从宏转录组技术及其研究进展 (1)

从宏转录组技术及其研究进展 (1)
从宏转录组技术及其研究进展 (1)

生物基因组非蛋白质编码转录组学及研究进展_姜宁

生物基因组非蛋白质编码转录组学及研究进展 姜 宁1 陈启军 2 1.中国医学科学院 吉林大学人兽共患病联合研究中心人兽共患病研究教育部重点实验室,长春130062 2.中国医学科学院病原生物学研究所,北京100730 收稿日期:2009 9 13 修回日期:2009 12 1联系作者:陈启军,教授,cq@j jl https://www.360docs.net/doc/892759208.html, .cn 。 摘 要 RNA 转录组学和功能组学的研究是目前生命科学领域的重要研究方向。生命的中心法则(由DNA 转录RNA,再由后者翻译成行使各种功能的蛋白质)因调控RNA 分子的发现而进一步得到扩展。最近的大量研究发现,自基因组中非蛋白质编码区转录的RNA 分子具有重要的调控功能,即转录后的调控功能。在这些RNA 分子中,内源性小干扰RNA 分子、m icroRNA 及pi w i RNA 等的功能逐渐被揭示。本文对目前有关RNA 转录组学研究进展做一简要综述。 关键词:RNA 转录组 小RNA si R NA m i R NA pi R NA 中图分类号:Q7 文献标识码:A 文章编号:1009 2412(2009)06 0015 05 一、引 言 生物物种遗传物质的组成随着物种进化程度的 提高而逐渐趋于复杂。然而随着大规模基因组测序的完成,人们发现很多生物(包括小鼠和人)遗传物质组成的主要差异不是在蛋白质编码区而是在基因组中的非编码(non cod i ng )区。生物物种的种源进化程度越高,其基因组中非蛋白质编码序列的组成比例越高[1],如人类基因组中编码蛋白质的DNA 只占基因组的2%左右。长期以来,对基因组序列的研究多集中在对编码区的分析上(如基因的序列组成,编码蛋白质的表达、功能及调控规律等)。由于非编码区的序列多含有一些假基因(ps eudo genes)、转座 子(trans poson 或trans posab le ele m ents)及大量的内含子和重复序列,其潜在的功能一直为研究者们所忽视。多年来人们一直将基因组中非编码序列认为是生物进化过程中形成的垃圾成分(junk DNA )[2]。然而,随着大规模转录组学(transcripto m ics)研究的进行,发现基因组中绝大部分DNA 在细胞活动过程中都是被转录成RNA 的[3],如人类基因组DNA 有93%以上都被转录成RNA,小鼠基因组的转录部分也达到63%以上[3]。这些RNA 有的呈单链存在,有的以双链形式存在。对RNA 转录组的研究经历了小RNA 的发现、大规模RNA 转录组的测定到目前的RNA 调控功能的分析和确定等阶段[3 8] 。RNA 转录 组学和功能组学的研究是目前生命科学领域的重要 研究方向。 二、基因组中非编码区转录产生的 RNA 分子种类及功能 根据RNA 片段长度的不同,自基因组中转录的 RNA 分子包括短片段RNA (s hort RNA )和长片段RNA (l ong RNA )[1,7,9,10]。短片段RNA 分子主要包括反式剪切引导RNA (trans splicing leader RNA,S L RNA )、m i cro RNA (m i R NA )、内源性小干扰RNA (en dogenous s m all i nterferi ng RNA,si R NA )、p i w i 蛋白质 结合RNA (p i w i RNA, pi RNA )和一些编码寡肽的小 mRNA 分子[11]。内源性小RNA (endogenous s m all non cod i ng RNA, s n RNA)是一类从基因组中非蛋白 质编码区转录而来的小RNA 分子。目前对内源性s nRNA 的研究主要集中在对S L RNA 、si R NA 和m i R NA 等的发现及功能分析方面。这些小RNA 主要通过影响mRNA 的成熟过程及稳定性进而调节转录因子或其它功能蛋白质的表达和发挥转录后的基因调控功能(post transcri pt i ona l gene regulat i on ,PTGR )。long RNA 主要指mRNA 前体(hnRNA )、mRNA 和一些不编码任何蛋白质的长的单链或双链RNA 片段。

