(完整)高中物理圆周运动练习题
高中物理必修二第六章《圆周运动》测试卷(包含答案解析)
![高中物理必修二第六章《圆周运动》测试卷(包含答案解析)](https://img.taocdn.com/s3/m/2dfd7ed7482fb4daa48d4b99.png)
一、选择题1.如图所示,一个小球在F作用下以速率v做匀速圆周运动,若从某时刻起,小球的运动情况发生了变化,对于引起小球沿a、b、c三种轨迹运动的原因,下列说法正确的是()A.沿a轨迹运动,可能是F减小了一些B.沿b轨迹运动,一定是v增大了C.沿b轨迹运动,可能是F减小了D.沿c轨迹运动,一定是v减小了2.如图所示,竖直平面上的光滑圆形管道里有一个质量为m可视为质点的小球,在管道内做圆周运动,管道的半径为R,自身质量为3m,重力加速度为g,小球可看作是质点,管道的内外径差别可忽略。
已知当小球运动到最高点时,管道刚好能离开地面,则此时小球的速度为()A.gR B.2gR C.3gR D.2gR3.如图所示,一个水平大圆盘绕过圆心的竖直轴匀速转动,一个小孩坐在距圆心为r处的P点不动(P未画出),关于小孩的受力,以下说法正确的是()A.小孩在P点不动,因此不受摩擦力的作用B.小孩随圆盘做匀速圆周运动,其重力和支持力的合力充当向心力C.小孩随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D.若使圆盘以较小的转速转动,小孩在P点受到的摩擦力不变4.关于做匀速圆周运动物体的线速度、角速度、周期的关系,下列说法中正确的是()A.线速度大的角速度一定大B.线速度大的周期一定小C.角速度大的周期一定小D.角速度大的半径一定小5.火车转弯时,如果铁路弯道的内、外轨一样高,则外轨对轮缘(如左图所示)挤压的弹力F提供了火车转弯的向心力(如图中所示),但是靠这种办法得到向心力,铁轨和车轮极易受损。
在修筑铁路时,弯道处的外轨会略高于内轨(如右图所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的侧向挤压,设此时的速度大小为v,重力加速度为g,以下说法中正确的是()A.该弯道的半径R=2 v gB.当火车质量改变时,规定的行驶速度也将改变C.当火车速率大于v时,外轨将受到轮缘的挤压D.按规定速度行驶时,支持力小于重力6.一个圆锥摆由长为l的摆线、质量为m的小球构成,小球在水平面内做匀速圆周运动,摆线与竖直方向的夹角为θ,如图所示。
高中物理(新人教版)必修第二册课后习题:圆周运动(课后习题)【含答案及解析】
![高中物理(新人教版)必修第二册课后习题:圆周运动(课后习题)【含答案及解析】](https://img.taocdn.com/s3/m/dded307e777f5acfa1c7aa00b52acfc788eb9f7d.png)
第六章圆周运动圆周运动课后篇巩固提升合格考达标练1.如图所示,在圆规匀速转动画圆的过程中()A.笔尖的速率不变B.笔尖做的是匀速运动9C.任意相等时间内通过的位移相等D.两相同时间内转过的角度不同,匀速圆周运动的速度大小不变,也就是速率不变,但速度的方向时刻改变,故A 正确,B错误;做匀速圆周运动的物体在任意相等时间内通过的弧长相等,但位移还要考虑方向,C错误;相同时间内转过角度相同,D错误。
2.如图所示为行星传动示意图。
中心“太阳轮”的转动轴固定,其半径为R1,周围四个“行星轮”的转动轴固定,半径均为R2,“齿圈”的半径为R3,其中R1=1.5R2,A、B、C分别是“太阳轮”“行星轮”和“齿圈”边缘上的点,齿轮传动过程中不打滑,那么()A.A点与B点的角速度相同B.A点与B点的线速度相同C.B点与C点的转速之比为7∶2D.A点与C点的周期之比为3∶5,A、B两点的线速度大小相等,方向不同,B错误;由v=rω知,线速度大小相等时,角速度和半径成反比,A、B两点的转动半径不同,因此角速度不同,A错误;B点和C点的线速度大小相等,由v=rω=2πnr可知,B点和C点的转速之比为n B∶n C=r C∶r B,r B=R2,r C=1.5R2+2R2=3.5R2,故n B∶n C=7∶2,C正确;根据v=2πr可知,T A∶T C=r A∶r C=3∶7,D错误。
T3.(多选)如图所示,在冰上芭蕾舞表演中,演员展开双臂单脚点地做着优美的旋转动作,在他将双臂逐渐放下的过程中,他转动的速度会逐渐变快,则它肩上某点随之转动的()A.转速变大B.周期变大C.角速度变大D.线速度变大,即转速变大,角速度变大,周期变小,肩上某点距转动圆心的半径r不变,因此线速度也变大。
4.(2020海南华侨中学高一上学期期末)如图所示是一个玩具陀螺,a、b和c是陀螺上的三个点。
当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大、b、c三点共轴,角速度相同,B正确,C错误;a、b、c三点半径不等,所以三点的线速度大小不等,A错误;R a=R b>R c,a、b、c三点角速度相同,故a、b两点的线速度大于c点线速度,D错误。
高考物理生活中的圆周运动题20套(带答案)及解析
![高考物理生活中的圆周运动题20套(带答案)及解析](https://img.taocdn.com/s3/m/10e9d0f325c52cc58ad6be2a.png)
高考物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】 (1)由万有引力等于向心力可知22Mm v G m R R= 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t = 解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:20 1142()sT mgH L L⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A解得:I=8.1kg•m/s ;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g )(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gR v =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u = C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gR v =253gR v =4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R 处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力,g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W(3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2B N v F mg m R-= 解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭ 解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g== B 到P 的水平距离:2202B C C v v L v t gμ-=+代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.5.如图所示,半径为4l ,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内).①小球恰好离开竖直杆时,竖直杆的角速度0ω多大?②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)415T =(2)①ω0=15215g l②2g l ω≥【解析】【详解】 (1)设轻绳a 与竖直杆的夹角为α15cos α=对小球进行受力分析得 cos mg T α=解得: 415T mg = (2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。
(完整版)圆周运动测试题
![(完整版)圆周运动测试题](https://img.taocdn.com/s3/m/f83729ec83c4bb4cf6ecd17c.png)
必修2第二章圆周运动测试题班级 姓名 _ _____________ 总分 _____________ 本题共12小题,每小题6分,共72分。
在每小题给出的四个选项中,有的小题只有 一个正确选项,有的小题可能不止一个正确选项,全部选对的得6分,选对但不全的得 分,有错选或不答的得 0分。
1.关于匀速圆周运动的下述说法中正确的是A. 角速度不变B. 线速度不变 下列说法中,正确的是( ) 物体在恒力作用下不可能作曲线运动 物体在变力作用下不可能作直线运动C. ( 是匀速运动D. ) 是变速运动 2 .A. C. 3. .物体在恒力作用下不可能作圆周运动 .物体在变力作用下不可能作曲线运动 如图1所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同 的小球A 和B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则( 球A 的角速度一定大于球 B 的角速度 球A 的线速度一定大于球 B 的线速度 球A 的运动周期一定小于球 B 的运动周期 球A 对筒壁的压力一定大于球 B 对筒壁的压力 A. B. C. D. 图14.正常走动的钟表,其时针和分针都在做匀速转动. 下列关系中正确的有( A. 时针和分针角速度相同B. 分针角速度是时针角速度的12倍C. 时针和分针的周期相同 D .分针的周期的时针周期的12倍 5 .有两人坐在椅子上休息, 他们分别在中国的大连和广州, 关于他们具有的线速度和角速 度相比较( ) A .在广州的人线速度大,在大连的人角速度大. B. 在大连的人线速度大,在广州的人角速度大.C. 两处人的线速度和角速度一样大 D .两处人的角速度一样大,在广州处人的线速度比在大连处人的线速度大6.小球m 用长为L 的悬线固定在 0点,在0点正下方L/2处有一个光滑钉子 C ,如图2所 示,今把小球拉到悬线成水平后无初速度地释放, A .小球的速度突然增大 B. 小球的角速度突然增大 C .小球的向心加速度突然增大 D .悬线的拉力突然增大当悬线成竖直状态且与钉子相碰时 ( ) 7 .用材料和粗细相同、 长短不同的两段绳子, 各栓一个质量相同的小球在光滑水平面上做 匀速圆周运动,那么 ( ) A .两个球以相同的线速度运动时,长绳易断 B.两个球以相同的角速度运动时,长绳易断 C .两个球以相同的周期运动时,长绳易断 D .无论如何,长绳易断8 .如图3,细杆的一端与一小球相连,可绕过 0点的水平轴自由转动现给小球一初速度,使它做圆周运动,图中 a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能 是()A. a 处为拉力,b 处为拉力B.a 处为拉力,b 处为推力C.a 处为推力,b 处为拉力D.a 处为推力,b 处为推力随半径变化的关系图线中可以看出()A. B 物体运动时,其线速度的大小不变B. B 物体运动时,其角速度不变C. A 物体运动时,其角速度不变D. A 物体运动时,其线速度随 r 的增大而减小10.如图5所示,水平转台上放着 A B 、C 三个物体,质量分别为 2m m m 离转轴的距离分别为R 、R 、2R,与转台间的摩擦因数相同, 转台旋转时,下列说法中,正确的是 ( )A.若三个物体均未滑动, C 物体的向心加速度最大B.若三个物体均未滑动,B 物体受的摩擦力最大C.转速增加,A 物比B 物先滑动D.转速增加,C 物先滑动图511.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。
