学院,河南三门峡 472000【正文语种】中文【中图分类】TM422近年来电力电子技术的发展,使得大功率整流设备普遍应用。
兼具变换电压和隔离作用的整流变压器的应用逐渐增多。
但是,随之带了谐波污染,导致电网波形畸变。
减小谐波的办法主要有有缘电力滤波器、感应滤波技术和多重化整流技术三种[1]。
在大功率整流领域,一般都采用多脉波的整流变压器降低谐波,12脉波整流变压器是经典的整流变压器[2]。
但是,随着电源容量的增大,电压的提升及调压的需求,另外一种12脉波整流变压器也迅速应用。
这种新的12脉波整流变压器的主要特点是,内部整流变压器和调压器绕组共油箱,即高压绕组采用自耦多级调压,低压绕组采用双分裂的独立铁芯的4套绕组,一次采用延边三角形实现移相,阀侧采用三角形接入整流绕组。
本文主要介绍这两种结构的整流变压器,并进行比较。
一、方案一整流变压器结构(一)脉波整流变压器的联结组别目前,常用轴向分裂变压器。
高压绕组星型或者延边三角形连接,低压绕组形成双分裂的星型和三角形联结的绕组接入整流柜,形成12脉波整流[3]。
工业中常把两个12脉波电路并联,形成24脉波电流。
如图1所示1号变压器采用Dy11d0联结,移相7.5°。
大容量移相整流变压器及变频器安装施工方案设计
大容量移相整流变压器及变频器安装施工方案设计摘要:大功率变频器为了减少对电网的冲击,需要配用大容量移相整流变压器。
这类的特点是体积大、二次侧抽头多、结构复杂,本文就变频器安装及针对这类变压器二次电缆敷设相关经验进行了探讨。
同时,也针对高纬度地区冬季寒冷条件下的施工经验和教训进行了总结、分析。
关键词:移相;变压器;电缆敷设;冬季施工;大容量;变频器。
0引言大功率同步电机调速需要配备大功率的变频调速系统,本文探讨、分析一下30MW同步机组配套供电的变频器及变压器安装施工中的一些经验和不足。
该项目上级电网容量50000kVA,为减少对上级电网的影响采用移相整流变压器,该变压器输出波数达到36P,二次侧出线6组,共18个瓷瓶。
由于工期安排,变压器二次侧电缆在冬季施工,施工期间室外最低温度达到-24℃。
在施工中采取了保温遮蔽、整体加温、局部加温三种手段相结合的方式,满足了施工条件,保障了施工进度及施工质量。
1设备情况及施工条件概述1.1移相整流变压器简介1.1.1移相整流变压器原理简介整流变压器与电力变压器最大的不同点在于对等效相数的要求不同,为了提高电能质量,整流变压器的输出电压波形不像电力变压器,在一个周期内只有三个正弦脉波,而是根据网侧电压和装机容量确定在一周期内的脉波数。
该项目由于装机容量达到了单台36000kVA,对于这类大功率整流设备,为了提高功率因素,减小网侧谐波电流,必须提高整流设备的脉波数。
因此该项目使用的大型整流变压器,采用移相线圈的方式,脉波数达到36个。
该项目变压器在电网三相电压的基础上,为了获得均匀分布多脉波阀侧电压,将每相阀侧电压在120内均匀展开。
采用一次侧绕组联结成Y接、D接,二次侧由多个延边三角形的移相绕组并联在一台变压器上,由这些若干个延边三角形的移相绕组来得到所需要的不同的移相角度,从而使单台移相整流变压器输出的脉波数达到36P,即各个二次侧绕组的移相角度为+20°、0°、-20°。
移相变压器设计研究
高压变频装置配套用移相整流变压器的设计研究云南变压器电气股份有限公司柳溪摘要:本文介绍了高压变频器的工作原理,并论述高压变频器配套用移相整流变压器的移相原理,设计研究和技术特点,提出了相应的计算方法。
关键词:高压变频器移相整流变压器移相设计要点计算方法Design and Study on phase-shifting rectifier transformer for the supporting use of high-voltage frequency converter Yunnan Transformer and Electric Joint-stock Company Ltd.Liu XiAbstract: This article introduces the operating principle of the high-voltage frequency converter, expounds the rectifyingprinciple of the phase-shifting rectifier transformer forthe supporting use of high-voltage frequency converter, itsdesign and study and its technological characteristics andputs forward the relevant calculating methods.Key words: high-voltage frequency converter, phase-shifting rectiformer (rectifier transformer), phase-shifting, calculating methods,main design consideration1.前言随着电力电子技术、计算机技术、自动控制技术的迅速发展,带动了交流传动技术日新月异的进步,也使得高功率、大电流的功率器件制造技术日趋成熟。
