锅炉原理过热器及再热器资料

合集下载

锅炉原理-过热器与再热器

锅炉原理-过热器与再热器

1-过热器汽温特性;2-再热器汽温特性
Page 25
Principles of Boiler
2023/10/11
六、典型的过热器与再热汽系统
1、系统布置要求: 过热器的系统布置,应能满足蒸汽参数的要求,并具
有灵活的调温手段,还应保证运行中管壁不超温和具有较 高的经济性等。 2、过热器布置原则 (1)中压锅炉:一般仅采用对流过热器。 (2)大型锅炉:采用辐射—对流组合式过热器系统。
某超临界1900t/h锅炉高温过热器 ➢布置位置:水平烟道后部; ➢管径:38mm; ➢管道排列:
82排×12管/排=984根
Page 12
Principles of Boiler
2023/10/11
蒸汽与烟气流速的选择:
➢ 蒸汽流速:保持一定质量流速,使过热器和再热器得 到可靠冷却,同时要控制过热器或再热器压降,一般 过热器质量流速800-1100kg/(m2·s),再热器内蒸汽质量 流量250-400kg/(m2·s) 。
➢ 烟气流速:应综合考虑传热效果、管子的磨损和积灰 情况。烟气流速过高,传热效果较好,所需换热面积 少,积灰少,但管子的磨损严重。水平烟道内,烟温 高,灰粒较软,烟气流速10-15m/s;烟气低温区,飞灰 磨损能力加剧,控制流速在6-9m/s。
Page 13
Principles of Boiler
2023/10/11
2023/10/11
3、按管子的布置方式分类 立式(垂直式):布置在水平烟道
内,支吊简单,易积灰,不利疏水。 卧式(水平式):布置在尾部竖井
中,支吊复杂,多采用有工质冷却的 受热面管子作为悬吊管,便于疏水。
Page 11
2-悬吊管;3-联箱

(完整版)过热器再热器

(完整版)过热器再热器

四 章
开对流过热器,应用广。

热 器
平行并列蛇形管+集箱
与 再 热
器结

管内蒸汽 管外烟气 立式 卧式
dw=38 42 壁厚=3-7
S1=(2-3.5)d S2=f(弯管半径)
三、对流过热器
第 四 章 过 热 器 与 再 热 器
《锅炉原理》
三、对流过热器
结构上的一些措施
第 四
A、当烟温达到1000℃上
器 与
而由于受到阻力的限制,又不能采用过
再 多的混合和交叉措施。由于这些因素,使
热 器
得再热器的工作条件比过热器中更差。
结构
1、采用较大的管径(42-60mm)
2、多管圈(直到6-8根)。
3、采用纵向内肋片管,由于管子内壁表面 积增加,在同样工作条件下,可以降低 管壁温度约20~30℃。
《锅炉原理》

器 C、外圈管子

D、换外到圈内管圈子;

E、用外更圈好管材子料短; 路.
《锅炉原理》
二、半辐射过热器—屏式过热器
《锅炉原理》
屏式过热器的优点:

四 ①降低进入对流受热面烟温,防止密集对流受热面结渣.