高中物理第六章圆周运动典型例题(带答案)
![高中物理第六章圆周运动典型例题(带答案)](https://img.taocdn.com/s3/m/9518b24ba200a6c30c22590102020740be1ecd99.png)
高中物理第六章圆周运动典型例题单选题1、如图将红、绿两种颜色石子放在水平圆盘上,围绕圆盘中心摆成半径不同的两个同心圆圈。
圆盘在电机带动下由静止开始转动,角速度缓慢增加。
每个石子的质量都相同,(石子与圆盘间的动摩擦因数μ均相同。
则下列判断正确的是()A.红石子先被甩出B.红、绿两种石子同时被甩C.石子被甩出的轨迹一定是沿着切线的直线D.在没有石子被甩出前,红石子所受摩擦力小于绿石子的答案:DABD.由受力分析可知,由静摩擦力提供向心力,由牛顿第二定律可知f=mω2r知当角速度增大时,静摩擦力也增大,由于绿石子的半径大于红石子的半径,绿石子的的静摩擦力大于红石子的静摩擦力,且绿石子的静摩擦力先达到最大值,所以绿石子先被甩出,故AB错误,D正确;C.被甩出时做离心运动,轨迹为曲线,故C错误。
故选D。
2、杂技演员表演“水流星”,在长为0.8m的细绳的一端,系一个与水的总质量为m=0.5kg的盛水容器,以绳的另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过最高点时的速率为4m/s,则下列说法正确的是(g=10m/s2)()A.“水流星”通过最高点时,有水从容器中流出B.“水流星”通过最高点时,绳的张力及容器底部受到的压力均为零C.“水流星”通过最高点时,处于完全失重状态,不受力的作用D.“水流星”通过最高点时,绳子的拉力大小为5N答案:DABD.当水对桶底压力为零时有mg=m v2 r解得v=√gr=2√2m/s“水流星”通过最高点的速度为2√2m/s时,知水对桶底压力为零,不会从容器中流出;对水和桶分析,有T+mg=m v2 r解得T=5N知此时绳子的拉力不为零,AB错误,D正确;C.“水流星”通过最高点时,受重力和绳子的拉力,C错误。
故选D。
3、如图,在水平圆盘上沿半径放有质量均为m=3kg的两物块a和b(均可视为质点),两物块与圆盘间的动摩擦因数均为μ=0.9,物块a到圆心的距离为r a=0.5m,物块b到圆心的距离为r b=1m。
高一物理《圆周运动》六套练习题附答案
![高一物理《圆周运动》六套练习题附答案](https://img.taocdn.com/s3/m/8d71b8c8f78a6529657d534b.png)
高一物理《圆周运动》六套练习题附答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN- 2 -匀速圆周运动练习1.一质点做圆周运动,速度处处不为零,则:①任何时刻质点所受的合力一定不为零,②任何时刻质点的加速度一定不为零,③质点速度的大小一定不断变化,④质点速度的方向一定不断变化其中正确的是( )A .①②③B .①②④C .①③④D .②③④2.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )①当以速度v 通过此弯路时,火车重力与轨道支持力的合力提供向心力 ②当以速度v 通过此弯路时,火车重力、轨道支持力和外轨对轮缘弹力的合力提供向心力 ③当速度大于v 时,轮缘挤压外轨 ④当速度小于v 时,轮缘挤压外轨A.①③B.①④C.②③D.②④3.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( )A .两轮的角速度相等B .两轮边缘的线速度大小相等C .两轮边缘的向心加速度大小相等D .两轮转动的周期相同4.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法正确的是( )A .小球线速度大小一定时,线越长越容易断B .小球线速度大小一定时,线越短越容易断C .小球角速度一定时,线越长越容易断D .小球角速度一定时,线越短越容易断5.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2,则此时轻杆OA 将( ) A .受到6.0N 的拉力 B .受到6.0N 的压力 C .受到24N 的拉力 D .受到24N 的压力6.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是( )A .滑块的重力B .盘面对滑块的弹力AB- 3 -C .盘面对滑块的静摩擦力D .以上三个力的合力 7.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是( )A.V A >V BB.ωA >ωBC.a A >a BD.压力N A >N B 8.一个电子钟的秒针角速度为( )A .πrad/sB .2πrad/sC .60πrad/s D .30πrad/s9.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则( )A .甲的角速度最大、乙的线速度最小B .丙的角速度最小、甲的线速度最大C .三个物体的角速度、周期和线速度都相等D .三个物体的角速度、周期一样,丙的线速度最小10.如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点。
高中物理圆周运动练习题
![高中物理圆周运动练习题](https://img.taocdn.com/s3/m/76350b102e60ddccda38376baf1ffc4ffe47e2c9.png)
1.关于物体做匀速圆周运动的速度,下列说法中正确的是()A.速度大小和方向都变更 B.速度的大小和方向都不变C.速度的大小不变,方向变更 D.速度的大小变更,方向不变2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F与摩擦力的示意图,其中正确的是( )A.B.C.D.3.一个做匀速圆周运动的物体,假如半径不变,而速率增加到原来速率的3倍,其向心力增加了64 N,则物体原来受到的向心力的大小是( )A. 16 N B. 12 N C. 8 N D. 6 N4.下列对圆锥摆的受力分析正确的是( )A. B. C. D.5.如图所示,用细绳系一小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球的受力正确的是( )A.只受重力 B.只受绳子拉力 C.受重力、绳子拉力 D.受重力、绳子拉力和向心力6.如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )A.物块A不受摩擦力作用B.物块B受5个力作用C.当转速增大时,A所受摩擦力增大,B所受摩擦力减小D.A对B的摩擦力方向沿半径指向转轴7.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是,则物块与碗的动摩擦因数为( )A. B. C. D.8.如图所示,物块P置于水平转盘上随转盘一起运动,图中c方向沿半径指向圆心,a方向与c方向垂直.当转盘逆时针转动时,下列说法正确的是( )A.当转盘匀速转动时,P受摩擦力方向为cB.当转盘匀速转动时,P不受转盘的摩擦力C.当转盘加速转动时,P受摩擦力方向可能为aD.当转盘减速转动时,P受摩擦力方向可能为b9.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率渐渐增大,则( )A.物体的合外力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合外力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)10.如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()A. B. C. D.11.一质量为m的物体,沿半径为R的向下凹的半圆形轨道滑行,如图所示,经过最低点时的速度为v,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )A.μ B. C.μm(g+) D.μm(g-)12.如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6400 ,地面上行驶的汽车重力G=3×104N,在汽车的速度可以达到须要的随意值,且汽车不离开地面的前提下,下列分析中正确的是( )A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.假如某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉13.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时( )A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用14.(多选)匀速圆周运动的向心力公式有多种表达形式,下列表达中正确的是( )A.= B.=2r C.=ω D.=mω2r15.(多选)如图所示,A、B两球穿过光滑水平杆,两球间用一细绳连接,当该装置绕竖直轴′匀速转动时,两球在杆上恰好不发生滑动.若两球质量之比∶=2∶1,则关于A、B两球的下列说法中正确的是( )A.A、B两球受到的向心力之比为2∶1B.A、B两球角速度之比为1∶1C.A、B两球运动半径之比为1∶2D.A、B两球向心加速度之比为1∶216.(多选)如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速渐渐增加时( ).A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2C.随转速渐渐增加,m1先起先滑动D.随转速渐渐增加,m2先起先滑动17.(多选)如图所示,将一质量为m的摆球用长为L的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆,下列说法正确的是( )A.摆球受重力、拉力和向心力的作用B.摆球受重力和拉力的作用C.摆球运动周期为2πD.摆球运动的转速为θ18.(多选)如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,有两个可视为质点且质量相同的小球A和B,在球面内壁两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线间的夹角分别为α=53°和β=37°,则( 37°=0.6)( )A.A、B两球所受支持力的大小之比为4∶3B.A、B两球运动的周期之比为2∶C.A、B两球的角速度之比为2∶D.A、B两球的线速度之比为8∶319.(多选)马路急转弯处通常是交通事故多发地带.如图,某马路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势.则在该弯道处( )A.路面外侧高、内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小20.长为L的细线,拴一质量为m的小球,细线上端固定,让小球在水平面内做匀速圆周运动,如图所示,求细线与竖直方向成θ角时:(重力加速度为g)(1)细线中的拉力大小;(2)小球运动的线速度的大小.21.