整流变压器常用移相方式与结构特点的分析及讨论
整流变压器常用移相方式与结构特点的分析及讨论作者:赵丽来源:《科技与创新》2016年第08期摘要:整流变压器是专用于整流系统的变压器,能供给整流系统适当的电压,并能减少整流系统引起的波形畸变对电网的影响。
在应用整流变压器时,移相方式的选择非常重要,不同的移相方式有不同的结构特点。
因此,就整流变压器常用的移相方式及其结构特点展开了探讨。
关键词:整流变压器;移相方式;电源变压器;功率中图分类号:TM422 文献标识码:A DOI:10.15913/ki.kjycx.2016.08.1111 整流变压器的工作原理整流变压器是整流设备的电源变压器,最突出的特点为原边输入交流、副边通过整流元件后输出直流。
目前,用于工业领域的整流直流电源基本是由交流电网通过整流变压器和整流设备得到的。
对于大功率的整流装置而言,其电流相对较大,但二次电压较低,整流变压器的二次电流不是正弦交流。
由于后续整流元件具有单向导通特征,所以,各相线之间不再同时流有负载电流。
对于软流导电而言,单方向的脉动电流经过滤波装置后会转换为直流电,整流变压器的二次电压电流与容量连接组相关,比如三相桥式整流线路等。
整流变压器的参数计算一般是以整流线路为前提的,并从二次侧向一次侧推算。
整流变压器的绕组电流为非正弦,且含有大量的高次谐波。
在应用整流变压器的过程中,为了有效减少其对电网的影响,并进一步增大功率因数,就必须通过移相的方法增大整流变压器的脉冲数。
对整流变压器进行移相最主要的目的是使其二次绕组的同名端线电压之间有一个相位。
2 整流变压器移相方式的结构特点整流变压器较为常用的移相方式有星角绕组移相、移相绕组移相和移相自耦变压器移相等。
下面对这3种常用的移相方式的结构特点进行分析。
2.1 星角绕组移相的结构特点该移相方式可细分为二次侧移相和一次侧移相。
2.1.1 二次侧移相这种移相方式较为简单,只需要配置1台整流变压器,并在一次侧设置1个联结成Y或D 的三相绕组,二次侧设置2个分别联结成Y和D的二次绕组(同名端线电压之间的相位移为30°)。
高压变频器中移相整流变压器移相角的测量方法研究
高压变频器中移相整流变压器移相角的测量方法研究作者:陈栋来源:《科学与财富》2018年第10期摘要:在交流电机的控制中,变频调速技术因效率较高且不会产生谐波污染,成为最有前景的调速方式。
采用PWM技术的变频调速器是此技术的重点应用之一,其中移相整流变压器起到了不可或缺的作用,对此类特种变压器移相角的测量也显得相当重要。
关键词:移相整流变压器;变频器;移相角的测量1.变频器系统拓扑结构电动机的转速n=60*电源频率f(1-转差率S)/极对数P,变频调速技术是利用改变电动机定子电源频率f来改变电动机的转速n的调速方法。
转速n与频率f之间为线性关系,调速过程中没有节流作用以及励磁滑差产生的附加功率损耗,使得这种调速有无极、范围大、效率高、低损耗的特点。
采用PWM技术的变频调速器,是由多个功率单元串联多电平的拓扑结构。
以6kV五级变频器为例,每相有五个功率单元,每个功率单元输入经移相整流变压器移相的三相交流电压,经整流逆变后输出单相交流电压,五个功率单元串联叠加后输出改变频率的6kV电压,驱动电动机工作。
2.移相整流变压器的原理移相整流变压器的原理是将变压器副边分为多绕组形式,每个绕组采用延边三角形移相,从而使得二次绕组的同名端线电压之间有一个相位移。
根据变频器电压等级和容量大小的不同,整流脉波数各有不同:以ZTSGF_1600/6型6kV五级移相整流变压器为例,变压器原边绕组6kV,副边共15个绕组分为三相,通过延边三角形接法,分别有+24°、+12°、0°、-12°、-24°移相角度,每个绕组接一个功率单元。
移相整流变压器起到了电气隔离的作用,使得各功率单元相互独立从而实现电压串联,并且通过多重化整流逆变有效消除了谐波。
其副边绕组延边三角形联接及移相方式分为顺时针(正角度)和逆时针(负角度),联结及移相方式如图1:3.移相整流变压器移相角的计算方法本文以ZTSGF_1600/6型6kV五级移相变为例,讨论移相角的测量方法。
移相变压器是整流变压器的一种
移相变压器是整流变压器的一种。
整流装置的单相导电作用,引起整流变压器交变磁场波形的畸变;畸变的大小决定于直流容量占电网容量的比例和流入电网中的谐波电流的频率,及谐波次数。
抑制谐波的有效办法之一是通过对整流变压器高压侧进行移相,这种办法可以基本上消除幅值较大的低次谐波。
一般情况下,只要一套整流装置有两台整流变压器,均采用等效12相系统,因为这种系统不需专门移相,只要变换绕组的连接方式即可达到,当直流容量较大时,则采用等效18相以上的整流系统。
IGBT相当于可控硅的作用,用在整流系统中,控制通断,不控制相位。
大容量移相整流变压器电流分布与短路阻抗的数值计算