宏基因组学的研究进展

宏基因组学的研究状况及其发展 摘要:宏基因组学是近年来发展起来的一门新兴学科,主要技术包括从环境样品中提取微生物混合基因组DNA、利用可培养的宿主菌建立宏基因组文库及筛 选目的基因。该技术可以克服传统培养技术的不足,是研究未培养微生物、寻找新功能基因和开发获得新资源的重要新途径。目前宏基因组学已广泛应用于各个领域,并在医药、农业、能源开发、环境修复、生物技术、生物防御等方面有了较深入的研究。 关键词:宏基因组学、宏基因组、基因组文库构建、文库筛选、未培养微生物、研究进展 随着微生物学的发展,微生物基因组全序列测定计划正在全球被快速地推行,但现有技术条件下,自然界存在的可培养微生物不到总数的1%,阻碍了该计划 的发展,使得绝大多数的微生物资源不能被开发和利用。21世纪初,随着测序能力的提高和基因组学的发展,科学家提出了一种研究不可培养微生物基因组的新思路——直接对含有各种不可培养的微生物的群体进行基因组序列的测定。这类研究称为Metagenomics,前缀“Meta”源于希腊语。意思是“超越”。科学家选择它来表示这种基因组研究超越了传统意义上分析单一物种的基因组学,将研究对象定为由种类众多的微生物组成的整个菌落。国内的研究者也据此将该术语翻译为“宏基因组学”。 1 宏基因组的概念 宏基因组 (也称微生物环境基因组、宏基因组学、元基因组学、生态基因组学) 是由Handelsman等1998年提出的新名词, 其定义为“the genomes of the total microbiota found in nature”,即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因, 目前主要指环境样品中的细菌 和真菌的基因组总和。而所谓宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象, 以功能基因筛选和测序分析为研究手段, 以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。一般包括从环境样品中提取基因组 DNA, 克隆DNA到合适 的载体,导入宿主菌体,筛选目的转化子等工作。宏基因组文库既包含了可培养的又包含了不能培养的微生物基因,避开了微生物分离培养的问题,极大地扩展了微生物资源的利用空间,增加了获得新的生物活性物质的机会,为新的医药产业和发现新的生物技术提供丰富的基因文库,并利于环境微生物有机群体的分布和功能的研究。 2 宏基因组学的研究过程 2.1 宏基因组文库的构建 宏基因组文库的构建沿用了分子克隆的基本原理和技术方法,并根据具体环境样品的特点和建库目的采用了一些特殊的步骤和策略。一般包括样品总DNA的 提取、与载体连接和克隆到宿主中。 2.1.1样品总DNA的提取 宏基因组文库构建的关键之一是获得高质量的目的样品的总DNA。目的样品 的采集是第一步,除了需严格遵循取样规则外,取样中应尽量避免对样品的干扰,缩短保存和运输的时间,使样品能更好地代表自然状态下的微生物原貌。 根据提取样品总DNA前是否分离细胞,提取方法可以分为原位裂解法和异位 裂解法。原位裂解法主要是通过去污剂处理(如SDS)、酶解法(如蛋白酶K)、机械