如图所示,有一质量为m1的小球A与质量为m2的物块B通过轻绳相连,轻绳穿过光滑水平板中心的小孔O.当小球A在水平板上绕O点做半径为r的匀速圆周运动时,物块B刚好保持静止.求:(重力加速度为g)(1)轻绳的拉力.(2)小球A运动的线速度大小.22.如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为.(g取10 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大.(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大.23.长为L的细线,一端固定于O点,另一端拴一质量为m的小球,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,摆线与竖直方向的夹角为α,求:(1)线的拉力大小;(2)小球运动的线速度的大小;(3)小球运动的周期.答案解析1.【答案】C【解析】匀速圆周运动指速度大小不变的圆周运动,线速度的方向时刻在变,故C正确.2.【答案】C【解析】雪橇运动时所受摩擦力为滑动摩擦力,方向与运动方向相反,与圆弧相切.又因为雪橇做匀速圆周运动时合力充当向心力,合力方向必定指向圆心.综上可知,C项正确.3.【答案】C【解析】依据向心力公式得:F1=m,当速率增加为原来的3倍时有:F2=,由题有:F2-F1=64 N,联立以上三式:64=8·m,m=8 N,解得:F1=8 N,C正确.4.【答案】D【解析】圆锥摆向心力由合外力供应,方向指向圆周运动的圆心,D对.5.【答案】C【解析】该小球在运动中受到重力G和绳子的拉力F,拉力F和重力G的合力供应了小球在水平面上做匀速圆周运到的向心力;向心力是沿半径方向上的全部力的合力,所以受力分析时,不要把向心力包括在内.C正确.6.【答案】B【解析】物块A受到的摩擦力充当向心力,A错;物块B受到重力、支持力、A对物块B的压力、A对物块B沿半径向外的静摩擦力和圆盘对物块B沿半径向里的静摩擦力,共5个力的作用,B正确;当转速增大时,A、B所受摩擦力都增大,C错误;A对B的摩擦力方向沿半径向外,D错误.故选B.7.【答案】B【解析】物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,依据牛顿其次定律得-=m,又=μ,联立解得μ=,选项B正确.8.【答案】A【解析】转盘匀速转动时,物块P所受的重力和支持力平衡,摩擦力供应其做匀速圆周运动的向心力,故摩擦力方向指向圆心O点,A项正确,B项错误;当转盘加速转动时,物块P做加速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a方向的切向力,使线速度大小增大,两方向的合力即摩擦力可能指向b,C项错误;当转盘减速转动时,物块P做减速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a相反方向的切向力,使线速度大小减小,两方向的合力即摩擦力可能指向d,D项错误.9.【答案】D【解析】物体做加速曲线运动,合力不为零,A错;物体做速度大小变更的圆周运动,合力不指向圆心,合力沿半径方向的分力等于向心力,合力沿切线方向的分力使物体速度变大,即除在最低点外,物体的速度方向与合力的方向夹角为锐角,合力与速度不垂直,B、C错,D对.10.【答案】C【解析】橡皮块做加速圆周运动,合力不指向圆心,但肯定指向圆周的内侧;由于做加速圆周运动,动能不断增加,故合力与速度的夹角小于90°;11.【答案】C【解析】在最低点由向心力公式得:-=m,得=+m,又由摩擦力公式有=μ=μ(+m),C选项正确.12.【答案】C【解析】对汽车探讨,依据牛顿其次定律得:-=m,则得=-m,可知,速度v越大,地面对汽车的支持力越小,则汽车对地面的压力也越小,故A错误.由上可知,汽车和驾驶员都具有向下的加速度,处于失重状态,驾驶员对座椅压力大小都小于他自身的重力,而驾驶员的重力未知,所以驾驶员对座椅压力范围无法确定,故B错误,C正确.假如某时刻速度增大到使汽车对地面压力为零,驾驶员具有向下的加速度,处于失重状态,故D错误.故选C.13.【答案】A【解析】火车在水平轨道上转弯时,做圆周运动,须要有力供应指向圆心的向心力,即方向指向内侧,此时外轨对火车的压力供应向心力,依据牛顿第三定律可知,火车对外轨产生向外的压力作用.故选A.14.【答案】【解析】15.【答案】【解析】两球的向心力都由细绳的拉力供应,大小相等,两球都随杆一起转动,角速度相等,A错,B对.设两球的运动半径分别为、,转动角速度为ω,则ω2=ω2,所以运动半径之比为∶=1∶2,C正确.由牛顿其次定律F=可知∶=1∶2,D正确.16.【答案】【解析】m1的角速度设为ω1,则有ω1r甲=ω2r乙,所以有ω1∶ω2=1∶2,选项A错.m1的向心加速度a1=2rω,同理m2的向心加速度a2=rω,所以发觉相对滑动前a1∶a2=1∶2,选项B对.随着转盘渐渐滑动,静摩擦力供应向心力,当起先发生相对滑动时,对m1有μm1g=m12rω1′2,可得此时角速度ω1′=,此时m2的角速度ω2′=2ω1′=2,此时,m2的向心力m2rω2′2=2μm2g,此时已经大于最大静摩擦力μm2g,即m2早于m1起先发生相对滑动,选项C错,D对.17.【答案】【解析】摆球受重力和绳子拉力两个力的作用,设摆球做匀速圆周运动的周期为T,则:θ=,r=θ,T=2π,转速n==,B、C正确,A、D错误.18.【答案】【解析】小球在运动的过程中受到的合力沿水平方向,且恰好供应向心力,依据平行四边形定则得,=,则==,故A正确.小球受到的合外力:θ=,r=θ,解得T=,则==,故B错误.依据公式θ=mω2r,所以ω==,所以==,故C正确.θ=m,得v=,则==,故D正确.19.【答案】【解析】当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力供应向心力,所以路面外侧高、内侧低,选项A正确;当车速低于v0时,须要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不肯定会向内侧滑动,选项B错误;当车速高于v0时,须要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由θ=m 可知,v0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D 错误.20.【答案】(1)(2)【解析】(1)小球受重力与细线的拉力两力作用,如图所示,竖直方向:θ=,故拉力=.(2)小球做圆周运动的半径r=θ,向心力=θ=θ,而=m,故小球的线速度v=.21.【答案】1)m2g(2)【解析】(1)物块B受力平衡,故轻绳拉力=m2g(2)小球A做匀速圆周运动的向心力等于轻绳拉力,依据牛顿其次定律m2g=m1解得v=.22.【答案】1)(2)2【解析】(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面内,故向心力水平,运用牛顿其次定律与向心力公式得:θ=mωθ解得:ω=即ω0==.(2)当细线与竖直方向成60°角时,由牛顿其次定律与向心力公式得:α=mω′2α解得:ω′2=,即ω′==2.23.【答案】对小球受力分析如图所示,小球受重力和线的拉力作用,这两个力的合力α指向圆心,供应向心力,由受力分析可知,细线拉力=.由=m=mω2R=m=α,半径R=α,得v==α,T=2π.【解析】。
高中物理必修二第6章_圆周运动练习题含答案
![高中物理必修二第6章_圆周运动练习题含答案](https://img.taocdn.com/s3/m/9e366a3c856a561252d36fe2.png)
高中物理必修二第6章圆周运动练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方.若甲、乙做匀速圆周运动的速度大小分别为v1和v2,经时间t乙第一次追上甲,则该圆的直径为()A.t(v2−v1)πB.2t(v2−v1)πC.t(v1+v2)πD.2t(v1+v2)π2. 如图所示,光滑水平面上,小球在绳拉力作用下做匀速圆周运动,若小球运动到P 点时,绳突然断裂,小球将()A.将沿轨迹Pa做离心运动B.将沿轨迹Pb做离心运动C.将沿轨迹Pc做离心运动D.将沿轨迹Pd做离心运动3. 如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为小球的重力B.小球在最高点时绳子的拉力可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D.小球过最低点时绳子的拉力一定等于小球重力4. 如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的角速度大小为ω,则它运动线速度的大小为()A.ωrB.ωr C.ω2rD.ωr25. 关于做圆周运动的物体,下列说法中正确的是()A.所受合力一定指向圆心B.汽车通过凹形桥时处于超重状态C.汽车水平路面转弯时由重力提供向心力D.物体做离心运动是因为物体运动过慢6. 下列关于离心运动的说法错误的是()A.汽车转弯时限制速度,铁路转弯处轨道的外轨高于内轨都是为了更好地做离心运动B.脱水机的脱水原理是对离心原理的应用C.游乐场中高速转动磨盘把人甩到边缘上去是属于离心现象D.把低轨道卫星发射发射到高轨道上去,需要加速,是应用了离心原理7.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同.当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细绳,则两物体的运动情况将是()A.两物体沿切线方向滑动B.两物体沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不发生滑动D.物体A仍随圆盘一起做匀速圆周运动,物体B发生滑动,离圆盘圆心越来越远8. 如图所示,一偏心轮绕O点做匀速转动.偏心轮边缘上A、B两点的()A.线速度大小相同B.角速度大小相同C.向心加速度大小相同D.向心加速度方向相同9. 下列关于圆周运动的说法正确的是()=k,公式中的k值对所有行星和卫星都相等A.开普勒行星运动的公式R3T2B.做匀速圆周运动的物体,其加速度一定指向圆心C.在绕地做匀速圆周运动的航天飞机中,宇航员对座椅产生的压力大于自身重力D.相比较在弧形的桥底,汽车在弧形的桥顶行驶时,陈旧的车轮更不容易爆胎10. 甲、乙做匀速圆周运动的物体,它们的半径之比为3:1,周期之比是1:2,则()A.甲与乙的线速度之比为1:3B.甲与乙的线速度之比为6:1C.甲与乙的角速度之比为6:1D.甲与乙的角速度之比为1:211. 请对下列实验探究与活动进行判断,说法正确的题后括号内打“√”,错误的打“×”.(1)如图甲所示,在“研究滑动摩擦力的大小”的实验探究中,必须将长木板匀速拉出________(2)如图乙所示的实验探究中,只能得到平抛运动在竖直方向的分运动是自由落体运动,而不能得出水平方向的运动是匀速直线运动________(3)如图丙所示,在“研究向心力的大小与质量、角速度和半径之间的关系”的实验探究中,采取的主要物理方法是理想实验法________.12. 物体以4m/s的速度在半径为8m的水平圆周上运动,它的向心加速度是________m/s2,如果物体的质量是5kg,则需要________N的向心力才能维持它在圆周上的运动.13. 如图所示,A、B为啮合传动的两齿轮,已知R A=2R B,则A、B两轮边缘上两点角速度之比ωA:ωB=________,向心加速度之比a A:a B=________.14. 