大容量移相 整流变 压器作 为变 频调 速装 置 中 个为 y 接 ,电气 上互相 独立 。网侧 由上下 并联 的
的 隔离 电源 ,是 不 可 缺 少 的 重 要 设 备 。 普 通 电力 两 个 延 边 三 角 形 接 法 的 绕 组 组 成 ,每 个 延 边 三 角
变压器通常采用 Y / △接 法 ,而 移 相 整 流 变 压 器 采 形 的移 相 绕 组 和 基 本 绕 组 沿 径 向 布 置 。计 算 时 设
F i g . 1 Wi n d i n g a r r a n g e me n t s t r u c t u r e o f t r a n s f c ’ r me r
1 三维计算模 型与等效 电路
所 分 析 的移 相 整 流 变 压 器 绕 组 布 置 为 :铁 心
D O I :1 0 . 3 9 6 9 / j . i s s n . 1 6 7 2—0 7 9 2 . 2 0 1 3 . 0 4 . 0 0 6
” 丁 。 I = 1
阀侧一 网侧 移 相一 网 侧 基 本一 油 箱 ( 如 图 1所 示) 。两 个 阀侧 绕 组 沿 轴 向排 列 ,一个 为 d接 另 一
大 容 量 移 相 整 流 变 压 器 电流 分 布 与 短 路 阻抗 的数 值 计 算
周少静 ,王建 民 ,王 浩名。 ,郑 赞 ,范亚娜
( 1 .河北工业大学 电气工程学 院 ,天津 3 0 0 1 3 0 ; 2 . 保定 天威 集团有限公司 技术 中心 ,河北 保定 0 7 1 0 5 6 ;
用 了延 边 三 角 形 接 法 ,网 侧 绕 组 带 有 并 联 支 路 但 定 条 件 如 下 :
各 支 路 电流 未 知 ,且 阀侧 绕 组 在 半 穿 越 运 行 与 分
整流移相变压器移相角测量结果
整流移相变压器移相角测量结果一、佛山移相整流变压器(1)、测量方法1将副边绕组b1、b2、b3、b4绕组短接在一起(标注统一用b 表示),原边ABC 三相 加150VAC 电压,用万用表测量U (在实际测量中,U■U■U■U =a 1ba 1ba 2ba 3ba 4b 42.6V )、U 等值,按下式计算得到不同绕组之间的移相角。
a 1a 2(2)、测量方法2将副边绕组b1、b2、b3、b4绕组短接在一起(标注统一用b 表示),原边ABC 三相 加150VAC 电压,用双通道示波器观测U 、U 等电压波形,根据两个波形过零a 1ba 2b点的时间差计算不同绕组之间的移相角。
(实际测量时由于三相电压的相位问题,导致超前或滞后相对关系是错误的) (3)、测量方法3用导线连接Aa1;在高压侧施加100VAC 电压,用万用表测量a1/b1/c1副边绕组,得到下列数据:U=U=U=99.6V,U=27.4V,U=27.3V,U=27.3,ABBCACabbccaU=72.7V,U=86.3V,U=93.4V。
按下式计算则可以得到移相角。
BbBcCbU■ABB2■ab2■2■AB■ab■cos■BAbBbU■AB B2■ac2■2■AB■ac■cos■BBc BcU■ACC2■ab2■2■BC■ab■cos■bBCCba2/b2/c2绕组:用导线连接Aa2;测量a2/b2/c2副边绕组,数据如下:U=U=U=100.5V,BBBCBC二、新华都移相整流变压器(1)、测量方法1将副边绕组b1、b2、b3、b4绕组短接在一起(标注统一用b表示),原边ABC三相加150VAC电压,用万用表测量U(在实际测量中,U■U■U■U=a 1ba 1ba 2ba 3ba 4b43.2V )、U 等值,按下式计算得到不同绕组之间的移相角。
a 1a 2(2)、测量方法2将副边绕组b1、b2、b3、b4绕组短接在一起(标注统一用b 表示),原边ABC 三相 加150VAC 电压,用双通道示波器观测U 、U 等电压波形,根据两个波形过零a 1ba 2b三、广州科琳移相整流变压器(1)、测量方法1将副边绕组b1、b2、b3、b4绕组短接在一起(标注统一用b 表示),原边ABC 三相 加226VAC 电压,用万用表测量U (在实际测量中,发现U■U■U■U a 1ba 1ba 2ba 3ba 4b =139V )、U 等值,按下式计算得到不同绕组之间的移相角。
24脉波移相整流变压器技术研究综述
24脉波移相整流变压器技术研究综述孙玉伟;潘天雄;严新平;袁成清;汤旭晶;潘鹏程【摘要】在解决大功率电力系统整流谐波问题方面,多脉波整流技术因其谐波抑制率高、设备成本低和运行可靠性高而具有显著优势.然而,随着电力系统的谐波控制标准不断提升,特别是在解决城市轨道交通直流牵引供电系统谐波方面,传统的12脉波整流器难以有效解决输出高品质稳定直流电的问题.在介绍24脉波整流技术的原理及分类的基础上,分别就基于隔离型、自耦型、直线式和圆形变压器的24脉波整流器移相变换原理、拓扑结构及性能特点进行了对比分析,探讨了柱式、直线式和圆形移相变压整流器在铁磁结构、绕组布设和匝数计算等方面的差异.