植物MYB类转录因子研究进展

综 述R evie w 2002201215收到,2002201228接受。 国家重点基础研究发展规划项目(973项目G 1999011604)资助。3联系人,E 2mail :zywang @https://www.360docs.net/doc/892759208.html, ,Tel :02126404209024423。 植物MYB 类转录因子研究进展 陈 俊 王宗阳3 (中国科学院上海植物生理研究所,上海200032) 摘要:植物M Y B 转录因子以含有保守的M Y B 结构域为共同特征,广泛参与植物发育和代谢的调节。含单一M Y B 结构域的M Y B 转录因子在维持染色体结构和转录调节上发挥着重要作用,是M Y B 转录因子家族中较为特殊的一类。含两个M Y B 结构域的 M Y B 转录因子成员众多,在植物体内主要参与次生代 谢的调节和控制细胞的形态发生。含3个M Y B 结构域的M Y B 蛋白与c 2M Y B 蛋白高度同源,可能在调节细胞周期中起作用。 关键词:M Y B 结构域,M Y B 转录因子,组合调控学科分类号:Q74 随着多种模式生物基因组计划的完成,如何 从这些浩如烟海的DNA 序列中揭示基因的功能以及它们有序的时空表达,已成为后基因组时代的重要课题。人类基因组计划的完成显示人类只有30000~50000个基因,生命体是如何以如此少的 基因完成如此复杂的生命活动的呢?很重要的一点在于基因的表达调控,使得每一个基因能适时、适地、适量地表达,并且使得某些基因可以产生多种功能各异的蛋白质。真核基因的表达随细胞内外环境的改变而在不同层次上受到精确调控,如染色体DNA 水平、转录水平及转录后水平的调控等。而转录水平的调控发生在基因表达的初期阶段,是很多基因表达调控的主要方式。转录水平的调控指一类称为转录因子(有时又称反式作用因子)的蛋白质特异结合到靶基因调控区的顺式作用元件上,或调节基因表达的强度,或应答激素刺激和外界环境胁迫,或控制靶基因的时空特异性表达。 转录因子通常是一种模块化的蛋白,一般由几个独立的功能域组成,包括DNA 结合功能域,转录激活功能域,蛋白2蛋白相互作用功能域,信号分子结合功能域,核定位信号区等。根据DNA 结合功能域的结构,转录因子可分为以下几类:bHL H (碱性螺旋2环2螺旋)、bZIP (碱性亮氨酸拉链)、homeodomain 蛋白、MADS 2box 蛋白、zinc 2finger 蛋 白、Myb 蛋白、Ap2/EREBP 蛋白、HSF 蛋白、HM G 蛋白和A T hook 蛋白等(Schwechheimer 和Bevan 1998)。 本文试以植物中数量最多、功能最多样化的M Y B 类转录因子为例,对该类转录因子的研究历 史和现状作一简单介绍。阐述了M Y B 转录因子的结构、功能和进化,并举例说明M Y B 类转录因子如何与其它转录因子家族成员相互作用,通过组合调控(combinatorial control )的方式实现对靶基因的精密调控。 1 MYB 类转录因子 M Y B 类转录因子家族是指含有M Y B 结构域 的一类转录因子。M Y B 结构域是一段约51~52个氨基酸的肽段,包含一系列高度保守的氨基酸残基和间隔序列(图1)。首先是每隔约18个氨基酸规则间隔的色氨酸(W )残基,它们参与空间结构中疏水核心的形成。有时色氨酸残基会被某个芳香族氨基酸或疏水氨基酸所取代,尤其是在植物R2R32M Y B 转录因子中,R3M Y B 结构域的第一 个色氨酸经常被亮氨酸、异亮氨酸或苯丙氨酸所取 代。其次,在每个保守的色氨酸前后都存在一些高度保守的氨基酸,例如在第一个色氨酸的C 2末端通常是一簇酸性氨基酸(图1)。正是上述这些保守的氨基酸残基使M Y B 结构域折叠成螺旋2螺旋2转角2螺旋(helix 2helix 2turn 2helix )结构。 1982年K lempnauer 等在禽成髓细胞瘤病毒(avian myeloblastosis virus )中鉴定出一个能直接导致急性成髓细胞白血病(acute myeloblastic leukemia )的癌基因,称为v 2myb ,不久发现在正常动物细胞中也存在相应的原癌基因c 2myb ,随后研究结果表明v 2M Y B ,c 2M Y B 蛋白都定位在细胞核中,与核基质和染色质紧密相连,而且都具有DNA 1 8植物生理与分子生物学学报,J ournal of Plant Physiology and Molecular Biology 2002,28(2):81-88

转录组学领域研究进展一览(!!!)

转录组学领域研究进展一览 关键词:Transcriptomics;RNA;RT-PCR;Profiling;Synthesis;Sequencing;Purification;Micro arrays;Extraction 转录组学(tranomics),是一门在整体水平上研究细胞中基因转录的情况及转录调控规律的学科,也就是说,转录组学是从RNA水平来研究基因的表达情况。转录组即一个活细胞所能转录出来的所有RNA的总和,是研究细胞表型和功能的一个重要手段。 本文中,小编对近年来转录组学领域的相关研究进行了盘点,分享给各位!【1】北大教授开发单细胞全转录组测序新技术 2014年4月29日,北京大学生物动态光学成像中心黄岩谊、汤富酬课题组在《美国科学院院刊》(PNAS)上发表题为“Microfluidic single-cell whole-tranome sequencing”的论文。该研究利用微流控芯片技术实现了高质量单细胞的全转录组测序样品准备,全面提高了单细胞全转录组分析的准确性和可靠性。 细胞是生命活动的基本功能单位,而在生物体内没有任何两个细胞是完全相同的。传统的生命科学与医学研究,绝大多数情况下都是针对混合的大量细胞进行的,无法观察到单个细胞之间细微的差别。近年来不断发展的实验技术,提供了更加定量与客观的证据,表明在许多关键生命过程例如胚胎发育、细胞分化、疾病发生与发展等过程中,特定的单个细胞行为,以及其间的个体化差异与异质性,导致了极其重要甚至是决定性的结果。而之前基于大量细胞平均测量所获得的结果并无法正确反映复杂生物体系的全面真实信息,严重掩盖了独立个体样本的行为以及生命现象中大量存在的随机行为。针对单个细胞的研究,是细胞生命分析技术所追求的极限状态,是对传统技术极大的挑战。 【2】doi:10.1126/science.aaf2403 在一项新的研究中,来自瑞典卡罗琳斯卡研究所和皇家理工学院等机构的研究人员开发出一种新的被称作空间转录组学(spatial tranomics)的高分辨率方法研究一种组织中哪些基因是有活性的。这种方法能够被用于所有类型的组织中,而且在临床前研究和癌症诊断中是有价值的。相关研究结果发表在2016年7月1日那期Science期刊上,论文标题为“Visualization and analysisof gene expression