某中学的高一同学在学习了圆周运动的知识后,设计了一个课外探究性的课题,名称为:快速测量自行车的骑行速度.自行车的结构如图所示,他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t秒内踏脚板转动的圈数为N,那么脚踏板转动的角速度=________;为了推算自行车的骑行速度,这位同学还测量自行车的半径为R,计算了牙盘的齿数为m,飞轮齿数为n,则自行车骑行速度的计算公式可用以上已知数据表示为v=________.15. 一质点做半径为1m的匀速圆周运动,在1s的时间内转过30∘,则质点的角速度为________,线速度为________,向心加速度为________.16. 如图所示,在“用圆锥摆验证向心力表达式”的实验中,若测得小球质量为m,圆半径为r,小球到悬点大竖直高度为ℎ,则小球所受向心力大小为________.17. 汽车过平直桥、拱形桥、凹形桥,分别画出受力分析示意图并列出方程.18. 摩托车手在水平地面转弯时为了保证安全,将身体及车身倾斜,车轮与地面间的动摩擦因数为μ,车手与车身总质量为M,转弯半径为R.为不产生侧滑,转弯时速度应不大于________;设转弯、不侧滑时的车速为v,则地面受到摩托车的作用力大小为________.19. 自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,三个轮子的半径不一样,它们的边缘有三个点分别为A、B、C,如图所示,当自行车运动时A、B、C三点中角速度最小的是________,向心加速度最大的是________.20. 某兴趣小组用如图甲所示的装置与传感器结合验证向心力表达式.实验时用手拨动旋臂产生圆周运动,力传感器和光电门固定在实验器上,实时测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r自动计算出砝码做圆周运动的角速度,则其计算角速度的表达式为________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知.曲线①对应的砝码质量________(填“大于”或“小于”)曲线②对应的砝码质量.21. 如图所示,竖直平面内粗糙水平轨道AB与光滑半圆轨道BC相切于B点,一质量m1=1kg的小滑块P(视为质点)在水平向右的力F作用下,从A点以v0=0.5m/s的初速度滑向B点,当滑块P滑到AB正中间时撤去力F,滑块P运动到B点时与静止在B点的质量m2=2kg的小滑块Q(视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q恰好能滑到半圆轨道的最高点C,并且从C点飞出后又恰好落到AB的中点,小滑块P恰好也能回到AB的中点.已知半圆轨道半径R=0.9m,重力加速度g=10m/s2,求:(1)与Q碰撞前的瞬间,小滑块P的速度大小;(2)力F所做的功.22. 如图所示,长为L的轻绳下端连着质量为m的小球,上端悬于天花板上。
高中物理圆周运动经典练习题
![高中物理圆周运动经典练习题](https://img.taocdn.com/s3/m/fe7009efee06eff9aff8078b.png)
圆周运动练习题一、单项选择题1、 如图2A-1所示,A 、B 是两个摩擦传动的靠背轮,A 是主动轮,B 是从动轮,它们的半径R A =2R B , a 和b 两点在轮的边缘,c 和d 在各轮半径的中点,下列判断正确的有( )A Va = 2 V bB ωb = 2ωaC V c = VaD ωb = ωc2、 如图2A-2所示,在匀速转动的圆筒内壁上紧靠着一个物体一起运动,则物体所需向心力由下列哪个力提供A .重力B .弹力C .静摩擦力D .滑动摩擦力 3、 如图2A-5所示,一圆盘可以绕一个通过圆盘中心且垂直于盘面的竖直轴转动,在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动,那么( )A 、木块受到圆盘对它的摩擦力,方向背离圆盘中心B 、木块受到圆盘对它的摩擦力,方向指向圆盘中心C 、因为木块与圆盘一起做匀速转动,所以它们之间没有摩 擦力D 、因为摩擦力总是阻碍物体运动的,所以木块受到圆盘对它的摩擦力的方向与木块运动方向相反 4、 关于离心现象下列说法正确( )A 做匀速圆周运动的物体,当它所受的一切外力都突然消失时,它将做背离圆心的运动;B 当物体所受的指向圆心的合力大于向心力时产生离心现象;C 做匀速圆周运动的物体,当它所受的一切外力都突然消失时,它将沿切线做直线运动;D.做匀速直线运动的物体,当它所受的一切力都突然消失时,它将做曲线运动。
5.下列关于圆周运动的说法正确的是(A .做匀速圆周运动的物体,所受的合外力一定指向圆心B .做匀速圆周运动的物体,其加速度可能不指向圆心C .作圆周运动的物体,其加速度不一定指向圆心D .作圆周运动的物体,所受合外力一定与其速度方向垂直6.关于匀速圆周运动,下列说法正确的是( )A .匀速圆周运动就是匀速运动B .匀速圆周运动是匀加速运动C .匀速圆周运动是一种变加速运动D .匀速圆周运动的物体处于平衡状态 图 1 图2A-1 图2A-2 图5 图2A-57.下列关于离心现象的说法正确的是( )A.当物体所受的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动8.关于物体做圆周运动的说法正确的是( )A.匀速圆周运动是匀速运动B.物体在恒力作用下不可能做匀速圆周运动C.向心加速度越大,物体的角速度变化越快D.匀速圆周运动中向心加速度是一恒量9.下列说法正确的是( )A.因为物体做圆周运动,所以才产生向心力B.因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动C.因为向心力的方向与线速度方向垂直,所以向心力对做圆周运动的物体不做功D.向心力是圆周运动物体所受的合外力10.物体质量m,在水平面内做匀速圆周运动,半径R,线速度V,向心力F,在增大垂直于线速度的力F量值后,物体的轨道( )A.将向圆周内偏移B.将向圆周外偏移C.线速度增大,保持原来的运动轨道D.线速度减小,保持原来的运动轨道11.质点做匀速圆周运动时,下列说法正确的是( )A.线速度越大,周期一定越小B.角速度越大,周期一定越小C.转速越小,周期一定越小D.圆周半径越大,周期一定越小12.下列关于向心加速度的说法中,正确的是( )A.向心加速度的方向始终与速度的方向垂直B.向心加速度的方向保持不变C.在匀速圆周运动中,向心加速度是恒定的D.在匀速圆周运动中,向心加速度的大小不断变化13.一个物体以角速度ω做匀速圆周运动时,下列说法中正确的是( )A.轨道半径越大线速度越大B.轨道半径越大线速度越小C.轨道半径越大周期越大D.轨道半径越大周期越小14.正常走动的钟表,其时针和分针都在做匀速转动,下列关系中正确的有( ) A.时针和分针角速度相同B.分针角速度是时针角速度的12倍C.时针和分针的周期相同D.分针的周期是时针周期的12倍15.A、B两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A∶s B=2∶3,转过的角度之比ϕA∶ϕB=3∶2,则下列说法正确的是()A.它们的半径之比R A∶R B=2∶3 B.它们的半径之比R A∶R B=4∶9 C.它们的周期之比T A∶T B=2∶3 D.它们的周期之比T A∶T B=3∶2 16.在匀速圆周运动中,下列物理量不变的是()A .向心加速度B .线速度C .向心力D .角速度17.下列关于做匀速圆周运动的物体所受的向心力的说法中,正确的是 ( )A .物体除其他的力外还要受到—个向心力的作用 C .向心力是一个恒力B .物体所受的合外力提供向心力D .向心力的大小—直在变化18.如图所示的圆锥摆中,摆球A 在水平面上作匀速圆周运动,关于A 的受力情况,下列说法中正确的是( )A .摆球A 受重力、拉力和向心力的作用;B .摆球A 受拉力和向心力的作用;C .摆球A 受拉力和重力的作用;D .摆球A 受重力和向心力的作用。
高中物理生活中的圆周运动题20套(带答案)及解析
![高中物理生活中的圆周运动题20套(带答案)及解析](https://img.taocdn.com/s3/m/aa234fbdccbff121dc36831a.png)
高中物理生活中的圆周运动题20套(带答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦;(2)设物块AB 在传送带上向右滑行的最远距离为s , 由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨; (3)由④式可知:214/1A A B m v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.3.如图甲所示,粗糙水平面与竖直的光滑半圆环在N 点相切,M 为圈环的最高点,圆环半径为R =0.1m ,现有一质量m =1kg 的物体以v 0=4m/s 的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g =10m/s 2,求:(1)物体能从M 点飞出,落到水平面时落点到N 点的距离的最小值X m(2)设出发点到N 点的距离为S ,物体从M 点飞出后,落到水平面时落点到N 点的距离为X ,作出X 2随S 变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ(3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半固轨道,求出发点到N 点的距离S 应满足的条件【答案】(1)0.2m ;(2)0.2;(3)0≤x ≤2.75m 或3.5m ≤x <4m . 【解析】 【分析】(1)由牛顿第二定律求得在M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;(2)根据动能定理得到M 点速度和x 的关系,然后由平抛运动规律得到y 和M 点速度的关系,即可得到y 和x 的关系,结合图象求解;(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解. 【详解】(1)物体能从M 点飞出,那么对物体在M 点应用牛顿第二定律可得:mg ≤2M mv R,所以,v M1m /s ;物体能从M 点飞出做平抛运动,故有:2R =12gt 2,落到水平面时落点到N 点的距离x =v M t2R =0.2m ; 故落到水平面时落点到N 点的距离的最小值为0.2m ;(2)物体从出发点到M 的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02; 物体从M 点落回水平面做平抛运动,故有:2R =12gt 2,M y v t === 由图可得:y 2=0.48-0.16x ,所以,μ=0.160.8=0.2; (3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R 或物体能通过M 点;物体能到达的最大高度0<h≤R 时,由动能定理可得:−μmgx −mgh =0−12mv 02, 所以,2200122mv mghv h x mg g μμμ--==,所以,3.5m≤x <4m ;物体能通过M 点时,由(1)可知v M1m /s , 由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02;所以2222 01124222MMmv mv mgR v v gRxmg gμμ----==,所以,0≤x≤2.75m;【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.4.