【期刊名称】《武汉理工大学学报(交通科学与工程版)》【年(卷),期】2019(043)003【总页数】5页(P438-442)【关键词】24脉波整流器;谐波;自耦变压器;圆形变压器;直线式变压器【作者】孙玉伟;潘天雄;严新平;袁成清;汤旭晶;潘鹏程【作者单位】武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063;武汉理工大学交通部船舶动力工程技术交通行业重点实验室武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063;武汉理工大学交通部船舶动力工程技术交通行业重点实验室武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063;武汉理工大学交通部船舶动力工程技术交通行业重点实验室武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063;武汉理工大学交通部船舶动力工程技术交通行业重点实验室武汉 430063;武汉理工大学能源与动力工程学院武汉 430063;武汉理工大学国家水运安全工程技术研究中心可靠性工程研究所武汉 430063【正文语种】中文【中图分类】U665.10 引言整流变换作为最常用的电能变换之一,已广泛应用于直流电机、电镀、新能源、航天等各个领域,而整流器件的强非线性给电网带来了大量的谐波污染[1-2],为此许多国家都相继制定了限制电力系统谐波的标准,如IEC555-2,IEEE519等[3].大功率整流工程实践中主要采用LC滤波、功率因数校正、PWM整流和多脉波整流等谐波控制方法,其中:尤以具有谐波抑制率高、低噪声、低电磁干扰(EMI)和射频干扰(RFI)、实现简单、可靠性高等特点的多脉波整流技术应用最为广泛.随着多脉波整流技术的发展,整流系统脉波数增多,电网总谐波畸变率(total harmonic distortion,THD)得以有效控制,但脉波数过多会使系统过于复杂,制造精度和对称性难以得到保证[4].24脉波整流系统在兼顾了设备复杂度和成本等因素的同时,具有良好的系统谐波抑制能力,而成为多脉波整流技术发展的主流[5].本文首先阐述了24脉波整流技术的原理及分类,从移相变压器的结构形式出发,分别介绍了基于隔离型、自耦型、直线式和圆形移相变压器24脉波整流系统的拓扑结构和变换原理,并对其结构和性能做了对比分析,最后对该领域进行了总结和展望.1 24脉波整流技术原理及分类24脉波整流器通常由移相变压器和多个整流桥构成,在一个三相电源系统中,输出直流电压在一个交流周期内有24个波头[6-7].其原理是通过移相变压器,实现交流线电压移相,多相输出到若干个三相整流桥,通过各整流桥的谐波叠加抵消,抑制输入电流中23次以下的谐波,从而减小交流输入系统中的谐波含量和直流输出电压中的波纹[8].24脉波整流器的类型很多,根据不同的特性可以作如下归类:根据内置移相变压器有无电隔离可以分为隔离型和非隔离型,根据整流器中电力电子器件是否可控可以分为可控型和不控型[9].移相变压器是其中的关键设备,原边绕组与副边绕组的联结方式有很多种,包括△/Y、延边三角形、曲折形、多边形等[10].其移相原理都是通过绕组的不同联结方式,改变原副边绕组电压的相位,图1和表1分别介绍了几种绕组的联结方式和相应的原副边匝数计算公式.限于篇幅,本文主要以延边三角形接法为例介绍相应的整流拓扑结构.图1 移相变压器的原副边绕组联结方式表1 移向变压器原副边匝数比关系及相角度[10]△/YN2=n·3·N1±30°3·sin α·N3=sin(30°-α)·N2N2+2·N3=2·n·cos α·N130°-30°<α<30°sin α·N2=sin(60°-α)·N3(n·N1)2+N22-N32=2·n·N1·N2·cos α60°-60°<α<60°sin α=k·sin(120°-α)·(n·N1)2+N22-(k·N2)2=2·cos α·n·N1·N2-60°<α<60°注:n-变压器的变压比;α-移相角;N1-原边匝数;N2、N3-副边匝数;“k”-多边形绕组上抽头两端绕组的匝数比.2 基于隔离变压器的24脉波整流技术概况2.1 24脉波隔离式不控型整流器24脉波不控型整流器目前已广泛应用于国内城市轨道交通牵引供电系统,这种整流装置可靠性更高,更加经济,缺点是电能只能单向流动且整流器体积庞大,图2为几种典型的不控型24脉波整流系统.图2a)整流机组主要由两台12脉波轴向双分裂式牵引整流变压器和四组全波整流桥组成,变压器原边采用延边三角形,副边绕组分别采用△,Y接法,输出4组线电压相位差15°,通过整流桥整流后实现了24脉波整流[11-13].该系统采用的轴向双分裂式结构的变压器,增大了其抗干扰能力,原边采用延边三角形移相,一次侧3次谐波电流不注入电网,二次侧形成多脉波输出,使直流波形更加平缓,谐波含量更低.图2b)4组整流桥为串联联结,该电路的副边相比图2a)的对称性更好,它们共同的缺点是变压器体积庞大且效率低[14].图2c),变压器采用Y/Y/△联结,两个副边绕组的交流线电压相位相差30°,引入变抽头均衡电抗器后,产生不流经负载的附加环流以11、13次谐波为主要成分,与网侧11,13次谐波相位相反,从而相互抵消形成24脉波整流[15-17].