过 热
②减轻了大型锅炉炉膛壁面积相对较小,不能布置辐射受
器 热面的困难。

再 ③使过热器布置在更高的烟温区域,减少金属耗量.
章 过
G
热 器 与 再 热 器
ip
i pj

qp Ap q pj Apj
Gp
rl jg sl
G pj
i p

q p Ap Gp
i pj

电厂锅炉原理及设备

电厂锅炉原理及设备

电厂锅炉原理及设备一、锅炉原理锅炉是一种将水加热并产生蒸汽的设备,它是电厂中最重要的设备之一。

电厂锅炉的原理是将燃料燃烧产生的热能传递给水,使水发生蒸发,产生高温高压的蒸汽,蒸汽通过汽轮机转化为机械能,再通过发电机转化为电能。

锅炉的主要组成部分包括炉膛、水冷壁、过热器、再热器、空气预热器、除尘器和废气处理设备等。

二、锅炉设备1. 炉膛炉膛是锅炉的核心部分,是燃料燃烧的地方。

炉膛的形状和大小根据燃料种类和燃烧方式不同而不同。

例如,燃煤锅炉的炉膛通常为长方形或圆形,而燃气锅炉的炉膛通常为水平或倾斜的圆筒形。

2. 水冷壁水冷壁是一种由水管组成的壁,它将炉膛内的高温烟气与水管中的水隔开,以保护锅炉壁和增加热量传递面积。

水冷壁的材料通常是钢管或合金钢管。

3. 过热器过热器是一种将蒸汽加热至高温的设备,它可以将蒸汽的温度提高到540℃以上,以提高汽轮机的效率。

过热器通常安装在锅炉的后部,烟气从水冷壁经过过热器后进入再热器。

4. 再热器再热器是一种将蒸汽再次加热的设备,它可以使蒸汽的温度再次提高,以进一步提高汽轮机的效率。

再热器通常安装在过热器的后面,烟气从再热器经过空气预热器后进入除尘器。

5. 空气预热器空气预热器是一种将进入锅炉的空气预先加热的设备,它可以提高燃烧效率和减少污染物排放。

空气预热器通常安装在锅炉的前部,烟气从除尘器经过空气预热器后排放到大气中。

6. 除尘器除尘器是一种将烟气中的固体颗粒物过滤掉的设备,以减少污染物排放。

除尘器通常采用静电除尘、布袋除尘或湿式除尘等技术。

7. 废气处理设备废气处理设备是一种将烟气中的二氧化硫、氮氧化物等有害气体去除的设备,以减少大气污染。

废气处理设备通常采用脱硫、脱硝等技术。

三、锅炉的应用锅炉广泛应用于电力、化工、钢铁、纺织、造纸等行业。

其中,电力行业是锅炉的主要应用领域,电厂锅炉是电力产业的核心设备之一。

例如,中国大唐集团公司的南京南瑞热电厂,采用的是两台超超临界机组,每台机组配套的锅炉蒸汽参数为25.4MPa/571℃,发电机额定功率为1000MW。

锅炉原理-第4章-过热器

锅炉原理-第4章-过热器

第4章过热器与再热器4.1 过热器与再热器的结构型式过热器的作用是将蒸汽从饱和温度加热到额定的过热温度。

在锅炉负荷或其它工况变动时,应保证过热温度的波动处在允许的范围之内。

在现代电站锅炉中,蒸汽过热器是锅炉的一个必备的重要部件,在很大程度上影响着锅炉的经济性和运行安全性。

在工业锅炉中,一般采用饱和蒸汽,常把过热器看作为辅助受热面,过热汽温不超过400℃,通常布置在对流管束中间的烟温小于700~800℃的区域中,工作是可靠的。

在电站锅炉中,提高过热蒸汽的参数是提高火力发电站热经济性的重要途径。

过热蒸汽参数的提高受到金属材料的限制。

过热器的设计必须确保受热面管子的外壁温度低于钢材的抗氧化允许温度并保证其机械强度。

随着锅炉用金属材料的发展,我国电站锅炉已普遍采用了高压高温(9.8MPa,540℃)和超高压参数(13.7MPa,540和555℃),并已发展亚临界压力参数(16.7MPa,540和555℃),国外已有不少锅炉采用超临界压力(24.5MPa,540~570℃)参数,也有个别机组采用更高的压力和温度参数。

随着蒸汽压力的提高,为了减少汽轮机尾部的蒸汽湿度以及进一步提高电站的热经济性,在高参数电站中普通采用中间再热系统,即将汽轮机高压缸的排汽再回到锅炉中加热到高温,然后再送到汽轮机的中压缸及低压缸中膨胀作功。