如图所示,一半径r=0.2 m的1/4光滑圆弧形槽底端B与水平传送带相接,传送带的运行速度为v0=4 m/s,长为L=1.25 m,滑块与传送带间的动摩擦因数μ=0.2,DEF为固定于竖直平面内的一段内壁光滑的中空方形细管,EF段被弯成以O为圆心、半径R=0.25 m 的一小段圆弧,管的D端弯成与水平传带C端平滑相接,O点位于地面,OF连线竖直.一质量为M=0.2 kg的物块a从圆弧顶端A点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF,已知a物块可视为质点,a横截面略小于管中空部分的横截面,重力加速度g取10 m/s2.求:(1)滑块a到达底端B时的速度大小v B;(2)滑块a刚到达管顶F点时对管壁的压力.【答案】(1)2/Bv m s=(2) 1.2NF N=【解析】试题分析:(1)设滑块到达B点的速度为v B,由机械能守恒定律,有21g2BM r Mv=解得:v B=2m/s(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力,由牛顿第二定律μMg =Ma滑块对地位移为L,末速度为v C,设滑块在传送带上一直加速由速度位移关系式2Al=v C2-v B2得v C=3m/s<4m/s,可知滑块与传送带未达共速 ,滑块从C至F,由机械能守恒定律,有221122C FMv MgR Mv=+得v F=2m/s在F处由牛顿第二定律2g FNvM F MR+=得F N=1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.5.某工厂在竖直平面内安装了如图所示的传送装置,圆心为O 的光滑圆弧轨道AB 与足够长倾斜传送带BC 在B 处相切且平滑连接,OA 连线水平、OB 连线与竖直线的夹角为37θ=︒,圆弧的半径为 1.0m R =,在某次调试中传送带以速度2m/s v =顺时针转动,现将质量为13kg m =的物块P (可视为质点)从A 点位置静止释放,经圆弧轨道冲上传送带,当物块P 刚好到达B 点时,在C 点附近某一位置轻轻地释放一个质量为21kg m =的物块Q 在传送带上,经时间 1.2s t =后与物块P 相遇并发生碰撞,碰撞后粘合在一起成为粘合体A .已知物块P 、Q 、粘合体S 与传送带间的动摩擦因数均为0.5μ=,重力加速度210m/s g =,sin370.6︒=,cos370.8︒=.试求:(1)物块P 在B 点的速度大小; (2)传送带BC 两端距离的最小值;(3)粘合体回到圆弧轨道上B 点时对轨道的压力.【答案】(1)4m/s (2)3.04m (3)59.04N ,方向沿OB 向下。
高中物理必修二第六章圆周运动经典知识题库(带答案)
![高中物理必修二第六章圆周运动经典知识题库(带答案)](https://img.taocdn.com/s3/m/6169617ae3bd960590c69ec3d5bbfd0a7956d58d.png)
高中物理必修二第六章圆周运动经典知识题库单选题1、如图所示,一辆电动车在水平地面上以恒定速率v行驶,依次通过a,b,c三点,比较三个点向心力大小()A.Fa>Fb>Fc B.Fa<Fb<FcC.Fc<Fa<Fb D.Fa>Fc>Fb答案:B根据向心力公式F=mv2 r由于速率恒定,半径越小的位置向心力越大,从图可知曲率半径r a>r b>r c,故F a<F b<F c,故B正确,ACD错误。
故选B。
2、对于做匀速圆周运动的物体,下列说法不正确的是()A.转速不变B.角速度不变C.线速度不变D.周期不变答案:C做匀速圆周运动的物体,线速度的大小不变,方向时刻改变,角速度不变,由T=2πω=1n则周期不变,转速不变,ABD正确,C错误。
故选C。
3、如图所示,一倾斜的圆筒绕固定轴OO1以恒定的角速度ω转动,圆筒的半径r=1.5m,简壁内有一小物体(设最大静摩擦力等于滑动摩擦力),转动轴与圆筒始终保持相对静止,小物体与圆筒间的动摩擦因数为√32与水平面间的夹角为60°,重力加速度g取10m/s2,则ω的最小值是()rad/sC.√10rad/sD.5rad/sA.2rad/sB.√303答案:C对小物体,受力分析如图所示小物体恰不下滑,则有F N+mgcos60°=mω2r,f=μF N=mgsin60°联立解得ω=√10rad/s故选C。
4、如图所示,在圆锥体表面放置一个质量为m的小物体,圆锥体以角速度ω绕竖直轴匀速转动,轴与物体间的距离为R。
为了使物体m能在锥体该处保持静止不动,物体与锥面间的静摩擦系数至少为多少?()A.tanθB.gsinθ+ω2Rcosθgcosθ−ω2RsinθC.tanθ+ω2Rg D.√tan2θ+(ω2Rg)2答案:B水平方向受力μN cosθ−N sinθ=mω2R 竖直方向受力μN sinθ+N cosθ−mg=0解得μ=g sinθ+ω2R cosθg cosθ−ω2R sinθ故选B。
圆周运动考试真题和答案
![圆周运动考试真题和答案](https://img.taocdn.com/s3/m/d2595224e418964bcf84b9d528ea81c759f52e75.png)
圆周运动考试真题和答案一、单项选择题(每题2分,共20分)1. 一个物体做匀速圆周运动时,下列哪个物理量保持不变?A. 线速度B. 角速度C. 向心加速度D. 向心力答案:B2. 一个物体在水平面上做匀速圆周运动,下列哪个力是向心力?A. 重力B. 支持力C. 摩擦力D. 拉力答案:D3. 一个物体做匀速圆周运动时,下列哪个物理量是矢量?A. 线速度B. 角速度C. 向心加速度D. 线加速度答案:A4. 一个物体做匀速圆周运动时,下列哪个物理量与半径无关?A. 线速度B. 角速度C. 向心加速度D. 向心力答案:B5. 一个物体做匀速圆周运动时,下列哪个物理量与角速度无关?A. 线速度B. 向心加速度C. 向心力D. 线加速度答案:D6. 一个物体做匀速圆周运动时,下列哪个物理量与线速度无关?A. 角速度B. 向心加速度C. 向心力D. 线加速度答案:A7. 一个物体做匀速圆周运动时,下列哪个物理量与向心加速度无关?B. 角速度C. 向心力D. 线加速度答案:A8. 一个物体做匀速圆周运动时,下列哪个物理量与向心力无关?A. 线速度B. 角速度C. 向心加速度D. 线加速度答案:A9. 一个物体做匀速圆周运动时,下列哪个物理量与线加速度无关?A. 线速度C. 向心加速度D. 向心力答案:D10. 一个物体做匀速圆周运动时,下列哪个物理量与向心力无关?A. 线速度B. 角速度C. 向心加速度D. 线加速度答案:A二、多项选择题(每题3分,共15分)11. 一个物体做匀速圆周运动时,下列哪些物理量是标量?B. 角速度C. 向心加速度D. 向心力答案:AB12. 一个物体做匀速圆周运动时,下列哪些力是向心力?A. 重力B. 支持力C. 摩擦力D. 拉力答案:D13. 一个物体做匀速圆周运动时,下列哪些物理量与半径有关?A. 线速度B. 角速度C. 向心加速度D. 向心力答案:ACD14. 一个物体做匀速圆周运动时,下列哪些物理量与角速度有关?A. 线速度B. 向心加速度C. 向心力D. 线加速度答案:ABC15. 一个物体做匀速圆周运动时,下列哪些物理量与线速度有关?A. 角速度B. 向心加速度C. 向心力D. 线加速度答案:ABC三、填空题(每题2分,共20分)16. 一个物体做匀速圆周运动时,线速度的大小为v,半径为r,角速度为________。
【物理】物理生活中的圆周运动题20套(带答案)含解析
![【物理】物理生活中的圆周运动题20套(带答案)含解析](https://img.taocdn.com/s3/m/35df1d1284868762cbaed545.png)
【物理】物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅解得:123gRv =,253gR v =3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ; (2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=(3)204mgl mv - 【解析】 【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 2v l得:T =mg +m 20v l(2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -=(3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理 W -mg221011222l mv mv =- 得:W =204mgl mv -6.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :2h t g=y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =7.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R =①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.8.光滑水平面上放着质量m A =1kg 的物块A 与质量m B =2kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住B 不动,此时弹簧弹性势能E P =49J 。
高中物理必修二第六章圆周运动经典大题例题(带答案)
![高中物理必修二第六章圆周运动经典大题例题(带答案)](https://img.taocdn.com/s3/m/b73faba905a1b0717fd5360cba1aa81145318f7a.png)
高中物理必修二第六章圆周运动经典大题例题单选题1、离心现象在生活中很常见,比如市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,车辆将转弯,请拉好扶手”。
这样做可以()A.使乘客避免车辆转弯时可能向前倾倒发生危险B.使乘客避免车辆转弯时可能向后倾倒发生危险C.使乘客避免车辆转弯时可能向转弯的内侧倾倒发生危险D.使乘客避免车辆转弯时可能向转弯的外侧倾倒发生危险答案:D车辆转弯时,如果乘客不能拉好扶手,乘客将做离心运动,向外侧倾倒发生危险。
故选D。
2、如图所示,半径为R的光滑半圆形轨道放在竖直平面内,AB连线为竖直直径,一小球以某一速度冲上轨道,运动到最高点B时对轨道的压力等于重力的2倍。
则小球落地点C到轨道入口A点的距离为()A.2√3R B.3R C.√6R D.2R答案:A在最高点时,根据牛顿第二定律3mg=m v2 R通过B点后做平抛运动2R=12gt2x=vt 解得水平位移x=2√3R故选A。
3、已知某处弯道铁轨是一段圆弧,转弯半径为R,重力加速度为g,列车转弯过程中倾角(车厢底面与水平面夹角)为θ,则列车在这样的轨道上转弯行驶的安全速度(轨道不受侧向挤压)为()A.√gRsinθB.√gRcosθC.√gRtanθD.√gR答案:C受力分析如图所示当内外轨道不受侧向挤压时,列车受到的重力和轨道支持力的合力充当向心力,有F n=mg tan θ,F n=m v2R解得v=√gR tanθ故选C。