该系统在设计变压器时,要求副边两绕组对称性好,必须注意铁芯结构及副边三角形绕组和星形绕组的匝数设计,变抽头均衡电抗器起电压均衡、电流平波等作用,合理的均衡电抗器设计能提高并联双桥的利用率,维持电流连续及减小直流脉动.图2d)经过整流桥和2抽头变换器形成24脉波整流,该整流变压器副边都采用延边三角形联结,从而对称性更好,更有利于谐波的抑制.图2 隔离式不控型24脉波整流系统2.2 24脉波隔离式可控型整流器24脉波隔离式可控型整流器主要应用于大功率场所,如高压直流输电 (high-voltage direct current,HVDC)、大型直流电机驱动、可再生能源转换系统等.图3a)移相变压器原边绕组为△,Y接法,副边绕组采用4组延边三角形接法,分别移相-22.5°,-7.5°,+7.5°,+22.5°[19].图3b)2抽头变换器采用晶闸管取代了二极管,通过晶闸管的闭环控制,使2个整流桥输出的电流平均值相等,从而避免了抽头变换器饱和,减小了抽头变换器的电感值[20].图3 隔离式可控型24脉波整流系统3 基于自耦变压器的24脉波整流技术概况隔离型的多脉波整流器实现了输入输出的隔离,结构比较简单,但是其输入的能量完全通过磁耦合到输出端,导致变压器等效容量大,造成整流器的体积庞大.在不要求电气隔离的情况下采用自耦变压器,通过变压器磁耦合的能量仅占输出功率能量的一小部分,从而减小变压器容量,减小整流器的体积与成本.图4a)为一种采用自耦变压器的24脉波整流系统[21],其特点是采用的单台自耦变压器,输入端电流经过变压器移相后,形成四组三相电路线电压依次相差15°,四组整流桥电路分别通过平衡电抗器并联联结,输出24脉波直流.此电路中采用的自耦变压器的等效容量仅为输出功率的17.3%,整流器体积大大减小,在大功率整流场合下优势尤为显著.图4b)为三角形连接自耦变压器24脉波整流系统[22],与图4a)不同的是,它由两台12脉波自耦变压整流器并联构成,通过相间变压器分别移相±7.5°,分别接入两台延边三角形变压器,输出4组相位依次相差15°,幅值相等的整流桥输入电压.此方案的自耦变压器等效容量为输出功率的17.04%,且其变压器结构对称,易于谐波抑制.图4 自耦变压器24脉波整流系统4 基于直线式移相变压器的24脉波整流系统孙盼等[23-24]设计了一种基于直线式移相变压器的多脉波整流器,提出了一种基于直线感应电机原理的直线式移相变压器拓扑.图5为3相/12相直线式移相变压器结构图.图中阴影部分构成了一次侧A相绕组,一次侧与二次侧铁心长度、宽度尺寸相同,分别采用短距绕组和整距绕组,各开有12个槽和12套绕组,其极对数为1.一次侧12个绕组采取60°相带分相,将对称的三相交流电通入一次侧三相绕组,在变压器气隙间将生成一个平移的正弦磁场,二次侧的 12 套绕组感应出相位依次相差30°的电动势,将产生的12相输出分成4组三相电源,并联后接入至整流桥向负载供电,输出的电压含有24个脉波,与传统的隔离式柱形24脉波整流系统相比,其谐波畸变率THD更低.图5 直线式移相变压器结构[25]5 基于圆形移相变压器的24脉波整流系统王铁军等[25]设计了应用于24脉波整流系统的圆形移相变压器,采用圆柱式铁芯结构,利用旋转磁场实现多组移相.图6为圆形移相变压器结构示意图,其机构与感应电机相似,变压器原边固定,放置一组星形连接的3相对称绕组,副边(即定子)放置4组星形连接的3相绕组,副边a1至a4相位依次相差15°,槽口位子见图6,各绕组的b,c相对应于a相上相移120°和240°.根据旋转磁场原理,通电后原边绕组在铁芯内产生旋转磁场,副边绕组将依次产生四组15°移相的三相感应电动势,将四组三相输出分别接入桥式整流电路,4组整流桥串联叠加后得到24脉波直流输出.图6 3相/12相圆形变压器结构[26]6 整流变压器的对比分析传统的柱形移相变压器为了保持输出三相的对称性并实现正确的移相,需要特殊设计绕组的匝数比、联结方式和串联次序等.变压器的结构随着脉波数的增多更复杂,体积更庞大,且不同的联结方式只能实现一种角度的移相.基于直线电机结构的直线式移相变压器,其绕组布设更为方便,除了可以用于整流外,还可以用于逆变电路,通过模块的叠加能应用于大功率整流场合.该变压器内部的铁芯存在纵向和横向两个边端,产生边端效应,会影响其效率和谐波分量[27].通过减小气隙宽度和增加边齿宽度削弱边端效应,使直线式移相变压器工作在最佳状态,其效率和电压调整率与柱形变压器相比稍低,但抑制谐波效果更好. 圆形移相变压器因其采用圆形电机式铁芯结构,原副边绕组均匀分布于铁芯内部,磁路更加紧凑和对称,移相更为准确.该变压器同侧匝数相同,原副边匝数比计算更为简单,电压调整率较大,适合于可控整流.在效率、功率因数等方面,其性能较柱形变压器略低,在电磁设计方面仍有进一步改善的空间.7 结论1) 移相变压器是24脉波整流系统的必需器件,采用自耦变压器大大减小了整流器的体积,提高了整流器的整体性能,但其非隔离因素和相对复杂的绕组结构使其成为大范围应用的一个瓶颈.2) 随着多脉波整流技术的发展,通过改进移相变压器的电磁结构,基于直线式移相变压器和圆形移相变压器等新型的整流装置,减少了设备元件数量,降低了设计和制造成本.3) 在24脉波整流电路理论设计的基础上,将其与直流侧有源谐波抑制方法相结合,可得到更好的波形.