宽带射频功率放大器的匹配电路设计
LDMOS宽带功率放大器匹配电路设计
关键词: LDM OS; 宽带匹配; ADS优化; 多节并联导纳匹配法
中图分类号: 722. 75
文献标识码: A
文章编号: 1005- 9490( 2011) 02- 0176- 03
宽带功率放大器除在军用领域外, 在无线通信、 移动电话、卫星通信网、全球定位系统、直播卫星接
收、毫米波自动防撞系统、光传输系统等领域都有着 广阔的应用前景。
3 多节阻抗匹配网络设计
为了向负 载传送最大功率或者使微波电路系
统、传输系统处于或接近行波状态, 需要用共轭匹配
网络。匹配网络对于放大器的驻波比、功率增益、输
出功率等性能指标都有着决定性的制约。
在
L=
OUT =
( S22 +
S12 S 21 1- S11
S )* [5] 共轭匹配
S
图 1 多节微带 线实现阻抗匹配的 Sm ith圆图
EEACC: 2570D; 1220
do:i 10. 3969 / j. issn. 1005- 9490. 2011. 02. 014
LDM O S宽带功率放大器匹配电路设计
马立宪, 李民权*
(安徽大学计算智能与信号处理教育部重点实验室, 合肥 230000)
摘 要: 针对 LDM OS宽带功率放大器 匹配电路设计, 提出了一 种快速、有 效的方法。 采用多 节并联 导纳匹配 法得出 宽带匹
电子器件
第 34卷
图 4 匹配网路的 S 参数曲线图
图 7 微波晶体管输出匹配网络平衡性设计
图 5 匹配网络的端口 1驻波比曲线图
图 6 匹配网络的端口 2驻波比曲线图
将匹配网路端口 1的阻抗 Z in1用 AD S测试出阻 抗值结果如表 4所示。
宽带射频功率放大器设计
宽带射频功率放大器设计近年来,随着通信技术的迅猛发展,宽带射频功率放大器在无线通信系统中扮演着至关重要的角色。
它是将低功率射频信号放大至较高功率的关键设备,广泛应用于无线电通信、雷达系统、卫星通信、移动通信等领域。
宽带射频功率放大器的设计面临着一系列挑战。
首先,它需要能够处理多种不同频率范围内的信号,以适应不同通信标准和频段的要求。
其次,放大器必须具备高功率增益和高线性度,以确保信号的传输质量和可靠性。
此外,功率放大器的设计还需要考虑功耗、工作温度和尺寸等因素。
在宽带射频功率放大器的设计中,有几个关键的技术要点。
首先是选择合适的放大器拓扑结构,常见的有共射极、共基极和共集极等。
每种拓扑结构都有其适用的频率范围和特点,设计师需要根据具体需求进行选择。
其次是选择合适的功率管件,常见的有晶体管、集成电路、功率模块等。
不同的管件有着不同的特性和参数,需要综合考虑功率、频率、线性度和可用空间等因素。
此外,还需要设计合理的电源供应和匹配电路,以确保功率放大器的工作稳定和高效。
在实际设计中,还需进行一系列的测试和优化。
首先是频率响应测试,通过频率响应曲线分析放大器的带宽和增益等性能指标。
其次是线性度测试,通过测量放大器的非线性失真和交调等指标,以评估其适应不同信号的能力。
最后是功率测试,通过测量输出功率和效率等参数,以评估功率放大器的性能。
宽带射频功率放大器的设计是一项复杂而重要的工作,它不仅需要设计师具备扎实的电路设计和射频知识,还需要不断的实践和经验积累。
随着无线通信技术的不断发展,宽带射频功率放大器的设计将面临更多的挑战和机遇。
只有不断学习和创新,才能设计出更高性能的宽带射频功率放大器,推动通信技术的进一步发展。
30~512 MHz两级宽带功率放大器极间匹配设计
第6期2021年3月No.6March,20210 引言功率放大器作为现代电子微波系统的最末端,在迅猛发展的移动通信事业中越发凸显了其必不可少、不可替代的重要性。
功率放大器发展至今,广泛应用在各类通信领域,诸如手机、雷达、电台、干扰机等无线通信系统。
当前随着软件无线电技术的广泛运用,系统对功率放大器的带宽和输出功率提出了越来越高的要求,使得超宽带、大功率、高效率、高线性度的功率放大器应用前景极为广阔[1]。
本文以实际项目中用于电台的功率放大器设计为实例,集中讨论了宽带功放极间匹配设计过程。
主要设计指标要求为:(1)工作频段(Freq )为30~512 MHz ;(2)输出功率(Pout )≥80 W ;(3)效率(η)≥35%;(4)双音频率间隔200 kHz 时,三阶互调失真 (IMD3)≤-28 dBc 。
针对这些指标要求,采用两级功放管级联,设计了输入、级间和输出匹配网络,制作了宽带功放,具备高输出功率、高线性度、高效率以及小型化等特点。