这个再加热的部件称为再热器。

通常把高压过热器中加热的蒸汽称为(一次)过热蒸汽,再热器中加热的蒸汽称为再热蒸汽(二次过热蒸汽)。

再热蒸汽的参数与热力循环的经济性有关。

一般,再热蒸汽的压力大致为过热蒸汽压力的五分之一左右,温度与一次过热汽温相近。

例如我国125MW,400t/h锅炉中,过热蒸汽的参数为13.7MPa,555℃;再热蒸汽的进出口压力为2.5/2.35MPa,温度也为555℃。

200MW,670t/h锅炉中,过热蒸汽的参数为13.7MPa,540℃;再热蒸汽进出口压力为2.7/2.5MPa,温度也为540℃。

第七章 过热器和再热器

第七章  过热器和再热器
2020年4月7日

(1)按管子排列方式分类
顺列:传热系数小 错列:管壁磨损严重
2020年4月7日
(2)按蒸汽和烟气的相对流动方向分类
顺流式
• 传热温差小,所需受热面多,蒸汽出口烟温低,壁温低;工作安全,经济性差;用于 高温段(末级)
逆流式
• 传热温差大,节省金属耗量,壁温高;安全性差;用于低温段(进口)
2020年4月7日
第二节 过热器和再热器的结构型式 及其气温特性
一、对流式过(再)热器
1. 布置位置:水平烟道或垂直竖井
2. 传热方式:吸收烟气对流放热量
3. 结构:蛇形管 + 进、出口联箱
4. 分类
(1)管子排列方式 (2)蒸汽和烟气相对流动方向 (3)受热面布置方式
2020年4月7日
低过出汽吊管
一定温度(540~550℃)的
过热蒸汽
2. 再热器
汽轮机高压缸排气加热到tzr
(与tgr相等或相近)
中压缸、低压缸中膨胀做功
2020年4月7日
第一节 过热器和再热器的作用及其特点
二、蒸汽参数的选择
1. 金属材料性能:540 ~ 550℃ 2. 运行中保持气温稳定:气温波动不超过+5 ~ -10℃ 3. 可靠调温手段:维持额定气温 4. 减少并联管间热偏差
积灰、结渣不均匀
(2)炉内温度场和速度场不均 • 原因
a. 燃烧器设计或锅炉运行:风速、煤粉浓度不 均,火焰中心偏斜,残余旋转 b. 对流受热面横向节距不均,形成烟气走廊 c. 屏过辐射角系数随管排数的变化规律
• 后果
a. 沿壁面宽度、高度热负荷差别大 b. 烟道中部热负荷大,两侧小
2020年4月7日
2020年4月7日