4、做匀速圆周运动的物体,它的加速度大小必定与()A.线速度的平方成正比B.角速度的平方成正比C.运动半径成正比D.线速度和角速度的乘积成正比答案:DA.根据a=v2 r可知只有运动半径一定时,加速度大小才与线速度的平方成正比,A错误;B.根据a=ω2r可知只有运动半径一定时,加速度大小才与角速度的平方成正比,B错误;C.根据,a=ω2ra=v2r当线速度一定时,加速度大小与运动半径成反比;当角速度一定时,加速度大小与运动半径成正比,C错误;D.根据a=ω2r,v=ωr联立可得a=vω可知加速度大小与线速度和角速度的乘积成正比,D正确。
高中物理圆周运动大题附答案
![高中物理圆周运动大题附答案](https://img.taocdn.com/s3/m/bb565665011ca300a6c39077.png)
答案1.如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求:(1)小球运动到轨道上的B 点时,对轨道的压力多大?(2)小球落地点C 与B 点水平距离s 是多少?解析:(1)小球由A →B 过程中,根据机械能守恒定律有: mgR =212B mv ① 2B v gR =②小球在B 点时,根据向心力公式有;R vm mg F BN 2=-③mgR vm mg F B N 32=+=根据牛顿第三定律,小球对轨道的压力大小等于轨道对小球的支持力,为3mg(2)小球由B →C 过程,水平方向有:s=vB ·t ④ 竖直方向有:212H R gt -=⑤解②④⑤得2()s H R R =-2.如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在竖直面内做完整的圆周运动。
已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。
不计空气阻力。
(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力T 恰好为小球重力的6倍,且小球经过B 点的瞬间让细线断裂,求小球落地点到C 点的距离。
【解析】(1)小球恰好能做完整的圆周运动,则小球通过A 点时细线的拉力刚好为零,根据向心力公式有:mg=2A v mL解得:A v gL =。
(2)小球在B 点时根据牛顿第二定律有T-mg=m 2B v L其中T=6mg解得小球在B 点的速度大小为vB=5gL细线断裂后,小球从B 点开始做平抛运动,则由平抛运动的规律得:竖直方向上1.9L-L=21gt 2(2分) 水平方向上x=vBt(2分) 解得:x=3L(2分)即小球落地点到C 点的距离为3L 。
答案:(1)gL(2)3L3.如图所示,被长L 的轻杆连接的球A 能绕固定点O 在竖直平面内作圆周运动,O 点竖直高度为h ,如杆受到的拉力等于小球所受重力的5倍时,就会断裂,则当小球运动的角速度为多大时,杆恰好断裂?小球飞出后,落地点与O 点的水平距离是多少?4.如图所示,位于竖直平面内的光滑有轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。
圆周运动高考题(含答案)
![圆周运动高考题(含答案)](https://img.taocdn.com/s3/m/42acb96c9b6648d7c1c74680.png)
匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Tr t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt πφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。
由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。
高中物理圆周运动同步练习题(含答案)
![高中物理圆周运动同步练习题(含答案)](https://img.taocdn.com/s3/m/e7523d8d09a1284ac850ad02de80d4d8d15a0181.png)
高中物理圆周运动同步练习题(含答案)未命名一、多选题1.有关圆周运动的基本模型,下列说法正确的是()A.如图a,汽车通过拱形桥最高点时对桥的压力大于自身重力B.如图b所示是一圆锥摆模型,增大θ,但保持圆锥摆的高度不变,则小球的角速度变大C.如图c,同一小球在光滑而固定的圆锥筒内的A、B位置先后分别做匀速圆周运动,则在A位置小球所受筒壁的支持力与在B位置时所受支持力大小相等D.如图d,火车转弯超过规定速度行驶时,外轨和轮缘间会有挤压作用2.一质量为m的小球,以O为圆心,在竖直面内做半径为R的圆周运动。
图甲是用轻杆连接小球,图乙是用轻绳连接小球,如图所示。
已知重力加速度为g,则下列说法正确的是()3.如图所示,小球在竖直放置的光滑固定圆形管道内做圆周运动,内侧壁半径为R,小球半径很小,则下列说法正确的是()4.如图所示,管壁光滑的圆形轨道固定在竖直平面内,半径为R。
质量为m的小球在管道内做圆周运动,管道内径远小于轨道半径,下列有关说法中正确的是()二、单选题5.如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动。
下列说法正确的是()6.如图所示,小物体P放在水平圆盘上随圆盘一起转动,下列关于小物体所受摩擦力f的叙述正确的是()A.当圆盘匀速转动时,摩擦力f的大小跟物体P到轴O的距离成正比B.圆盘转动时,摩擦力f方向总是指向轴OC.圆盘匀速转动时,小物体受重力、支持力、摩擦力和向心力作用D.当物体P到轴O距离一定时,摩擦力f的大小跟圆盘转动的角速度成正比7.如图所示,轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R的圆周运动,以下说法正确的是()8.如图所示,长度为1.0m的轻杆OA,A端固定一个质量5kg的小球,使小球以O为圆心在竖直平面内做圆周运动。
小球通过最低点时的速率是7.0m/s,g取210m/s,则通过圆周运动最高点时,杆对小球的作用力是()A.大小为5N,向下的拉力B.大小为5N,向上的支持力C.大小为45N,向上的支持力D.大小为95N,向下的拉力三、解答题9.如图所示,一个可以视为质点的小球质量为m ,以某一初速度冲上光滑半圆形轨道,轨道半径为0.9m R =,直径BC 与水平面垂直,小球到达最高点C 时对轨道的压力是重力的3倍,重力加速度210m /s g =,忽略空气阻力,求:(1)小球通过C 点的速度大小;(2)小球落地点距B 点的距离。
物理生活中的圆周运动题20套(带答案)
![物理生活中的圆周运动题20套(带答案)](https://img.taocdn.com/s3/m/3829561b02d276a200292eb1.png)
物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B运动到C,根据动能定理有:解得:(3)从C点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.5.如图所示,一质量为m的小球C用轻绳悬挂在O点,小球下方有一质量为2m的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。
高中物理圆周运动及天体运动试题及答案解析
![高中物理圆周运动及天体运动试题及答案解析](https://img.taocdn.com/s3/m/5d483b9ed0f34693daef5ef7ba0d4a7302766c8b.png)
圆周运动试题一、单选题1、关于匀速圆周运动下列说法正确的是A、线速度方向永远与加速度方向垂直,且速率不变B、它是速度不变的运动C、它是匀变速运动D、它是受力恒定的运动2、汽车以10m/s速度在平直公路上行驶,对地面的压力为20000N,当该汽车以同样速率驶过半径为20m的凸形桥顶时,汽车对桥的压力为A、10000N B、1000N C、20000N D、2000N3、如图,光滑水平圆盘中心O有一小孔,用细线穿过小孔,两端各系A,B两小球,已知B球的质量为2Kg,并做匀速圆周运动,其半径为20cm,线速度为5m/s,则A的重力为A、250NB、C、125ND、4、如图O1 ,O2是皮带传动的两轮,O1半径是O2的2倍,O1上的C 点到轴心的距离为O2半径的1/2则A、VA:VB=2:1B、aA:aB=1:2C、VA:VC=1:2D、aA:aC=2:15、关于匀速圆周运动的向心加速度下列说法正确的是A.大小不变,方向变化 B.大小变化,方向不变C.大小、方向都变化D.大小、方向都不变6、如图所示,一人骑自行车以速度V 通过一半圆形的拱桥顶端时,关于人和自行车受力的说法正确的是:A 、人和自行车的向心力就是它们受的重力B 、人和自行车的向心力是它们所受重力和支持力的合力,方向指向圆心C 、人和自行车受到重力、支持力、牵引力、摩擦力和向心力的作用D 、人和自行车受到重力、支持力、牵引力、摩擦力和离心力的作用 7、假设地球自转加快,则仍静止在赤道附近的物体变大的物理量是 A 、地球的万有引力 B 、自转所需向心力 C 、地面的支持力 D 、重力 8、在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽 车拐弯时的安全速度是 9、小球做匀速圆周运动,半径为R ,向心加速度为 a ,则下列说法错误..的是 A 、 小球的角速度Ra=ω B 、小球运动的周期aRT π2=C 、t 时间内小球通过的路程aR t S =D 、t 时间内小球转过的角度aRt=ϕ 10、某人在一星球上以速度v 0竖直上抛一物体,经t 秒钟后物体落回手中,已知星球半径为R,那么使物体不再落回星球表面,物体抛出时的速度至少为11、假如一人造地球卫星做圆周运动的轨道半径增大到原来的2倍,仍做圆周运动;则A.根据公式V=r ω可知卫星的线速度将增大到原来的2倍B.根据公式r v m F 2=,可知卫星所受的向心力将变为原来的21C.根据公式2r MmGF =,可知地球提供的向心力将减少到原来的41D.根据上述B 和C 给出的公式,可知卫星运动的线速度将减少到原来的2倍 12、我们在推导第一宇宙速度时,需要做一些假设;例如:1卫星做匀速圆周运动;2卫星的运转周期等于地球自转周期;3卫星的轨道半径等于地球半径;4卫星需要的向心力等于它在地面上的地球引力;上面的四种假设正确的是 A 、123 B 、234 C 、134 D 、12413、如图所示,在固定的圆锥形漏斗的光滑内壁上,有两个质量相等的小物块A 和B,它们分别紧贴漏斗的内 壁.在不同的水平面上做匀速圆周运动,则以下叙述正确的是 A.物块A 的线速度小于物块B 的线速度 B.物块A 的角速度大于物块B 的角速度C.物块A 对漏斗内壁的压力小于物块B 对漏斗内壁的压力D.