转录组测序结题报告

转录组测序结题报告 1.mRNA纯化: 抽提得到的总RNA首先利用10U的DNaseI(Ambion,美国)在37℃消化1小时;然后利用Micropoly(A)PuristTM mRNA purification kit(Ambion,美国),进行mRNA纯化:把RNA稀释到250μl的体积,按照Kit的操作步骤(Cat.No:

1919)进行;最后得到的mRNA用100μl预热的THE缓冲液洗脱,利用NanoDrop 进行定量。 2.cDNA合成: cDNA合成是在Ng等2005年发表的方法基础上改进而成(文献1,图1)。第一链cDNA合成利用GsuI-oligo dT作为反转录引物,10μg的mRNA作为模板,用1000 单位的Superscript II reverse transcriptase (Invitrogen,美国)在42℃作用1小时完成;随后利用NaIO4(Sigma,美国)氧化mRNA的5’帽子结构,并连接生物素;通过Dynal M280磁珠(Invitrogen,美国)筛选连接了生物素的mRNA/cDNA,并通过碱裂解释放第一链cDNA;然后通过DNA ligase(TaKaRa,日本)在第一链cDNA的5’末端加上接头,然后通过Ex Taq polymerase (TaKaRa,日本)合成第二链cDNA。最后通过GsuI酶切去除polyA和5’端接头。 图1. 全长cDNA合成示意图 3.cDNA测序: 合成的cDNA利用超声仪(Fisher)打断到300-500bp的范围,利用Ampure beads(Agencourt,美国)进行纯化。随后纯化的cDNA利用TruSeq TM DNA XXmple Prep Kit – Set A (illumina,美国)制备文库,并利用TruSeq PE Cluster Kit (illumina,美国)进行扩增。最后在illumina机器上进行测序反应。 测序得到的数据统计见表1. 表1. Solexa测序统计 样品对照 1 2

转录组测序技术的应用及发展综述

转录组测序技术的应用及发展综述 摘要:转录组测序(RNA-Seq)作为一种新的高效、快捷的转录组研究手段正在改变着人们对转录组的认识。RNA-Seq利用高通量测序技术对组织或细胞中所有RNA 反转录而成cDNA文库进行测序,通过统计相关读段(reads)数计算出不同RNA的表达量,发现新的转录本;如果有基因组参考序列,可以把转录本映射回基因组,确定转录本位置、剪切情况等更为全面的遗传信息,已广泛应用于生物学研究、医学研究、临床研究和药物研发等。文章主要比较近年来转录组研究的几种方法和几种RNA-Seq的研究平台,着重介绍RNA-Seq的原理、用途、步骤和生物信息学分析,并就RNA-Seq技术面临的挑战和未来发展前景进行了讨论及在相关领域的应用等内容,为今后该技术的研究与应用提供参考。 关键词: RNA-Seq;原理应用;方法;挑战;发展前景 Abstract:Transcriptome sequencing (RNA-Seq) is a kind of high efficiency, quick transcriptome research methods are changing our understanding of transcriptome. RNA-Seq to use high-throughput sequencing of tissues or cells of all RNA reverse transcription into cDNA library were sequenced, through statistical correlation read paragraph (reads) numbers were calculated from the expression of different RNA transcripts, find new; if the genome reference sequence, the transcripts mapped to genomic, determine the position of the transcription shear condition, more genetic information, has been widely used in biological research, medical research, clinical research and drug development. This paper compared several methods of platform transcriptome studies and several kinds of RNA-Seq in recent years, RNA-Seq focuses on the principle, purpose, steps and bioinformatics analysis, and discusses the RNA-Seq technology challenges and future development prospect and the application in related field and other content, provide the reference for the research and application of the technology future. Key word:RNA-Seq ;application; principle; method; challenge; development prospects