1 电路设计一般情况下,针对多级功率放大器的设计方法是使每一级功率管输入、输出都匹配到50Ω,中间再加上一个π型网络,衰减部分射频信号以防止自激,最后级联组成多级放大器。
这样输入、输出分别需要同轴巴伦来完成宽带匹配。
这样的优势是每一级自成一体,方便调试,维修等也方便;同样的,其劣势也很明显,这样极大地限制了电路布局空间的小型化,同时级联时容易自激(一般选择添加π型电阻网络,衰减射频信号来解决自激),这样降低了放大器的输出功率和效率。
本两级宽带功率放大器设计在传统的宽带匹配电路基础上,保留驱动级功率管的输入匹配电路和末级功率管输出匹配电路,在驱动级功率管的输出处和末级功率管的输入处设计两级功放极间匹配所需要的阻抗变换。
通过使用同轴巴伦所用同轴电缆的阻抗和铁氧体磁芯,结合集总元件使这种极间匹配努力在全频带内实现最佳匹配。
横向扩散金属氧化物半导体场效应管(LDMOS )作为一种性价比很高的器件,自20世纪80年代应用以来一直在通信系统的固态功放中起着主导作用。
射频功率放大器电路设计
本文主要对射频功率放大器电路设计进行介绍,主要介绍了射频功率放大器电路设计思路部分,以及部分设计线路图一、阻抗匹配设计大多数PA都内部集成了到50欧姆的阻抗匹配设计网络,不过也有一些高功率PA 将输出端匹配放在集成芯片外部,以减小芯片面积。
常用的匹配设计有微带线匹配设计、分立器件匹配设计网络等,在典型设计中有可能会将两者共同使用,以改善因为分立器件数值不连续带来的匹配设计不佳的问题。
PA阻抗匹配设计原理和射频中的阻抗匹配相同,都是共轭匹配设计,主要实现功率的最大传输。
常用工具可以使用Smith圆图来观察阻抗匹配设计变化,同时用ADS软件来完成仿真。
二、谐波抑制由本人微博《射频功率放大器 PA 的基本原理和信号分析》得知,谐波一般是由器件的非线性产生的倍频分量。
谐波抑制对于CE、FCC认证显得尤为重要。
由于谐波的频率较分散,所以一般采用无源滤波器来衰减谐波分量,达到抑制谐波的效果。
不仅PA,其它器件包括调制信号输出端都有可能产生谐波,为了避免PA对谐波进行放大,有必要在PA输入端即添加抑制电路。
上图所示无源滤波器常用于2.4G频段的芯片输出端位置,该滤波器为五阶低通滤波器,截止频率约为3GHz,对2倍频和3倍频的抑制分别达到45.8dB和72.8dB。
使用无源滤波器实现谐波抑制有以下优点:l 简单直接,成本有优势l 良好的性能并且易于仿真l 可以同时实现阻抗匹配设计三、系统设计优化系统设计优化主要从电源设计,匹配网络设计出发,实现PA性能的稳定改善。
3.1 电源设计功率放大器是功耗较大的器件,在快速开关的时候瞬间电流非常大,所以需要在主电源供电路径上加至少10uF的陶瓷电容,同时走线尽量宽,让电容放置走线上,充分利用电容储能效果。
PA供电电源一般有开关噪声和来自其它模块的耦合噪声,可以在PA靠近供电管脚处放置一些高频陶瓷电容。
有必要也可以加扼流电感或磁珠来抑制电源噪声。
从SE2576L的结构框图可以看出,该PA一共由三级放大组成,每一级都单独供电,前面两级作为小信号电压增大以及开关偏置电路,其工作电流较小,最后一级功率放大,其电流很大。
500W射频宽带功率放大器设计
同样 有 着 很 大 的 功 率 余 量
,
可 以在
。
若合路器插人损耗
则最终输 出 的
之 间 添 加 一 个 电 阻 衰减 网 络 进 行 级 间 隔
,
左右
。
离 提 高 器 件 的工 作 可 靠 性 以 及 加 快 电 路 调 试 速 度 添 加 衰减 器
。
增 益 然 而 加 人 负反 馈 以及 展 开工 作 带 宽 后 工 作 频
,
定程 度 上 制 约 了
上接 第
。
页
范 围 内 特性 要 平 坦度 变差
监控 电路 及
监控 电路 在 射 频 功 率 放 大器 中作 用 十 分 重要 的示 工 作 电流显 示 状 态 显
,
负反 馈 的 引人 也 可 以 设 计
离 的直 接 相 连 因 此 需 要 承受 前 后 级 功 放 管 的影 响 同样 它 的选 择 应 该 有 很 大 的 余 量 在
。
公司的
凡
,
下有
增益 以及
,
。
的
,
参数 可 以 从 手 册 中查 到 所 以 可
,
,
的 输 出 正 好 满 足 我 们 的 设计 要 求
自检 和 执 行 保 护 动 作 的 依 据
即功 率分 配 问 题
。
由于 一 般 前 级 放 大器 的 输 出
。
对 双 向 藕 合 器 的要 求 是 线 性 要 好 在 工 作 频 率
下转第
阻 抗 与 后 级 放 大 器 的输 人 阻 抗 并 不 一 样