锅炉的工作原理及工作特性

锅炉的工作原理及工作特性

锅炉的工作原理及工作特性锅炉是一种将液体(通常是水)加热转化为蒸汽或者热水的设备。

它是工业生产和生活中常用的热能转换设备之一。

下面将详细介绍锅炉的工作原理及工作特性。

一、锅炉的工作原理锅炉的工作原理基于热力学第一定律,即能量守恒定律。

锅炉通过燃烧燃料产生热能,将热能传递给锅炉内的工质(通常是水),使其温度升高或者转化为蒸汽。

锅炉的主要组成部份包括炉膛、燃烧器、烟道、水冷壁、过热器、再热器、空气预热器、除尘器等。

1. 燃烧系统:燃烧系统由燃料供应系统和空气供应系统组成。

燃料供应系统将燃料输送到燃烧器中,空气供应系统提供所需的氧气。

燃烧器中的燃料与空气混合后,在炉膛中燃烧产生高温燃烧气体。

2. 烟道系统:燃烧产生的烟气通过烟道系统排出。

烟道系统包括烟道、烟囱和风机。

烟道中的烟气在与锅炉内的工质进行热交换后,温度降低,通过烟囱排出。

3. 水冷壁系统:水冷壁是锅炉内部的一种冷却设备,用于吸收炉膛中高温燃烧气体的热量。

水冷壁由管子组成,内部通过循环水来吸收热量,保持壁面温度在安全范围内。

4. 过热器和再热器:过热器和再热器用于进一步提高工质的温度。

过热器将蒸汽加热至高温高压状态,再热器将蒸汽再次加热,提高其能量利用效率。

5. 空气预热器:空气预热器用于提高燃料燃烧的效率。

它通过将烟气中的余热传递给空气,使空气预热,减少燃料的消耗。

6. 除尘器:除尘器用于净化烟气中的固体颗粒物。

它通过过滤或者静电除尘等方法,将烟气中的灰尘和颗粒物去除,保护环境。

二、锅炉的工作特性1. 热效率高:锅炉的热效率是衡量锅炉性能的重要指标之一。

热效率高意味着锅炉能够更有效地利用燃料产生热能。

现代高效锅炉的热效率可以达到90%以上。

2. 稳定可靠:锅炉在工作过程中需要保持稳定的燃烧和热交换。

稳定可靠的锅炉能够提供稳定的热能输出,满足工业生产和生活的需求。

3. 调节性能好:锅炉需要根据实际需要进行热负荷的调节。

调节性能好的锅炉能够快速响应负荷变化,并保持稳定的工作状态。

电厂锅炉原理课件过热器和再热器

电厂锅炉原理课件过热器和再热器
再热器
再热器的优点在于能够提高蒸汽的温度和压力,增加其在汽轮机中的做功能力。同时,再热器能够进 一步降低汽轮机入口的蒸汽湿度。但是,再热器的制造成本较高,且容易出现传热管爆裂等问题。
应用场景的比较
过热器
过热器广泛应用于火力发电厂、核电站、石 油化工等领域中的各种锅炉和汽轮机中。特 别是在火电厂中,过热器是锅炉的关键部件 之一,对锅炉的安全和经济运行起着重要的 作用。
热力系统原理
锅炉与汽轮机、发电机等设备组成热力系统,实现能 量的转换和利用。
电厂锅炉的主要类型
以生物质为燃料,通过燃 烧产生热量。
以核反应堆为热源,通过 核裂变产生热量。
以煤为主要燃料,通过燃 烧产生热量。
火电厂锅炉
生物质能电厂锅炉 核电厂锅炉
电厂锅炉的发展趋势
高效低污染
多功能化
提高锅炉效率,降低污染物排放,实 现绿色发展。
再热器
再热器主要应用于大型火力发电厂和核电站 中,特别是在高压缸和中压缸联合做功的汽 轮机中应用较多。再热器能够提高汽轮机的 效率,降低能耗,因此在能源利用领域中具
有广泛的应用前景。
05
CATALOGUE
过热器与再热器的未来发展
技术创新与改进
新型传热技术
研发更高效、环保的传热材料和方式,提高过热器和再热器的热 效率。
在运行过程中,需要控制好锅炉的运行参数,如温度、压 力、流量等,以避免对再热器造成过度的热冲击和机械应 力。同时,也需要定期对再热器的各项参数进行监测和记 录,以便及时发现和处理问题。
04
CATALOGUE
过热器与再热器的比较
工作原理的比较
过热器
过热器的主要功能是将饱和蒸汽加热成过热 蒸汽,提高蒸汽的焓值,使其具有更大的做 功能力。过热器利用高温烟气作为热源,通 过传热管将热量传递给管内的蒸汽。

电站锅炉过热器和再热器的布置和特点

电站锅炉过热器和再热器的布置和特点

电站锅炉过热器和再热器的布置和特点一. 过热器与再热器结构型式1.对流过热器对流过热器布置在锅炉的对流烟道中,主要依靠对流传热从烟气中吸收热量。

在中小型锅炉中,一般采用纯对流式过热器,在大型锅炉中,采用复杂的过热器系统,然而对流过热器仍是其中主要的部分。

对流过热器有垂直布置和水平布置的两种型式。

垂直式过热器通常布置在炉膛出口的水平烟道中,其优点是结构简单,吊挂方便,结灰渣较少,得到了广泛的应用。

其主要缺点是停炉后管内积水难以排除,长期停炉将引起管子腐蚀。

在升炉时,由于内积存部分水,在工质流量不大时,可能形成气塞而将管子烧坏,因此在升炉时应控制过热器的热负荷,在空气没有完全排除以前,热负荷不应过大。

布置在尾部竖井中的对流过热器以及塔式和箱式锅炉的过热器采用水平布置的方式。

水平式过热器的优点是易于疏水排气,但支吊比较困难,在高烟温区通常采用管子吊挂的方式,以节省高合金钢的耗量。

对流过热器是由大量平行连接的蛇形管束所组成,其进出口与集箱相连,蛇形管采用外径为32-42mm的无缝钢管制成,壁厚3-7mm,由强度计算确定,过热器所用材料决定于其工作温度。