转录因子Oct-4的研究进展

第6期农垦医学第31卷 转录因子Oct-4的研究进展 符毓豪王菊谢松松周宗瑶+ (石河子大学医学院组织胚胎学教研室/石河子大学医学院新疆地方 与民族高发病教育部重点实验室,新疆石河子,832002) 【摘要】oct4是维持干细胞多能性和自我更新的转录因子,它通过结合靶基因调控区,选择性地抑制分化基因表达或促进多能性基因表达。通常只在多能干细胞中表达,在分化细胞中不表达;它最终决定干细胞是保持多能性还是分化,以及向哪个方向分化。此外。Oct-4在生殖细胞肿瘤研究中也发挥重要作用。 【关键词】0ct4;多能性干细胞;研究进展 中图分类号:Q754文献标识码:A TheresearchdevelopmentoftranscriptionalfactorOct-4 FUYu-hao,WANGJu,XIESong—song,ZHOUZong—yao术 (DepartmentofHistologyandEmbryology,ShiheziUniversityschoolofmedicine,shiheziXinjiang,832002) 【Abstract】OctMisacriticaltranscriptionalfactomtokeeppluripotencyandself-renewalofstemceilsinvivoandinvitm,anditusuallyexpressasonlyinpluripotentcells.Itbindstotheregulatoryregionsoftargetedgene.Itfinallydeter-minesthecellsdestiny:keepingpluripotencyorturningtodifferentiation.Also,itplaysanimportantpartintheGermcelltumor. 【Keywords】Oct4;pluripotent;development Oct-4是具有较强特异性的胚胎干细胞标志物,它参与胚胎发育过程中多向性分化的调节。胚胎干细胞自我更新分子机制是干细胞研究的前沿及热点课题。除外源性信号如LIF、BMP、Wnt能维持干细胞的未分化状态外,转录因子Oct-4特异性表达于全能胚胎干细胞,并与其它转录因子如Sox2一起构成调控网络,共同调控与胚胎干细胞多能性相关的一系列重要分子,是保持胚胎干细胞自我更新和多潜能性的关键分子。 1Oct-4的结构 Oct-4是由Pou5F1基因编码产生的,是含POU(Pit.Oct—Unc)结构域的转录因子家族中的一员。Oct-4基因定位于人类染色体6p21.3,其编码的蛋白Oct-4(也叫Oct-3)是一种POU转录因子,属于V类POU蛋白。POU转录因子是DNA结合蛋白,由POU特异域(POUS)和POU同源域(POUH)的双枝结构构成。POU特异域位于N端,由富含脯氨酸和酸性残基的75个氨基酸组成;POU同源域位于c端,由富含脯氨酸、丝氨酸和苏氨酸的60个氨基酸组成。这两个亚区间通过含有15—56个氨基酸组成的易变区相连接,经螺旋一转角一螺旋结构与DNA结合位点发生联系,激活启动子或增强子区域内带有顺式反应元件基因的转录。后者的特征性结构为ATGCAAAT八聚体结构域,又称为Oct结构。它通过结合含ATGCAAAT的八聚体结构域而活化相应靶基因,激活或抑制干细胞分化过程中基因表型的转变。 2Oct-4的上游调控机制 Oct-4的表达由定位于其基因上游的顺式作用元件在转录水平进行调控。①增强子:Oct-4基因有两个增强子DE和PE。发育中Oct-4的表达依次由DE(桑椹胚、ICM)_÷PE(上胚层)一DE(PGCs)控 基金项目:兵团科技攻关计划项目项目编号:2006GG33 t通讯作者:周宗瑶,组织胚胎学教授,从事生殖与发育方面研究。?542?