所 以一般
页
以娜
年常
卷常
期
,已
悦 电通佑技木
射频功率放大器宽带匹配如何解决?这篇文章讲得够详细了
射频功率放大器宽带匹配如何解决?这篇文章讲得够详细了在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。
例如,工作于多个倍频程甚至于几十个倍频程。
这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。
宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。
因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。
同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。
同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。
1 方案设计同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。
同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。
1.1 同轴变换器原理同轴变换器是由套上铁氧体磁芯的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。
“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。
同轴变换器处于集中参数与分布参数之问。
因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻抗为Zo的传输线。
同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,寄生电容对频率性能的贡献是负面作用。
当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。
同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。
在大多数情况下,电缆长度不能超过最小波长的八分之一。
为了。
射频宽带放大器的设计方案
射频宽带放大器设计报告摘要:本系统以AD公司生产的高速可控增益运放AD8330为核心,结合固定增益放大、可变增益放大、末级差分电路等主要部分,能实现放大倍数0~50dB 增益可调。
前级放大采用一片AD8330实现可变增益放大,固定增益放大采用OPA847芯片实现10倍的固定增益放大,再经末级1片电流反馈型运放THS3001扩流,构建末级差分驱动负载。
关键词:宽带放大器高速运放 OPA847 AD8330一、方案论证与选择1、方案选择与比较1.1 固定增益放大器比较方案一:采用OPA820运放芯片作为固定增益放大,该芯片是一种高速运算放大器,在6 Hz~ 20 MHz 的通频带中可实现放大增益为43 dB, 具有带内波动小, 输出噪声低的特点。
但是缺点是通频带不够宽。
方案二:采用OPA695电压反馈型高速运算放大器,在1400MHz频率下能实现两倍放大,符合本题要求,但在高频下,该运放易产生自激。
方案三:采用OPA847, 电压反馈型高速运算放大器,最大频带宽度达3.9GHz,完全满足本题频带要求,输入电压噪声低,带内波动小,自激现象少。
综上所述,本设计采用方案三。
1.1.2 可变增益放大器比较方案一:采用可编程程控放大器AD603。
该运放增益在-11~+30dB范围内可调,通过改变管脚间的连接电阻值可调节增益范围,易于控制。
但该运放增益可调带宽为90MHz,不满足题目要求。
方案二:采用高增益精度的压控VGA芯片AD8330。
该芯片可控增益带宽可达150MHz,增益可调范围0~70dB,符合本题指标要求.因此,该电路采用方案二。
1.1.3 电压增益可调方案比较方案一:基于单片机做步进微调。
由单片机MSP430G2553及12位DA转换芯片TLV5616对AD8330进行程控,实现增益在可取范围内可调。
但是,此设计只能步进调节,不能连续可调,此方案不可取。
方案二:基于精密电位器做连续可调。
用一个精密电位器对+5V分压后输入AD8330 5脚VDBS,从而对电压增益实现连续可调。
一种射频线性功率放大器的宽带匹配电路[发明专利]
专利名称:一种射频线性功率放大器的宽带匹配电路专利类型:发明专利