参考文献【相关文献】[1]陈坚.电力电子变换和控制技术[M].北京:高等教育出版社,2002.[2]黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社,1992.[3]孟凡刚,杨世彦,杨威.多脉波整流技术综述[J].电力自动化设备,2012,32(2): 922-927.[4]周帅. 城市轨道交通多脉波整流技术研究[D].大连:大连交通大学,2011.[5]任志新.多脉冲自耦变压整流器(ATRU)的研究[D].南京:南京航空航天大学,2008.[6]马化盛,张波,易颂文,等.二十四脉波整流器四种结构形式的分析[J].华南理工大学学报(自然科学版),2003(4):61-65.[7]SINGH B, GAIROLA S, SINGH B N, et al. Multipulse AC-DC converters for improving power quality: a review[J]. IEEE Transactions on Power Electronics, 2008, 23(1):260-281. [8]WEN J, QIN H, WANG S, et al. Basic connections and strategies of isolated phase-shifting transformers for multipulse rectifiers: a review[C].Symposium on Electromagnetic Compatibility, New York, 2012.[9]孟飞.城市轨道交通24脉波整流机组的研究[J].电气化铁道,2011,22(4):43-45.[10]李智威,邱瑞昌,李淑英,等.城市轨道交通24脉波整流机组的机理分析[J].电子设计工程,2014,22(11):57-60.[11]董海燕,田铭兴,杜斌祥,等.地铁24脉波整流机组的仿真及谐波电流分析[J].电源技术,2011,35(5):593-594,611.[12]DOMINGUES E G, OLIVEIRA J C, DELAIBA A C. Three-phase timing domain modelingof special transformers in the SABER simulator[J]. IEEE, Washongton D C,1998.[13]潘启军,马伟明,刘德志.变抽头六相整流系统均衡电抗器临界值的确定[J].电工技术学报,2004(5):10-14.[14]潘启军,刘德志.换相过程对变抽头六相整流电路的影响[J].海军工程大学学报,2003(5):26-32.[15]潘启军,刘德志.变抽头六相整流电路的分析[J].中国电机工程学报,2003(12):149-155.[16]CHOI S, BANG S L, ENJETI P N. New 24-pulse diode rectifier systems for utility interface of high-power AC motor drives[J]. IEEE Transactions on Industry Applications, 1997, 33(2):531-541.[17]JOSEPH A, WANG J, PAN Z, et al. A 24-pulse rectifier cascaded multilevel inverter with minimum number of transformer windings[C].Industry Applications Conference, London, 2005.[18]ARRILLAGA J, VILLABLANCA M. A modified parallel HVDC convertor for 24 pulse operation[J]. IEEE Transactions on Power Delivery, 1991, 6(1):231-237.[19]曹承洁. 基于自耦变压器的24相整流电路研究[D].武汉:华中科技大学,2005.[20]马西庚,白丽娜.一种新型24脉波整流电路的设计及仿真[J].计算机仿真,2009,26(5):262-265.[21]王恒,崔雪,冯云斌,等.应用于轨道交通中24脉波自耦变压整流器的仿真研究[J].电测与仪表,2017,54(7):1-6,15.[22]熊欣,赵镜红,丁洪兵,等.直线式移相变压器边端效应研究[J].西安交通大学学报,2017,51(8):110-115.[23]孙盼,赵镜红,熊欣,等.用于多脉波整流的直线式移相变压器[J].电工技术学报,2017,32(S1):169-177.