高通量测序技术在宏基因组学中的应用

高通量测序技术在宏基因组学中的应用 196 中国医药生物技术 2019年6月第8卷第3期 Chin Med Biotechnol, June 2019, Vol. 8, No. 3 DOI:10.3969/cmba.j.issn.1673-713X.2019.03.008 ·综述· 高通量测序技术在宏基因组学中的应用 刘莉扬,崔鸿飞,田埂 随着生命科学及研究技术的不断发展,人们对生命现象的了解更加深入。微生物因为 其在工业、农业、医疗卫生、环境保护等各方面的重要地位,被越来越多的研究者关注。 自然状态下,微生物几乎无处不在,无论是在自然环境如土壤、海洋甚至一些极端环境 (如酸矿水)中,还是在人类和动物的皮肤、口腔、肠道中,微生物都与它们所在的环境 相伴相生。除生存环境极为广泛以外,微生物的数量还极为庞大,以人类为例,人类的基 因总数只占人类身上微生物基因总数的 1% 左右[1] 。这些微生物是环境能量、物质代谢的重要中间环节和组成部分,它们有些可以代谢 生成周围其他生物所必需的底物,而有些则会代谢生成毒性物质,导致环境污染,或者宿 主的疾病。因此,对微生物的研究显得极为重要。 微生物的传统研究方法主要是依赖将微生物进行培养和分离(culture-dependent)。然而,到目前为止,绝大多数微生物(99% 以上)不能依靠这样的方式获得,这极大地限 制了人们对微生物的研究。随着测序技术和数据处理分析能力的飞速发展,以及人们对微 生物之间相互依存的共生互利和平衡关系的深入认识,一种可以对环境中所有微生物进行 研究而不依赖培养的新方向——宏基因组学应运而生。 1 宏基因组简介 宏基因组(Metagenome),或称为“元基因组”,于 1998 年由 Handelsman 等[2] 在一篇研究土壤微生物的文章中首次提出,当时的定义是“微生物群落中的所有基因组的 集合”。在此之后,宏基因组的概念渐渐为人们所接受,并涌现了许多针对海洋、土壤、 人类肠道等微生物的典型研究工作[3-6],目前的宏基因组研究主要指对细菌的研究。 宏基因组学研究与传统微生物研究方式的最大区别在于把微生物看成一个整体,摆脱 了对单个微生物培养和分离的步骤,直接对环境中所有的微生物进行研究,进而可以全面 地对所有微生物进行分析。随着宏基因组学研究技术的发展和研究者兴趣的不断增加,对 其研究手段和研究对象的重点也不断发生着变化,大致可以分为三个阶段:①针对 16S rRNA 为主要研究对象的核糖体 RNA 研究;②以环境中所有遗传物质为研究对象;③以环 境中所有转录本为主要研究对象的宏转录组研究。狭义的宏基因组学研究指第二个阶段, 本文提到的“宏基因组学”倾向于广义的概念,即三个阶段的总和。

宏基因组学研究方法及应用概述

宏基因组学研究方法及应用概述彭昌文 (山东省济宁学院生物学系 273155) 颜 梅 (山东省曲阜师范大学生命科学学院 273165) 摘 要 本文简要介绍了宏基因组的概念,概述了其原理及应用。 关键词 宏基因组 宏基因组学 环境基因组学 基因文库的构建 迄今,人们对微生物世界的认识基本都来源于对占细菌总种数不到1%的微生物的单个种群的孤立研究结果。然而微生物是通过其群落而非单一种群来执行在自然界物质与能量循环中的作用的,对微生物群落作为整体的功能认识远远落后于对其个体的认识。这种状况不利于全面认识微生物在自然界所扮演的重要角色。为了获得完整的环境微生物基因表达产物,早在1978年许多学者就提出了直接从环境中提取微生物DNA的思路,1998年,AR I A D phar maceutical公司的科学家Handels man等首次提出宏基因组的概念[1]。宏基因组(the genomes of the total m icrobi ota found in nature)是指生境中全部微生物基因的总和[2]。它包含了可培养的和未培养的微生物的基因总和,微生物主要包括环境样品中的细菌和真菌。而宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系等为研究目的的新的微生物研究方法,也称为微生物环境基因组学、元基因组学或生态基因组学。它主要研究从环境样品获得的基因组中所包含的微生物的遗传组成及其群落功能,为充分认识和开发利用非培养微生物,并从完整的群落水平上认识微生物的活动、最大限度地挖掘微生物资源,提供了可能,已成为国际生命科学技术研究的热点和前沿。 1 宏基因组学的研究方法 宏基因组学的研究过程一般包括从环境样品中提取基因组DNA,克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作,可分为三个步骤。 1.1 宏基因组的提取 在宏基因组筛选过程中,目的基因是整个核苷酸链中的一部分,因此样品前期的富集能够提高筛选命中率。DNA的提取是宏基因文库构建的关键步骤。提取步骤通常需要满足两个条件:既要尽可能提取样品所有微生物的基因,又要保持片段的完整和纯度。目前所开发的DNA提取方法有两种:细胞提取法和直接裂解法。直接裂解法包括物理法(冻融法、超声法、玻璃球珠击打法、液氮碾磨法)、化学法(常用化学试剂有表面活性剂、盐类、有机溶剂等)及酶裂解法。另外,依据提取样品总DNA前是否分离细胞,可以分为原位裂解法和异位裂解法。原位裂解法可以直接破碎样品中的微生物细胞而使DNA 得以释放,由于无需对样品微生物进行复苏,且黏附颗粒上的微生物细胞亦能被裂解,所得DNA能更好地代表样品微生物的多样性。此法操作容易、成本低,DNA 提取率高,但由于机械剪切作用较强,所提取的DNA 片段小(1~50kb),通常适用于构建小片段插入文库(以质粒和λ噬菌体为载体)的DNA提取。异位裂解法则先采用物理方法将微生物从样品中分离出来,然后采用较温和的方法抽提DNA。此法条件温和,可获得大片段DNA(20~500kb),纯度高,但操作繁琐、成本高、得率低,通常适用于构建大片段插入文库(以柯斯质粒或者细菌人工染色体为载体)的DNA提取。1.2 宏基因组文库的构建 宏基因组文库的构建需适宜的克隆载体。通常用于DNA克隆的载体主要包括质粒、黏粒和细菌人工染色体等。质粒一般用于克隆小于10kb的DNA片段,适用于单基因的克隆与表达。黏粒的插入片段可达40kb左右,细菌人工染色体插入片段可达350kb,可用来制备由多基因簇调控的微生物活性物质的完整代谢途径的相关片段文库。1.3 目的基因的筛选 目的基因的筛选方法包括序列分析和功能分析两种。序列分析适用于小片段DNA文库的基因筛选;而功能分析通常适用于大片段DNA文库的筛选。序列分析筛选不依赖于重组基因在外源宿主中的表达,因为所使用的寡聚核苷酸引物是直接通过DNA序列中的保守区域设计的,反映了氨基酸序列的保守性,可获得未知序列的目的基因。该方法对DNA量的要求不高,筛选到新活性物质的可能性较大。序列分析的另一个手段是对宏基因组克隆测序,无论是全部或随机测序都是发现新基因的有效手段。 对于功能分析而言,首先需获得目的克隆,然后通过序列和生化分析对其进行表征。此法能快速鉴定出全新且有开发价值的活性物质,可用于医药、工农业等行业。由于此法检出率较低,工作量较大,且受检测手段的限制,所以常要借助于高通量筛选。 2 宏基因组学的应用 2.1 在生态学方面的应用 当今微生物生态学研究的主要目的之一是将微生物与其所在环境中的代谢过程相联系。应用16s r DNA作为系统发育锚去鉴定属于某种微生物的克隆,然后对基因进行测序,从而获得