吊挂和定距零件由于没有工质冷却,工作温度高,通常采用高Cr,Ni材料。

过热器的布置按蒸汽与烟气的流动方向可成顺流、逆流、双逆流或混流布置,如图2.7-1所示。

逆流布置的温压最大,但工作条件最差,顺流布置的温压最小,耗用金属最多。

一般在低烟温区采用逆流,在高烟温区采用混流布置。

图7-18 过热器中蒸汽与烟气流动方向图(a)顺流(b)逆流(c)双逆流(d)混流过热器并联蛇形管的数目由蒸汽及烟气的流速确定。

蒸汽流速系根据管子必须的冷却条件和流动阻力不致过大的原则来选取。

通常过热器系统的总流动阻力应不超过过热蒸汽出口压力的10%。

过热器中烟气流速根据管子不受磨损和不易积灰以及通过技术经济比较来选择,在燃煤炉中,一般为10~14m/s,在油炉和气炉中,则可提高到20m/s。

第五章过热器和再热器

第五章过热器和再热器
一般情况下,汽压上升而汽温 下降是给水量增加的结果。如果给水 阀开度未变,则有可能是给水压力升 高使给水量增加。更应注意的是,当 给水压力上升时,不但给水量增加, 而且喷水量也自动增大。因此,应同 时减小给水量和喷水量,才能恢复汽 压和汽温。
3. 中间点温度偏差大
当中间点的温度保持超出对应负荷 下预定值较多时,有可能是给水量信号 或磨煤机煤量信号故障导致自控系统误 调节而使煤水比严重失调,此时应全面 检查、判断给煤量、给水量的其他相关 参数信号,并及时切换至手动。因此, 即使采用了协调控制,也不能取代对中 间点温度和煤水比进行的必要监视。
前者称为以水为主的调节方法;后 者称为以燃料为主的调节方法。一般燃 煤的直流锅炉,由于煤量不易准确控制, 常采用以水为主的调节方法。
细调:在直流锅炉的汽水通道上布置几处 调节灵敏的喷水减温器,作为调节手段。 一般在直流锅炉过热器的级与级之间设 有2~3级喷水减温器,其作用除了调节 过热汽温以外,还保证过热器金属的安 全。
对流式过热器和再热器的积灰使传热量减小,使 过热汽温和再热汽温降低。
在调节煤水比时,若为炉膛结焦,可直接增大煤 水比;但过热器结焦,则增大煤水比时应注意监视水 冷壁出口温度,在其不超温的前提下来调整煤水比。
4. 过量空气系数
当增大过量空气系数时,炉膛出口烟温基本 不变。但炉内平均温度下降,炉膛水冷壁的吸热 量减少,致使过热器进口蒸汽温度降低,虽然对 流式过热器的吸热量有一定的增加,但前者的影 响更强些。在煤水比不变的情况下,过热器出口 温度将降低。若要保持过热汽温不变,也需要重 新调整煤水比。
汽温信号
燃料和给水流量发生扰动,主蒸汽温度的响应滞止 时间与飞升时间应较快和 便于检测等条件,通常在过热区的开始部分选 取的一个合适的地点,根据该点工质温度来控 制“煤水比”。

过热器再热器省煤器

过热器再热器省煤器

过热器
锅炉中将蒸汽从饱和温度进一步加热至过热温度的部件,又称蒸汽过热器。

大部分工业锅炉不装设过热器,因为许多工业生产流程和生活设施只需要饱和蒸汽。

在电站、机车和船用锅炉中,为了提高整个蒸汽动力装置的循环热效率,一般都装有过热器。

再热器
再热器实质上是一种把作过功的低压蒸汽再进行加热并达到一定温度的蒸汽过热器,再热器的作用进一步提高了电厂循环的热效率,并使汽轮机末级叶片的蒸汽温度控制在允许的范围内。

为了提高大型发电机组循环热效率,广泛采用中间再热循环。

从锅炉过热器出来的主蒸汽在汽轮机高压缸作功后,送到再热器中再加热以提高温度,然后送入汽轮机中压缸继续膨胀作功,称为一次中间再热循环,可相对提高循环效率4~5%。

有些大型机组,在中压缸后再次将排汽送回锅炉加热,称为两次中间再热循环,可再相对提高循环效率的2%左右。

个别试验机组甚至采用三次中间再热循环。

采用再热循环后,锅炉-汽轮机装置的热力系统、结构和运行调节都变得复杂,造价增加,故在100兆瓦以上的发电机组中才采用,通常只采用一次中间再热。

省煤器
省煤器(英文名称Economizer)就是锅炉尾部烟道中将锅炉给水加热成汽包压力下的饱和水的受热面,由于它吸收的是比较低温的烟气,降低了烟气的排烟温度,节省了能源,提高了效率,所以称之为省煤器。