[24]YANG L, ZHANG J H, XU-SHENG W U, et al. A round-shaped phase-shift transformer applied in 24-pulse rectifier[J]. Journal of Naval University of Engineering, 2016(2):457-463.[25]王铁军,方芳,姜晓弋,等.圆形变压器在24脉波整流系统中的应用[J].电工技术学报,2016,31(13):172-179.[26]方芳,王铁军,姜晓弋,等.新型二十四脉波整流器的谐波问题[J].海军工程大学学报,2016,28(1):7-10,47.[27]唐建湘,蒋新华,邓江明,等.一种改进状态滤波的单边直线感应电机穿越边端效应控制[J].中国电机工程学报,2015,35(23):6179-6187.。
移相整流变压器设计与试验
移相整流变压器设计与试验汪明伟摘要:介绍36相整流变压器设计,试验,六边型自耦移相调压和共轭铁心应用。
关键词:谐波;移相;自耦调压;共轭铁心;半成品、成品试验2016.10.101. 前言由于电网对谐波的限制越来越严格,并制定了国家标准GB/T14549-93《电能质量 公用电网谐波》,对整流变压器抑制谐波措施要求越来越高。
消除低次谐波的办法之一就是增加变压器输出相数,即直流脉波数。
本文就有关36相整流变压器设计,制造及试验等问题做一些探讨。
原公司2005年接到氯碱化工行业电解整流变压器订单,由三台ZHSPTZ-12500/10整流变压器组成,单机组等效12脉波,三机组合成36脉波。
整流方式为桥式整流,冷却方式为强油循环水冷,变压器为主调合一式免吊心结构。
网侧电压: 10KV 直流工作电压: 400V 直流电流: 2×13000A调压范围: 10%~105% 调压级数 40级 短路阻抗: 10% 主要参数确定空载直流电压 U do =43~450V额定容量 S N =1.05U do I d =1.05×450×26=12285KV A 一次额定电流 I 1N =310N S =31012285=709.3A2. 设计方案 2.1 移相方案选择变压器由调压变压器和整流变压器两部分组成,为便于设计和制造,三台调压变压器分别移相+10°、0°、-10°,三台整流变为同一形式即有星、角绕组桥式整流回路。
因整流变压器短路阻抗为10%,所以低压星角输出经整流元件后并联,不需另加平衡电抗器。
单台整流变提供12脉波直流电流,接调变后三台变压器可提供36脉波直流电流。
2.2 调压变压器设计方案目前,一般采用自耦移相调压于一身,来达到移相和调压目的。
如按用法较普遍的曲折移相方式,有载开关通过的网侧线电流大于600A,超出三相有载开关使用范围;如为了满足开关电流要求去自耦升压,还是会增加调压变的电磁容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
移相整流变压器设计与试验
汪明伟
摘要:介绍36相整流变压器设计,试验,六边型自耦移相调压和共轭铁心应用。
关键词:谐波;移相;自耦调压;共轭铁心;半成品、成品试验
2016.10.10
1. 前言
由于电网对谐波的限制越来越严格,并制定了国家标准GB/T14549-93《电能质量 公用电网谐波》,对整流变压器抑制谐波措施要求越来越高。
消除低次谐波的办法之一就是增加变压器输出相数,即直流脉波数。
本文就有关36相整流变压器设计,制造及试验等问题做一些探讨。
原公司2005年接到氯碱化工行业电解整流变压器订单,由三台ZHSPTZ-12500/10整流变压器组成,单机组等效12脉波,三机组合成36脉波。
整流方式为桥式整流,冷却方式为强油循环水冷,变压器为主调合一式免吊心结构。
网侧电压: 10KV 直流工作电压: 400V 直流电流: 2×13000A
调压范围: 10%~105% 调压级数 40级 短路阻抗: 10% 主要参数确定
空载直流电压 U do =43~450V
额定容量 S N =1.05U do I d =1.05×450×26=12285KV A 一次额定电流 I 1N =3
10N S =
3
1012285=709.3A
2. 设计方案 2.1 移相方案选择
变压器由调压变压器和整流变压器两部分组成,为便于设计和制
造,三台调压变压器分别移相+10°、0°、-10°,三台整流变为同一形式即有星、角绕组桥式整流回路。
因整流变压器短路阻抗为10%,所以低压星角输出经整流元件后并联,不需另加平衡电抗器。
单台整流变提供12脉波直流电流,接调变后三台变压器可提供36脉波直流电流。
2.2 调压变压器设计方案
目前,一般采用自耦移相调压于一身,来达到移相和调压目的。
如按用法较普遍的曲折移相方式,有载开关通过的网侧线电流大于600A,超出三相有载开关使用范围;如为了满足开关电流要求去自耦升压,还是会增加调压变的电磁容量。
我们反复研究多方求证,采用的是六边型自耦移相调压方案,有载开关电流相当于角接相电流,是曲折接法的1/3倍,满足了40级粗细调开关要求。
采用此方案的优点还有:调压变额定档阻抗电压很小,计算时可忽略,这样三台机组的阻抗一致,均流效果好。