发明人:苏杰,李孙华,徐祎喆,朱勇
申请号:CN202011601291.1
申请日:20201230
公开号:CN112671356A
公开日:
20210416
专利内容由知识产权出版社提供
摘要:本发明公开了一种射频线性功率放大器的宽带匹配电路,属于集成电路技术领域。
本发明主要包括至少一个有耗放大模块以及高阶LC匹配模块;其中,有耗放大模块用于对射频信号在衰减一部分低频段的增益的基础上进行放大,高阶LC匹配模块用于以高自由度的方式提高功率放大器的带宽。
本发明电路结构简单,易于集成,转换效率高,线性度好;增益高,带宽大。
申请人:北京百瑞互联技术有限公司
地址:100085 北京市海淀区上地信息路2号(北京实创高科技发展总公司2-1号,2-2号)2-1幢7层C 栋7-1-1
国籍:CN
代理机构:北京国科程知识产权代理事务所(普通合伙)
代理人:曹晓斐
更多信息请下载全文后查看。
宽带射频功率放大器设计
宽带射频功率放大器设计射频(Radio Frequency,简称RF)功率放大器在现代通信系统中起着重要的作用。
它的主要功能是将低功率的射频信号放大到足够的功率级别,以便于传输和处理。
宽带射频功率放大器是一种可以在大范围的频率范围内提供高功率放大的设备。
本文将介绍宽带射频功率放大器的设计。
在设计宽带射频功率放大器之前,需要明确一些基本参数和要求。
首先,需要确定放大器的工作频率范围。
宽带放大器通常涵盖几个频率段,因此需要确保在所需的频率范围内具有足够的增益和线性性能。
其次,需要确定放大器的输出功率要求。
输出功率是放大器设计中的一个重要指标,它决定了放大器能够提供的最大信号功率。
最后,需要考虑放大器的线性性能和稳定性。
线性性能是指放大器输出信号与输入信号之间的线性关系,而稳定性是指放大器在工作过程中能够维持恒定的增益和相位特性。
在设计过程中,可以使用不同的拓扑结构和技术来实现宽带射频功率放大器。
其中一种常见的结构是宽带巴氏极双管功率放大器。
该结构使用共射和共基级联的方式来实现高增益和宽带特性。
另一种常用的结构是宽带巴氏极共基功率放大器,它具有简单的结构和高输入阻抗,适用于高频应用。
在选取合适的放大器结构后,还需要选取合适的放大器器件。
常用的射频功率放大器器件包括三极管、场效应晶体管和集成电路。
三极管具有高增益和线性特性,适用于较低频率的应用。
场效应晶体管具有较高的工作频率和功率特性,适用于较高频率的应用。
集成电路则具有更高的集成度和稳定性。
根据特定的应用需求,可以选择合适的器件。
除了放大器器件外,还需要选择合适的匹配网络来实现放大器的输入和输出匹配。
匹配网络能够提高放大器的功率传输效率和线性特性。
常用的匹配网络包括隔离电容、电感和变压器等。
通过合理选择匹配网络的参数,可以实现最佳的匹配效果。
最后,在完成放大器设计后,需要进行仿真和测试验证。
使用电磁仿真软件可以对放大器的工作性能进行模拟和优化。
实际测试可以验证设计的准确性和性能指标的达标情况。
基于集成电路的宽带射频功率放大器设计
基于集成电路的宽带射频功率放大器设计随着世界变化的加速和科技的不断发展,人们对于通讯系统的需求越来越高。
射频功率放大器(RFPA)就是其中一个重要的组成部分。
RFPA是一种能够将信号增强到足够强度的模块,以保证信号可以在远距离有效传输。
RFPA的研发和设计一直是通讯系统领域中比较重要的研究方向。
本文将重点讨论基于集成电路的宽带射频功率放大器设计。
一、 RFPA的设计过程RFPA的设计流程围绕着两个核心问题展开:一是如何提高功率增益,二是如何保证信噪比的同时避免功率损失。
对于前一个问题,研究者们需要根据实际情况确定合适的功率级别和谐振电路。
对于后一个问题,就需要着重考虑噪声的来源和处理方法。
对于宽带RFPA的设计,需要考虑的因素更加多样化和复杂。
主要集中在以下几个方面:1. 带宽:带宽指的是该功率放大器能够工作的频率范围。
需要考虑工作在多个频率点上时的稳定性和性能。
2. 线性:这是一个广义的概念,指的是信号通过放大器后失真的效果。
在宽带应用中,线性度尤为重要,因为不同频率的信号在放大器中的增益是不一致的。
因此,如果不注意线性度,容易导致信号的失真甚至严重的非线性失真。
3. 兼容性:需要考虑功率放大器与系统其他部件的兼容性,以保证系统的整体性能提升。
根据以上几个方面的因素,RFPA的设计需要结合模块化、集成化、可调度等特点。
需要利用尽可能少的元件,完成尽可能多的功能,以达到功率放大器的高端性能和稳定性。