物块A 的周期大于物块B 的周期14、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆;已知火卫一的周期为7小时39分;火卫二的周期为30小时18分,则两颗卫星相比较,下列说法正确的是:A 、火卫一距火星表面较远;B 、火卫二的角速度较大C 、火卫一的运动速度较大;D 、火卫二的向心加速度较大; 15、如图所示,质量为m 的物体,随水平传送带一起匀速运动,A 为传送带的终端皮带轮,皮带轮半径为r,则要使物体通过终端时能水平抛出,皮带轮每秒钟转动的圈数至少为A 、rg π21 B 、rg C 、gr D 、π2gr16、如图所示,碗质量为M,静止在地面上,质量为m 的滑块滑到圆弧形碗的底端时速率为v,已知碗的半径为R,当滑块滑过碗底时,地面受到碗的压力为:A 、M+mgB 、M+mg +R mv 2C 、Mg +R mv 2D 、Mg +mg -m Rv 217、1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km;若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同;已知地球半径R=6400km,地球表面重力加速度为g;这个小行星表面的重力加速度为 A 、g 400 B 、g 4001 C 、g 20 D 、g 20118、银河系的恒星中大约四分之一是双星;某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动;由天文观察测得其运动周期为T 1,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G;由此可求出S 2的质量为A 、2122)(4GTr r r -π B 、23124GT r π C 、2224GT r π D 、21224GT r r π 19、2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6—30—15;由于黑洞的强大引力,使得太阳绕银河系中心运转;假定银河系中心仅此一个黑洞,且太阳绕银河系中心做的是匀速圆周运动;则下列哪一组数据可估算该黑洞的质量A.、地球绕太阳公转的周期和速度 B 、太阳的质量和运动速度C 、太阳质量和到该黑洞的距离D 、太阳运行速度和到该黑洞的距离20、质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内作半径为R 的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为A 、m ω2RB 、242R g m ω-C 、242R g m ω+D 、不能确定21、已知万有引力恒量G,要计算地球的质量,还必须知道某些数据,现给出下列各组数据,算不出地球质量的有哪组:A 、地球绕太阳运行的周期T 和地球离太阳中心的距离R ;B 、月球绕地球运行的周期T 和月球离地球中心的距离R ;C 、人造卫星在近地表面运行的线速度v 和运动周期T ;D 、地球半径R 和同步卫星离地面的高度;第二卷二、计算题共37分22、如图所示,一质量为m=1kg 的滑块沿着粗糙的圆弧轨道滑行,当经过最高点时速度V=2m/s,已知圆弧半经R=2m,滑块与轨道间的摩擦系数μ=,则滑块经过最高点时的摩擦力大小为多少12分23.一个人用一根长L=1m,只能承受T=46N绳子,拴着一个质量为m=1kg 的小球,已知圆心O离地的距离H=6m,如图所示,速度转动小球方能使小球到达最低点时绳子被拉断,绳子拉断后,小球的水平射程是多大 13分24、经天文学观察,太阳在绕银河系中心的圆形轨道上运行,这个轨道半径约为3×104光年约等于×1020m,转动周期约为2亿年约等于×1015s 太阳作圆周运动的向心力是来自于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看作集中在银河系中心来处理问题;根据以上数据计算太阳轨道内侧这些星体的总质量M 以及太阳作圆周运动的加速度a;G =×10-11Nm 2/kg 212分答案22、12分 解:由 所以 N = mg – m v 2/R =8 N 6分再由 f = μN 得 f = 4 N 6分23、13分 设小球经过最低点的角速度为ω,速度为v 时,绳子刚好被拉断,则T – m g = m ω2L∴ s rad mLmgT /6=-=ω v = ωL = 6 m/s 7分 小球脱离绳子的束缚后,将做平抛运动,其飞行时间为s gL H gh t 1)(22=-==3分 所以,小球的水平射程为 s = v t = 6 m 3分班级_____________ 姓名_________________________ 座号______________24、12分 M =×1041kg a=×10-10m /s 2若算出其中一问得8分 两问都算出的12分高中物理复习六 天体运动一、关于重力加速度1. 地球半径为R 0,地面处重力加速度为g 0,那么在离地面高h 处的重力加速度是A. R h R h g 022020++()B. R R h g 02020()+ C. h R h g 2020()+D.R hR h g 0020()+二、求中心天体的质量2.已知引力常数G 和下列各组数据,能计算出地球质量的是 A .地球绕太阳运行的周期及地球离太阳的距离 B .月球绕地球运行的周期及月球离地球的距离C. 人造地球卫星在地面附近绕行的速度及运行周期 D .若不考虑地球自转,己知地球的半径及重力加速度 三、求中心天体的密度3.中子星是恒星演化过程的一种可能结果,它的密度很大,,现有一中子星,观测到它的自转周期为T,问:该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解;计算时星体可视为均匀球体; 6π/GT 2四、卫星中的超失重求卫星的高度4. m = 9kg 的物体在以a = 5m/s 2 加速上升的火箭中视重为85N, ,则火箭此时离地面的高度是地球半径的_________倍地面物体的重力加速度取10m/s 25.地球同步卫星到地心的距离可由r 3 = a 2b 2c / 4π2求出,已知a 的单位是m, b的单位是s, c 的单位是m/ s2,请确定a、b、c 的意义地球半径地球自转周期重力加速度五、求卫星的运行速度、周期、角速度、加速度等物理量6.两颗人造地球卫星的质量之比为1:2,轨道半径之比为3:1,求其运行的周期之比为;线速度之比为 ,角速度之比为;向心加速度之比为;向心力之比为 ;331/2:1 31/2:3 31/2:9 1:3 1:97.地球的第一宇宙速度为v1,若某行星质量是地球质量的4倍,半径是地球半径的1/2倍,求该行星的第一宇宙速度;221/2v18.同步卫星离地心距离r,运行速率为V1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,线速度为V2,第一宇宙速度为V3,以第一宇宙速度运行的卫星向星加速度为a3,地球半径为R,则a2=r/R >a1>a2V2=R/r D. V3>V1>V2六、双星问题9.两个星球组成双星;设双星间距为L,在相互间万有引力的作用下,绕它们连线上某点O 转动,转动的角速度为ω,不考虑其它星体的影响,则求双星的质量之和;L3ω2/G七、变轨问题年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 ABCA.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 八、追击问题11. 如图,有A 、B 两颗行星绕同一颗恒星M 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星相距最近,则A .经过时间 t=T 1+T 2两行星再次相距最近B .经过时间 t=T 1T 2/T 2-T 1,两行星再次相距最近C .经过时间 t=T 1+T 2 /2,两行星相距最远D .经过时间 t=T 1T 2/2T 2-T 1 ,两行星相距最远 课堂练习1.宇宙飞船在半径为R 1的轨道上运行,变轨后的半径为R 2,R 1>R2.宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的A .线速度变小B .角速度变小C .周期变大D .向心加速度变大2.两个质量均为M 的星体,其连线的垂直平分线为HN,O 为其连线的中点,如图所示,一个质量为m 的物体从O 沿OH 方向运动,则它受到的万有引力大小变化情况是A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小3. “嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r ,运行速率为v ,当探测器在飞越月球上一些环形山中的质量密集区上空时、v 都将略为减小 、v 都将保持不变将略为减小,v将略为增大 D. r将略为增大,v将略为减小4. 为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”;假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2;火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G;仅利用以上数据,可算出A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力C.火星的半径和“萤火一号”的质量 D .火星表面的重力加速度和火星对“萤火一号”的引力5.设地球半径为R,在离地面H 高度处与离地面h 高度处的重力加速度之比为A. H 2/h 2 / h C.R+ h/R+ H D. R+ h2/R+ H26.如图所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A、B、C某时刻在同一条直线上,则A.卫星C的速度最小 B.卫星C受到的向心力最小C.卫星B的周期比C小 D.卫星A的加速度最大7. 气象卫星是用来拍摄云层照片,观测气象资料和测量气象数据的;我国先后自行成功研制和发射了“风云Ⅰ号”和“风云Ⅱ号”两颗气象卫星,“风云Ⅰ号”卫星轨道与赤道平面垂直并且通过两极,称为“极地圆轨道”,每12h巡视地球一周;“风云Ⅱ号”气象卫星轨道平面在赤道平面内,称为“地球同步轨道”,每24h巡视地球一周,则“风云Ⅰ号”卫星比“风云Ⅱ号”卫星A.发射速度小 B.线速度大 C.覆盖地面区域大 D.向心加A B速度小8. 我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞机在月球引力作用下向月球靠近,并将与空间站在B处对接,已知空间站绕月轨道半径为r,周期为T,引力常量为G,下列说法中正确的是A.图中航天飞机正加速飞向B处B.根据题中条件可以算出月球质量C.航天飞机在B处由椭圆轨道进入空间站轨道必须点火减速D.根据题中条件可以算出空间站受到月球引力的大小9. 物体在一行星表面自由落下,第1s内下落了,若该行星的半径为地球半径的一半,那么它的质量是地球的倍. 110.已知火星的一个卫星的圆轨道的半径为r,周期为T,火星可视为半径为R的均匀球体. 不计火星大气阻力,则一物体在火星表面自由下落H高度时的速度为_____________. 8π2r3H/T2R21/211.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球的角速度应为原来的倍g+a/a1/212.一个行星探测器从所探测的行星表面竖直升空,探测器的质量为1500 kg,发动机推力恒定.发射升空后9 s末,发动机突然间发生故障而关闭.下图是从探测器发射到落回地面全过程的速度图象.已知该行星表面没有大气.不考虑探测器总质量的变化.求:(1)探测器在行星表面上升达到的最大高度 H;(2)该行星表面附近的重力加速度g;3发动机正常工作时的推力F. 1800m24m/s2317000N。
(完整版)圆周运动习题及答案
![(完整版)圆周运动习题及答案](https://img.taocdn.com/s3/m/99c5cec4ad02de80d5d84026.png)
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理圆周运动练习题
1. 如图3-1所示,两根轻绳同系一个质量m=0.1kg的小球,两绳的另一端分别固定在轴上的A、B两处,上面绳AC长L=2m,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s时,上下两轻绳拉力各为多少?