空气预热器
air pre-heater空气预热器就是锅炉尾部烟道中的烟气通过内部的散热片将进入锅炉前的空气预热到一定温度的受热面。

用于提高锅炉的热交换性能,降低能量消耗。

第七章 过热器和再热器

第七章  过热器和再热器
2020年1月28日
1. 蒸汽侧调温方法
(2)喷水减温器
a. 原理:将减温水直接喷入过热蒸汽中,使其雾化、吸热蒸发 b. 冷源:给水 c. 优点:结构简单,调节灵敏,调温幅度大,压损小 d. 缺点:减温水品质要求高
2020年1月28日
2020年1月28日
2020年1月28日
1. 蒸汽侧调温方法
(3)烟气再循环
a. 原理:将省煤器后烟气(250~350℃)由再 循环风机抽出再送回炉膛
b. 再循环烟气进入炉膛位置 上部 下部
c. 优点:调节幅度大,灵敏度高;均匀炉膛热 负荷,降低水冷壁温度;再热器受热面积减少, 节约材料
d. 缺点:再循环风机增加电耗,磨损严重,可 靠性差;q2增加
2020年1月28日
2020年1月28日
二、影响热偏差的因素
2. 流量不均系数
(1)连接方式
(2)热力不均对流量不均的影响
G
K0 v0 Kp vp
2020年1月28日
三、减小热偏差的措施
1. 结构设计方面
(1)分级布置,中间混合 (2)沿烟道宽度方向左右交叉流动(过热器适用)
2020年1月28日
三、减小热偏差的措施
2020年1月28日
五、汽温特性
过(再)热器出口汽温随锅炉 负荷变化的关系
1. 汽包锅炉
(1)过热器 (2)再热器
2. 直流锅炉
3. 蒸汽温度与额定值偏差
(1)过热器:±5℃ (2)再热器:+5℃和-10℃
2020年1月28日
六、典型的过热器与再热器系统
1. 系统布置原则
(1)满足蒸汽参数要求 (2)具有灵活调温手段 (3)运行中管壁不超温 (4)较高经济性

锅炉过热器、再热器系统及蒸汽管道吹管措施

锅炉过热器、再热器系统及蒸汽管道吹管措施

锅炉过热器、再热器系统及蒸汽管道吹管措施一、锅炉过热器系统1.1 运行原理锅炉过热器是锅炉主体中加热面积最大、出口蒸汽温度最高的部分。

它的主要作用是将从锅炉主体中出来的锅炉水汽包中产生的湿度去除掉,使其成为饱和蒸汽,从而提高蒸汽的干度和温度。

过热器的工作原理是通过将锅炉主体中出来的饱和蒸汽进行加热,使其达到超过饱和状态,从而成为过热蒸汽,最终进入蒸汽管道输送至用电设备。

1.2 过热器设备结构过热器通常由多组管束和支承结构组成。

管束内部是多根螺旋或直管装置,通常采用无缝钢管或不锈钢管制作。

支承结构通常由根据压力等级制造的板式物品和悬挂支撑结构组成。

此外,还需要加入上、下管盘、隔板、罩壳等结构。

1.3 过热器运行中的问题及解决方法•过热器泄漏过热器泄漏主要是由于管束或支承结构等故障所引起,这种情况下应采取相应的修理措施,如更换管束或支承构件。

•过热器铭牌或标记损坏过热器运行中,如果铭牌或标记损坏,会造成过热器的风险增大,需要立即更换或修理。

•过热器内产生氧化物过热器内部产生氧化物将严重影响蒸汽质量和经济性,需要采用化学清洗、物理捣毁和高压水冲洗等措施进行清理。

二、再热器系统2.1 运行原理再热器系统与过热器系统类似,同样是加热主汽流中的蒸汽,提高其温度。

再热器与过热器的主要区别在于,它在蒸汽流经过热器后,在温度降低前再次进入加热器加热。

这种再加热的目的是进一步提高主汽流中蒸汽的温度,进而提高锅炉输出蒸汽的温度。

2.2 再热器的设计和结构再热器与过热器不同的是,再热器通常由两个或三个管束组成,设计更加复杂,结构也更加严格。

其中,再热器中的每个管束内部均包含多个钢管或不锈钢管制成的螺旋或直管形式,管束之间则采用隔板结构对其进行支撑。

2.3 再热器系统的问题及解决方法•初级侧回路泄漏如果再热器的初级侧回路泄漏,将严重影响再热器的工作效率,需要采取相应的修理措施,如更换管束或支承构件。

•额定功率下蒸汽温度过高如果再热器蒸汽温度过高,将导致其效率降低,严重的甚至会危及锅炉的正常运行。

锅炉过热器和再热器课件

锅炉过热器和再热器课件

锅炉过热器和再热器课件过热器1.设备概述本炉过热器由顶棚过热器、包覆过热器、低温过热器、前屏辐射式过热器和末级过热器五个部分组成,现场布置情况如下:1.1顶棚过热器:布置在炉膛及水平烟道的顶部。