二、基于集成电路的宽带射频功率放大器设计随着集成电路技术的不断发展,基于集成电路的宽带射频功率放大器得到了广泛的研究和应用。
基于集成电路技术的RFPA的一个主要特点是,可以将多个电路模块集成在同一芯片上,提高了系统的集成度和可调度性。
在集成电路中,常用的设计方法是放大器级联,将多个放大器模块串联在一起,提高增益和稳定性。
同时,还可以利用Switched-Capacitor技术对滤波器进行设计,可以通过调整采样精度来实现宽带信号的处理。
射频功率放大器的宽带匹配设计
射频功率放大器的宽带匹配设计
殷素杰;杜浩
【期刊名称】《无线电工程》
【年(卷),期】2013(043)002
【摘要】多倍频程功率放大器具有显著的优点,同轴电缆阻抗变换器能实现射频功率放大器有效的宽带匹配.在给出同轴电缆阻抗变换器方案设计的基础上,详细介绍了其基本原理以及1∶1和1∶4同轴变换器的具体结构及等效电路.针对工程需要,以同轴电缆阻抗变换器为宽带匹配网络的核心,设计了一款超宽带匹配功率放大器,经软件仿真优化及测试验证,阻抗匹配准确,测试结果达到了技术指标要求.
【总页数】4页(P48-51)
【作者】殷素杰;杜浩
【作者单位】中国电子科技集团公司第五十四研究所,河北石家庄050081;中国电子科技集团公司第五十四研究所,河北石家庄050081
【正文语种】中文
【中图分类】TN722.1
【相关文献】
1.基于广义改进型Hammerstein模型的宽带射频功率放大器建模 [J], 许高明;刘太君;叶焱;化锋;李军
2.宽带射频功率放大器的匹配电路设计 [J], 宫为保
3.平衡式宽带Doherty射频功率放大器 [J], 李瑞阳;刘太君;叶焱
4.宽带射频功率放大器的设计与实现 [J], 陈嘉豪;
5.30~512 M Hz两级宽带功率放大器极间匹配设计 [J], 黎明林
因版权原因,仅展示原文概要,查看原文内容请购买。
宽带射频功率放大器的匹配电路设计
技术专题 //RADIO & TELEVISION INFORMATIONNetwork Technology // RADIO & TELEVISION INFORMATION RADIO & TELEVISION INFORMATION RADIO & TELEVISION INFORMATION宽带射频功率放大器的匹配电路设计文/安徽省广播电视科研所宫为保//摘要:介绍了一种分析同轴线变换器的新方法,建立了理想与通用模型,降低了分析难度和简化了分析过程。
通过研究分析,提出了一种同轴变换器与集总元件相结合的匹配电路设计方法,通过优化同轴线和集总元件的参数,实现放大器的最佳性能。
利用该方法设计了一款应用于推挽式功率放大电路的匹配电路,仿真结果表明,匹配效率高达99.93%。
关键词:宽带射频同轴变换器匹配电路巴伦阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。
为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重匹配电路设计非常困难。
本文设计的同轴变换器电路就能实现高效率的电路匹配。
同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。
常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。
但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9。
本文通过建立模型,提出一种简化分析方法。
2所示。
其源阻抗Zg与ZL负载阻抗变换比1 同轴变换器模型同轴变换器有三个重要参数:阻抗长度是为了分析方便。
当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。
要任务。
要实现宽带内的最大功率传输,变换比、特征阻抗和电长度。
这里用电1.1 理想模型理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图单的仪器测试便能定位。
双频宽带功率放大器级间匹配电路
双频宽带功率放大器级间匹配电路是一种用于无线通信系统中的功率放大器的电路设计。
在无线通信系统中,功率放大器的设计对整个系统的性能和稳定性都有着重要的影响。
双频宽带功率放大器级间匹配电路的设计要求能够在多个频段上实现高效的功率放大,并且在不同频率下的匹配效果良好,以保证整个系统的稳定性和性能。
在设计双频宽带功率放大器级间匹配电路时,有一些关键的考虑因素需要被考虑。