单细胞转录组扩增原理比较

Single Cell Research Solution Gene Company 范丹青

CellCut Plus 激光显微切割系统或 CellEctor Plus 自动化单细胞分选系统 细胞分离 1-100细胞 RNA 提取 10pg-1ng 总RNA ArrayPure?RNA 扩增 TargetAmp? 2-Round aRNA Amplification Kit 扩增得到 10ug mRNA RNA 扩增 Message BOOSTER ? cDNA Synthesis from Cell Lysates Kit 扩增得到1ng mRNA

CellCut Plus 激光显微切割系统或CellEctor Plus 自动化单细胞分选系统 细胞分离 100-500 细胞 RNA 提取 NS RNA XS kit 1-3片FFPE 切片(6cm 2) RNA 提取NS total RNA FFPE XS kit RNA 扩增 1-5ng 总RNA Message BOOSTER ? Whole-Transcriptome cDNA Synthesis RNA 提取 ArrayPure?扩增得到10ug mRNA RNA 扩增 TotalScript? RNA-Seq Kit 构建文库

2RNA 提取NS total RNA FFPE XS kit RNA 扩增 1-5ng 总RNA Message BOOSTER ? Whole-Transcriptome cDNA Synthesis CellCut Plus 激光显微切割系统或 CellEctor Plus 自动化单细胞分选系统 细胞分离 1-3片FFPE 切片(6cm )

转录组学主要技术与应用研究

转录组学主要技术及其应用研究 姓名:梁迪 专业:微生物学 年级:2013 学号:3130179 二零一四年六月十五日

转录学主要技术及其应用研究 摘要:转录组(transcriptome)是特定组织或细胞在某一发育阶段或功能状态下转录出来的所有RNA的集合。转录组学研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理。目前,转录组学研究技术主要包括两种:基于杂交技术的微阵列技术(microarray)和基于测序技术的转录组测序技术,包括表达序列标签技术(Expression Sequence Tags Technology,EST)、基因表达系列分析技术(Serial analysis of gene expression,SAGE)、大规模平行测序技术(Massively parallel signature sequencing,MPSS)、以及RNA 测序技术(RNA sequencing,RNA-seq)。文章主要介绍了以上转录组学主要研究技术的原理、技术特点及其应用,并就这些技术面临的挑战和未来发展前景进行了讨论,为其今后的研究与应用提供参考。 关键词:转录组学;微阵列技术;转录组测序技术;应用 Study on the main technologies of transcriptomics and their application Abstract: The transcriptome is the complete set of transcripts for certain type of cells or tissues in a specific developmental stage or physiological condition. Transcriptome analysis can provide a comprehensive understanding of molecularmechanisms involved in specific biological processes and diseases from the information on gene structure and function. Currently, transcriptomics technology mainly includes microarry -based on hybridization technology and transcriptome sequencing-based on sequencing technology, involving Expression sequence tags technology, Serial analysis of gene expression, Massively parallel signature sequencing and RNA sequencing. The detailed principles, technical characteristics and applications of the main transcriptomics technologies are reviewed here, and the challenges and application potentials of these technologies in the future are also discussed. This will present the useful information for other researchers. Keywords: transcriptomics ; microarray ; transcriptome sequencing; application 随着后基因组时代的到来,转录组学、蛋白质组学、代谢组学等各种组学技术相继出现,其中转 录组学是率先发展起来以及应用最广泛的技术[1]。