因其吸热量很小,故其主要作用是构成轻型平炉顶顶棚过热器由232根管及进出口联箱组成,管子中63.5x5.7,平均节距115mm,管长18697mm,顶棚管自顶棚过热器入口联箱引出,从炉膛前墙顶部呈水平方向并延伸至再热器之后的顶棚过热器出口联箱(即包覆管过热器入口联箱)。

顶棚管及其敷设炉墙的重量由进出口联箱及设置在管段中间的吊杆来承受,经吊杆及与之相连接的吊杆将其传至锅炉横梁上。

1.2包覆管过热器:是布置在锅炉转向室顶部和竖井烟道四周的贴墙管,因其吸热量很小,其作用主要在于简化烟道部分炉墙,将包覆管过热器悬吊在炉顶梁上,在包覆管上敷设炉墙,可以简化炉墙结构,并减轻炉墙重量。

包覆管过热器由出入口联箱以及转向室顶部包覆管、前后墙包覆管(均为232根,节距为115mm)以及两侧墙包覆管组成,管子规格为①64.5x4.5,节距为115mm。

包覆管过热器进口联箱横卧在转向室顶部的入口部位,标高55627mm o顶棚过热器出来的一部分蒸汽经与入口联箱相连的单排对流管束引入前包覆管。

对流管束构成了水平烟道和尾部烟道的结合面。

对流管束管径为,管节距为230mm o一部分蒸汽顺着顶棚管的流动方向进入转向室顶部包覆管,蒸汽在右后墙改变方向进入后墙包覆管,将蒸汽引入包覆管出口环行联箱;另一部分由入口联箱引出的侧包墙连通管将蒸汽引入两侧包墙管后进入包覆管出口环行联箱,即低温省煤器入口联箱;所有包覆管过热器均通过联箱及其所连接的吊杆悬吊在炉顶梁上。