下面将列举这些因素,并深入探讨它们对于电路设计的影响。
1. 频率范围:双频宽带功率放大器级间匹配电路需要能够在多个频段上实现高效的功率放大。
在设计电路时需要考虑系统所需要覆盖的频率范围,并根据频率范围的不同选择合适的匹配网络和元件。
2. 匹配网络设计:匹配网络在双频功率放大器中起着至关重要的作用。
它能够有效地将功率传输到负载,同时又能够保持电路在不同频率下的稳定性。
匹配网络的设计需要考虑到频率的变化,并且要能够满足整个系统的匹配要求。
3. 元件选择:在双频宽带功率放大器级间匹配电路中,元件的选择也是十分重要的。
不同频率下的元件参数会有所不同,因此需要选择能够在多个频段下都具有良好性能的元件,以保证整个系统的稳定性和匹配效果。
4. 级间匹配技术:级间匹配技术是双频宽带功率放大器设计中的关键技术之一。
它能够有效地提高电路在不同频率下的匹配效果,并且能够使整个系统在多个频段下都具有高效的功率输出。
5. 抗干扰能力:双频宽带功率放大器级间匹配电路需要具有较强的抗干扰能力,以应对复杂的通信环境。
在设计电路时,需要考虑到各种干扰源对系统性能的影响,并采取相应的措施来保证整个系统的稳定性和可靠性。
双频宽带功率放大器级间匹配电路的设计涉及到多个方面的考虑因素。
在实际设计中,需要综合考虑这些因素,并且根据具体的系统需求来进行优化设计,以确保整个系统能够在不同频段下都具有良好的性能和稳定性。
在双频宽带功率放大器级间匹配电路的设计中,频率范围是一个至关重要的考虑因素。
LDMOS宽带功率放大器匹配电路设计
21 0 1年 4 月
电 子 器 件
C ie eJ u a o lc o e ie hn s o m l fE e t n D vc s r
Vo . 4 No 2 13 .
Ap . 01 r2 1
De in o sg fLDM OS Br a n o r Tr n it r Amp i e ’ M a c r u t o d Ba d P we a sso l rS i f th Cic i
Absr c I e ms o h t a t:n t r ft e LDMOS b o d b n o ra lf rma c i g cr u tSd sg a s r ff s n fe tv r a a d p we mp ii th n ic i’ e in, oto a ta d e cie e me h d wa r p s d t o s p o o e .Afe d p i g t e mut a all a tr a o tn h l p r le dmi a c s i t n e mac i g t b an t e b o d b n th n t t h n o o ti h r a a d mac i g cr u tS i i aiai n, ic i’ nt l to ADS o t r s s d b s d o t e meh d f mo n t p i z mac i g c rui’ i z s f wa e wa u e a e n h t o o me t o o t mie th n ic t S S p r mee . e smu ain r s lss o d t a o tSr fe tn e i malr t n 一2 ewe n 1 3 GHza d 2. a a tr Th i lto e u t h we h tp r’ e c a c s s le ha l 5 dB b t e . n 3 GHz ta s sin fc o ft e mac i g n t r p r a he B. n o d rt k mp d n e mac i gwel ADS ,r n miso a tro h t h n ewo k a p o c s0 d I r e o ma e i e a c t h n l, s f r s u e o o t z h thig n t r g i whih ma e t mp d n e a p o c o r ta itrS ot ewa s d t p i e t e mac n ewo k a an, c k s isi e a c p r a h p we rnsso ’ wa mi a t a u p ti e a c . emeh d i rh fla n n o e in n r a a d p we mp i e th n ic i cu lo t u mp d n e Th t o swo ty o e r i gf rd sg i g b o d b n o ra l i rma c i g cr u t f