图
2. 如图3-2所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心距离为r,c点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()
A.a点与b 点线速度大小相等B.a点与c 点角速度大小相等
C.a点与d 点向心加速度大小相等D.a、b、c、d四点,加速度最小的是b 点
图
3. 如图3-4所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A 与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO/匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.
图3-4
4.如图3-6所示,半径为R的圆盘绕垂直于盘面的中心轴匀速转动,其正上方
h处沿OB方向水平抛出一个小球,要使球与盘只碰一次,且落点为B,则小球的初速度v=____,圆盘转动的角速度ω=_____。
图3-6 5. 如图3-7所示,小球Q在竖直平面内做匀速圆周运动,当Q球转到图示位置
时,有另一小球P在距圆周最高点为h处开始自由下落.要使两球在圆周最高点相碰,则Q球的角速度ω应满足什么条件?
图3-7
6. 绳系着装有水的水桶,在竖直面内做圆周运动,水的质量m=0.5 kg,绳长L =60 cm,求:
①最高点水不流出的最小速率。
②水在最高点速率v=3 m/s时,水对桶底的压力。
7. 汽车质量m为1.5×104 kg,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径均为15 m,如图3-17所示.如果路面承受的最大压力不得超过2×105 N,汽车允许的最大速率是多少?汽车以此速率驶过路面的最小压力是多少?
图
3-17
8. 使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?
9. 使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?
1. 【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC 绳上拉力
设为
T1,对小球有:mg T =︒30cos 1
①
30sin L ωm =30sin T AB 211②代入数据得:
s rad /4.21=ω,
要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC 绳拉
力为T2,则有mg T =︒45cos 2
③ T2sin45°=m 22ωLACsin30°④代入数据得:ω2=3.16rad/s 。
要使
AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的
夹角θ>45°,对小球有:
mg T =θcos 2,T2cos θ=m ω2LBCsin θ ⑤而LACsin30°=LBCsin45°,LBC=2m ⑥由⑤、
⑥可解得
N T 3.22=;01=T
2. 【解析】由图3-2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即va =vc ,又v =ωR , 所以ωar =ωc·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,
则ωb =ωc =ωd =21ωa ,所以选项B错.又vb =ωb·r = 21
ωar =2v a ,所以选项A 也错.向心加速度:aa
=ωa2r ;ab =ωb2·r =(2
ωa
)2r =41ωa2r =41aa ;ac =ωc2·2r =(21ωa )2·2r = 21ωa2r =21
aa ;ad =ωd2·4r
=(21
ωa )2·4r =ωa2r =aa .所以选项C 、D 均正确
3. 【审题】物体A 随碗一起转动而不发生相对滑动,则物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω。
物体A 做匀速圆周运动所需的向心力方向指向球心O ,故此向心力不是由重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡。
【解析】物体A 做匀速圆周运动,向心力:
R
m F n 2ω=,而摩擦力与重力平衡,则有:
mg F n =μ,
即:
μ
mg
F n =
由以上两式可得:
μ
ωmg
R m =
2,即碗匀速转动的角速度为:
R
g
μω=
4. 【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。
【解析】①小球做平抛运动,在竖直方向上:h =21
gt2,则运动时间t =
g h 2,又因为水平
位移为R
所以球的速度,v =t R
=R ·
h g
2②,在时间t 内,盘转过的角度θ=n ·2π,又因为θ=ωt ,则转盘
角速度:ω=
t n π2⋅=2n πh
2g (n =1,2,3…)
5. 【审题】下落的小球P 做的是自由落体运动,小球Q 做的是圆周运动,若要想碰,必须满足时间相
等这个条件。
【解析】设P 球自由落体到圆周最高点的时间为t ,由自由落体可得21
gt2=h ,求得t=g
h 2
Q 球由图示位置转至最高点的时间也是t ,但做匀速圆周运动,周期为T ,有t=(4n+1)4T (n=0,1,2,3……),
两式联立再由T=
ωπ
2得 (4n+1)
ω
π
2=
g
h
2,所以ω=2π
(4n+1)
h
2g (n=0,1,2,3……)
6 【审题】当
v0=
gR 时,水恰好不流出,要求水对桶底的压力和判断是否能通过最高点,也要和这
个速度v 比较,v>v0时,有压力;v=v0时,恰好无压力;v ≤v0时,不能到达最高点。
【解析】①水在最
高点不流出的条件是重力不大于水做圆周运动所需要的向心力即mg <L mv 2
,则最小速度v0=
gR =
gL =2.42 m/s 。
②当水在最高点的速率大于v0时,只靠重力提供向心力已不足,此时水桶底对水有一
向下的压力,设为F ,由牛顿第二定律F +mg =m L
v 2
得:F =2.6 N 。
7.【审题】首先要确定汽车在何位置时对路面的压力最大,汽车经过凹形路面时,向心加速度方向向上,汽车处于超重状态;经过凸形路面时,向心加速度向下,汽车处于失重状态,所以汽车经过凹形路面最低点时,汽车对路面的压力最大。
【解析】当汽车经过凹形路面最低点时,设路面支持力为FN1,受力情况如图3-18所示,由牛顿第二定律,
有FN1-mg =m R
v 2,要求FN1≤2×105 N ,解得允许
的最大速率vm =7.07 m/s
由上面分析知,汽车经过凸形路面顶点时对路面压力最小,设为FN2,如图3-19所示,由牛顿第二定律有mg
-FN2=R
mv 2m
,解得FN2=1×105 N 。
8. 【审题】小球到达最高点A 时的速度vA 不能为零,否则小球早在到达A 点之前就离开了圆
形轨道。
要使小球到达A 点(自然不脱离圆形轨道),则小球在A 点的速度必须满足Mg+NA=m R
v 2A
,式
图图
中,NA 为圆形轨道对小球的弹力。
上式表示小球在A 点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供。
当NA=0时,vA 最小,vA=gR 。
这就是说,要使小球到达A 点,则应该使小
球在A 点具有的速度vA ≥
gR 。
【解析】以小球为研究对象。
小球在轨道最高点时,受重力和轨道给的弹力。
小球在圆形轨道最高点A 时满足方程
根据机械能守恒,小球在圆形轨道最低点B 时的速度满足方程
2B 2A mv 21=R 2mg +mv 21 (2)
解(1),(2)方程组得,当NA=0时,VB=为最小,VB=
gR 5,所以在B 点应使
小球至少具有VB=gR 5的速度,才能使它到达圆形轨道的最高点A 。
9. 以小球为研究对象。
小球在轨道最高点时,受重力和轨道给的弹力。
小球在圆形轨道最高点A
时满足方程
根据机械能守恒,小球在圆形轨道最低点B 时的速度
满足方程解(1),(2)方程组得
轨道的最高点A 。