宏基因组学概述

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics Wang Ying, Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,) Key words: Metagenome; Metagenomics; The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA (也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"met a-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和Lior Pachter 将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生 物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法 宏基因组学的研究过程一般包括样品和基因(组)的富集;提取特定环境中的基因组 DNA;构建宏基因组 DNA 文库;筛选目的基因;目的基因活性产物表达(图 1)五个步骤。

植物bHLH转录因子研究进展_刘文文

生物技术进展 2013年第3卷第1期7 11 Current Biotechnology ISSN 2095-櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅殯 殯 殯 殯 2341 进展评述 Reviews 收稿日期:2012-12-12;接受日期:2012-12-31基金项目:国家自然科学基因项目(30970221)资助。 作者简介:刘文文,硕士研究生,研究方向为玉米氮利用效率生理学及拟南芥抗逆作用机制。*通讯作者:李文学,研究员,博士,主要 从事小RNA 功能及植物抗逆机制研究。E- mail :liwenxue@caas.cn 植物bHLH 转录因子研究进展 刘文文,李文学 * 中国农业科学院作物科学研究所,北京100081摘 要:bHLH (basic helix-loop-helix protein )是真核生物中存在最广泛的一大类转录因子,其通过特定的氨基酸残基与 靶基因相互作用,进而调节相关基因的表达。系统发育分析表明植物的bHLH 转录因子为单源进化。bHLH 转录因子不仅对于植物的正常生长和发育必不可缺,同时参与植物适应多种逆境胁迫的反应过程。然而,由于植物bHLH 家族成员众多、 参与的生物过程复杂,对于其了解还不是十分清楚。本文针对植物bHLH 的进化、结构特点、生物功能,尤其是在适应逆境胁迫中作用等的最新研究结果进行综述,以期为进一步深入了解植物bHLH 转录因子的功能提供理论参考。关键词:bHLH ;结构特点;生物学功能DOI :10.3969/j.issn.2095-2341.2013.01.02 Progress of Plant bHLH Transcription Factor LIU Wen-wen ,LI Wen-xue * Institute of Crop Science ,Chinese Academy of Agricultural Sciences ,Beijing 100081,China Abstract :Basic helix-loop-helix proteins (bHLHs )are found throughout the eukaryotic kingdom ,and constitute one of the largest families of plant transcription factors.They can regulate gene expression through interaction with specific motif in target genes.Phylogenetic analysis indicates that plant bHLHs are monophyletic.bHLHs are necessary for plant normal growth and development ,and play important roles in abiotic-stress responses.However ,we know little about their origins ,structures ,and functions due to the large quantities and complexity of plant bHLH family.This paper reviews on the evolution ,structure characteristics ,biological function of plant bHLHs ,especially their functions in adapting to abiotic-stress tolerance ,so as to provide a theoretical reference for further research on the function of plant bHLH transcription factors.Key words :bHLHs ;structural features ;biological function bHLH 转录因子广泛存在于真核生物。自 bHLH 发现以来,越来越多的研究表明该转录因子对于真核生物的正常生长及发育必不可缺。在酵母等单细胞真核生物中,bHLH 参与染色体的分离、新陈代谢调节等过程[1] ;在动物中,bHLH 主要与感知外界环境、调节细胞周期、组织分化等 相关 [2 4] 。植物中bHLH 家族成员数量众多,仅 次于MYB 类转录因子,譬如在拟南芥中有超过140个bHLH 转录因子,水稻中则超过160个。家族的庞大不可避免的造成功能冗余,使研究单个bHLH 转录因子的功能相对困难。本文拟对有限的植物bHLH 家族研究结果,尤其是参与植物 适应逆境胁迫过程中的作用进行综述,以期为进 一步深入了解植物bHLH 转录因子的功能的提供理论参考。 1 植物bHLH 的结构特点、家族分类及 进化 1.1 bHLH 的基本结构 bHLH 转录因子因含有bHLH 结构域而得名。bHLH 结构域由50 60个氨基酸组成,可分为长度为10 15个氨基酸的碱性氨基酸区和40个氨基酸左右的α-螺旋-环-α-螺旋区(HLH 区)。

相关文档
最新文档