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
介绍了一种分析同轴线变换器的新方法,建立了理想与通用模型,降低了分析难度和简化了分析过程。通过研究分析,提出了一种同轴变换器与集总元件相结合的匹配电路设计方法,通过优化同轴线和集总元件的参数,实现放大器的最佳性能。利用该方法设计了一款应用于推挽式功率放大电路的匹配电路,仿真结果表明,匹配效率高达99.93%. 阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型。 其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中: 当反射系数为零时,功率可以无反射的传输,这时阻抗实现完全匹配。 由公式(2),反射系数为零可以等效为分子为零,即: 其中: 当E为90o时,可得: 由于特征阻抗为实数,ZLZg*为实数时,方程才有解或才能完全匹配。当ZL和Zg为实数时,就是常用的λ/4阻抗变换。 当E不等于900,利用实部与虚部都等于零得方程组: 整理化简得: 公式(3)说明,不是任意两个复阻抗都可以完全匹配,必须满足特征阻抗为正实数;可以并联或串联电抗元件,使两个不可能完全匹配的复阻抗完全匹配。 通用模型是结合理想模型和同轴线分析建立,。把1:N同轴变换器等效一根同轴线,利用同轴线的分析结果,更容易获得特征阻抗和电长度参数。 特别对于利用同轴变换器设计的匹配电路,可以简化设计步骤,减少工作量。 2 宽带匹配电路的设计 通过对同轴变换器的分析,可以通过调谐特征阻抗和电长度完成阻抗匹配。 但是实际同轴线的特征阻抗是有一定规格的,不是任意的,而且电长度又是随频率变化的,所以采用同轴变换器和集总元件联合实现宽带匹配的方式。 2.1.集总元件匹配电路 复阻抗可以用电阻与电抗串联表示,也可以用电阻与电抗并联表示,这两种表示的等效电路。 它们都是指同一个复数,其转换关系为: 公式4表明,电阻并联电抗可以减小其复阻抗的实部,再串联电抗抵消其虚部,就可以实现Rp到RS阻抗匹配。所需的电抗值可以通过表达式4计算,且Xp与XS取不同性质的元件,如果Xp用电容,XS就用电感。 集总元件实现阻抗匹配原理:电阻并联电抗减小其实部,再串联电抗抵消其虚部,达到两个纯电路的匹配;当匹配的不是纯电阻时,可以采用抵消和吸纳虚部的方法实现复阻抗的匹配。2.2联合匹配电路 以Freescale公司MRF6VP2600推挽式MOSFET管的匹配电路设计为例,首先确定匹配电路的基本结构和同轴变换器的阻抗变换,然后再确定特征阻抗、电长度和集总参数。由于输入匹配电路设计与输出匹配电路类似,下面详细研究输出匹配电路设计。MRF6VP2600的DATASHEET给的源极-源极的输出阻抗。 图6 MRF6VP2600的输入-输出阻抗 输出匹配电路中,由于功率管采用推挽式工作,所以在输出端加入1:1巴伦实现不平衡-平衡变换。利用通用模型,下面的工作就简化为同轴线与集总参数的匹配电路设计。同轴线的特征阻抗和电长度计算公式为: 式中,Er为内部填充介质的相对介电常数;D为外导体内径;d是内导体外径;为内导体系数,单股内导体时为1;C为空气中光的速度;f为工作频率,L为同轴线的长度。 公式5表明,电长度与频率呈线性关系,且其长度越短,电长度受频率的影响越小。 2.3仿真验证 利用安捷伦公司的ADS工具进行输出匹配电路设计与仿真,一般可采用大信号S参数仿真和谐波仿真,由于本文设计用于推挽式工作的匹配电路,所以选用更直观的谐波平衡仿真。利用同轴线和巴伦的模型进行仿真的电路。 图7 仿真原理图由于图7的负载阻抗的实部是随频率增减而减少,所以在同轴变换器的两端并联电容。可以很容易对电路进行手动调谐和自动优化,最后的仿真结果。 图8 (87.5-108)Mhz匹配阻抗 由图6,图8可以得到各频点的反射系数;再根据反射系数与频率的关系,可以求得匹配电路在工作频带的反射系数;最后根据匹配效率与反射系数的关系,求得匹配电路的匹配效率。具体结果见表1。 表1 反射系数与匹配效率的计算结果 从表1可以得到,匹配电路的在工作频段内匹配效率达99.93%,实现了较好的匹配。 3总结 本文建立同轴变换器的理想模型和通用模型,提出一种新颖的和简单的分析方法。通过分析,同轴线的特征阻抗和电长度对匹配电路的性能有很大影响。设计了一款推挽式MOSFET管的输出匹配电路,仿真结果表明:匹配效率达99.93%.