而且调压变压器绕组结构简约,材料节省,负载损耗低。
但引线结构相对复杂,设计制造时
图1 六边型自耦移相调压接线原理图
图中A 、B 、C 为调变输入端子,
A m 、X m 为调变输出端子(以A 相为例)
为简化起见,细调部分未画出,有载开关选用5×8=40级粗细调有载开关。
2.3 调压变压器设计
设定输入电压为 U 1=U AB =U BC =U CA =10000V U 1对应绕组匝数为 W 1=375 当移相角度为±10°时, 长边电压 U m =32U 1sin(60°-10°)=8846V 短边电压 U y =32U 1sin10°=2005V 长边绕组匝数 W m =32W 1sin(60°-10°)=332 短边绕组匝数 W y =3
2W 1 sin10°=75
当移相角度为0°时,
U m =8846, U y =1154 W m =332, W y =43
调压变压器为三相三柱式铁心,由里向外套有移相绕组、基本绕组、粗调绕组、细调绕组,绕组均为层式。
接线原理图如图2:
确定绕组同名端(绕向)时,应考虑绕线方便,也要注意绕组间电势大小,保证主纵绝缘距离合理。
2.4 整流变压器设计
只要是三相桥式整流就可取得6脉波直流输出,如果绕组中同时有星和角供电,便可得到12脉波直流。
一般整流变压器低压电压低,绕组匝数少,很难达到角接绕组匝数是星接绕组3倍的整数匝,只能在高压侧做成一星一角两个器身,使低压相同接法的两个绕组中感应电势有30°相位差。
这种方式使变压器结构变的复杂,出线等布置困难,体积和材料都相应增加。
我们选择了共轭式铁心结构,低压绕组一个星接一个角接,高压对应两个绕组接法相同。
当星接绕组为7匝时,角接绕组匝数应为73=12.12,取12匝,相当于角接低压绕组匝数减少1%左右。
为保证
低压电压值相同,将星接高压绕组匝数增加约1%,相当于降低星接绕
组匝电势和电压1%。
再把两个铁心做成共轭式,如图3所示:
图3 共轭铁心及绕组示意图
铁心中Φy与Φd方向相同,大小相差约1%,有铁心中轭之后,上
述两磁通差值将通过中轭闭合,即Φ
Δ=Φd-Φy 。
中轭截面大于心柱截面的1%即可,本方案的工艺考虑取5% 。
整流变压器为三相三柱共轭式,心柱为外接圆形,中轭为矩形,便于插片和固定。
线圈套装时,拆下中轭,待套完下部线圈时再插好中轭,然后再套装上部线圈。
这样线圈套装时,不需翻转铁心。
中轭夹件与铁心不导磁钢拉板设有定位,以保证受到上下绕组压力时不产生位移。
高低压绕组均为饼式,上部低压绕组有正、反星接,封星后同相逆并联引出;下部低压绕组有正、反角接,封角后同相逆并联引出。
角接铜排在左,星接铜排在右,同侧平行布置,以便与整流装置连接。
3. 产品验证
3.1 半成品试验
因为本例产品特殊性,我们对六边型自耦移相进行了模拟试验,对电压,电流和相位关系做了验证。
在调压变结线前进行匝数比试验。
结线后做单相变比试验时,为保持主绕组和移相绕组匝电势相同,把非测量绕组短路,这样才能得到准确数据。
共轭式整流变结线前上下绕组分别做变比试验,结线后,可直接测量一、二次电压,来验证电压比。
3.2 成品试验
一般试验同普通电力变压器,电压比试验靠实测电压来判定。
判别三台变压器移相角度时,可选择每台变压器同一低压绕组,连
反星及角接相位判定方法相同。
其电压关系式为: U ab =U bc =U ca =U
U 1010++a c 与U 00a c 相位差10°, U 010a a +=2sin5° U U 1010++a c 与U 1010--a c 相位差20°, U 1010-+a a =2sin10° U U 1010++a c 与U 00b c 相位差70°, U 010b a +=2sin35° U U 1010++a c 与U 1010--b c 相位差80°, U 1010-+b a =2sin40° U
我们测的低压电压最高档,U=35.1do U =35
.1450=333.3V ,其标准值和实
测值如下表:
测得结果证明移相角度正确,端子顺序无误。
其他试验结果都符合技术规范要求,本文以略。
4. 结束语
六边型自耦移相调压变与共轭式整流变运用,虽然给设计和制造带来很大难度,但是产品结构紧凑,节约可观的材料费用。
在目前原材料价格居高不下的形式下,只有技术创新,产品创新,才能在市场上占有优势。
实践是检验真理的唯一标准。
设计试制过程中,我们遇到了许多新问题,甚至有时需推倒一些书本上的论点和公式。
这种情况下,不能照抄硬搬类似的经验,只能靠严谨的研究,不断地求证来获得成功。
有时找到正确的验证方法,其意义不亚于被验证的事件本身。
作者简介:汪明伟(1954-),男,辽宁省锦州市人,原锦州变压器股份有限公司副总经理,总工程师,高级工程师,持有多项
变压器发明专利。
参考文献
(1) 崔立君等《特殊变压器理论与设计》
北京:科学技术出版社1996
(2) 刘忏斌等《硅整流所电力设计》
北京:冶金工业出版社1983
(3) 王世忠《带移相线圈的有载自耦调压器一、二次侧间相位角的
测定》1986.6。