1.3低温过热器:由蛇行管及其进出口联箱组成。

蛇行管沿竖井高度分为三段:入口段和中间段管组采用逆流水平布置,中间留有1150mm的检修空间;出口管段的管组采用立式顺流布置;全部管子均为平行顺列布置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热能与动力工程
22
再热器系统与调温 – 再热器与过热器布置的原则基本一致,再热器一般
均为对流式,分为低温段与高温段,
– 原则上再热器蒸汽不能采用喷水调温方式(经济性 考虑), – 只设置事故喷水减温,在汽温过高时采用。
热能与动力工程
23
五、过热器和再热器的汽温特性 • 汽温特性:即汽温随锅炉负荷变化的规律,汽温调节 主 要是在锅炉变化负荷时进行。 对流式过热器与辐射式过热器的汽温特性是相反的。
3
高温过热器动画
热能与动力工程
4பைடு நூலகம்
屏式过热器
热能与动力工程
5
二、过热器和再热器的工作特点 1.工质温度高、传热性能差,处于高温烟气段,金属
壁温高,达到金属使用极限。
2.再热器受热面工作条件更差
( 1 )中压蒸汽放热系数比高压蒸汽小( 1/5 ),导致
管壁金属温度高, (2)中压蒸汽比热小,对热偏差更加敏感; (3)阻力损失要求严格; (4)起动中及汽轮机甩负荷时的保护问题; 热能与动力工程
9
二、对流式过热器和再热器结构特点 1.烟气与管内蒸汽的相互流向 顺流,逆流,混合流 2.蛇型管圈的布置方式 垂直式(布置在水平烟道) 优点:吊挂方便,积灰少。缺点:停炉时易发生
积水腐蚀,再起动时,会形成气塞及水击。
水平式:与上相反(布置在垂直烟道)。
热能与动力工程
10
3.管圈结构 单根管圈与多重管圈。 ( 1 )目的:在保持烟气流速(烟气流通截面积)不变 的条件下,改变蒸汽流通截面积 ( 2 )采用几重管圈,决定于设计要求的管内蒸汽流速 和管外烟气流速。 (3)烟气流速决定了传热系数、积灰和飞灰磨损
根据煤种,经济性及安全性,在6~14m/s。
(4)蒸汽流速决定于压力损失及管壁金属的冷却 压降一般小于(8~10%)的工作压力。 热能与动力工程
11
热能与动力工程
12
推荐的管内工质流速 用质量流速ρ w(kg/m2s)来表示。
对流受热面:
中压:250~400 高压:低温段400~700;高温段:700~1000 屏式过热器:800~1100 辐射式过热器:1000~1500
对流式:随锅炉负荷增加,燃煤量增加,汽温升高;反
之降低; 辐射式:随负荷增加,火焰温度变化不大,辐射热负荷
增加不多,但蒸汽流量增加,相当于
工质的吸热量减少,因此,汽温降低; 增加。 热能与动力工程
6
3.锅炉参数提高,容量增大,锅炉各受热面数
量和 位置发生变化,过热受热面向炉膛移动
(辐射式过热器),工作条件更差; 4.设计或运行不当,很容易引起受热面金属超 温,长期超温会造成爆管,工质泄露,停机, 是锅炉故障最多的部件之一。
热能与动力工程
7
三、汽温调节
• 蒸汽参数要求在一定范围内,设计时要考虑 有效的调节手段,运行中要不断地调节蒸汽 温度; • 过热器、再热器与减温器紧密相连。
须有冷却保护措施, – 工作条件最差的锅炉受热面。
热能与动力工程
16
四、半辐射式屏式过热器
1.布置位置 悬吊在炉膛上部,对流烟道入口,吸收辐射热与 对流热。降低进入密集管束的烟气温度,防止结 渣,传热性能较好。 2.结构 每个屏由并联的管子紧密排列而成,各屏之间 的距离达0.6~1.2米。 3.工作条件 烟温高,工质温度高,平行各管长度相差较大, 蒸汽流量相差较大,各管壁温差达 80~90℃,运 行安全性较差。 热能与动力工程
热能与动力工程
8
第二节 过热器和再热器的结构型式
一、过热器和再热器的种类
对流式—以对流传热方式为主,密集蛇型管束,布置在对流烟道 过热器与再 热器的种类 辐射式—以辐射传热方式为主,布置在炉膛的壁面上 半辐射式—对流+辐射,稀疏管屏,布置在炉膛的上部
• 过热器与再热器的结构形式基本相同
热能与动力工程
1.采用的原因:
(1)大容量高参数锅炉的过热吸热份额超过 50%, 300MW 以上机组需考虑辐射式过热器;
(2)降低炉膛出口烟温;
(3)布置在高温区可降低金属耗量; (4)汽温特性平稳。
热能与动力工程
15
2.工作条件:
– 炉膛热负荷高, – 蒸汽冷却效果差,
– 锅炉起动和低负荷运行时会处于干烧,
第五章 过热器和再热器
热能与动力工程
1
第一节
过热器与再热器作用和工作特点
一、为何采用过热器和再热器
热能与动力工程
2
– 1.提高机组循环效率
• 提高蒸汽压力、温度。 • 提高温度很难,提高压力受到限制,否则排汽湿度 过高,因此采用再热器,同时提高循环效率。
– 2.保证汽轮机的安全运行
• 若不过热,相当于卡诺循环,采用饱和蒸汽,湿度 大,不能满足汽轮机的要求。 • 过热器与再热器为电站锅炉的主要受热面。 热能与动力工程
20
3.过热器系统的一般布置规律
(1)先通过辐射式过热器。蒸汽在饱和线附近具 有较大的比热容,工质吸收较多热量而温度升高 不多,且传热温压大。
(2)将过热器划分为若干段,各段之间采用集箱
联接,中间进行交叉混合,保证吸热均匀。
热能与动力工程
21
4.减温器—一般为喷水减温方式
• 减温器在过热器系统中的位置 ( 1 )安全: 布置在可能超温的过热器管段前面,起 到保护受热面的作用; (2)灵敏:使其尽量靠近过热器出口,减少调 温的滞后性。 一般为两级喷水减温,各尽其责: • 一级喷水减温器在屏式过热器的入口,保护屏式过 热器。 • 二级喷水减温器在末级过热器之前,主要作用是调 节出口汽温,也起保护作用。
再热器:250~400
• 单管圈时常不能同时满足烟气侧速度和工质侧速度,采用 多重管圈;
• 在最佳烟气流速下改变蒸汽流速。 热能与动力工程
13
4.管子排列
错列和顺列布置 错列管排的传热系数大于顺列,不易 积灰,但磨损较为严重,阻力较大。
热能与动力工程
14
三、辐射式过热器和再热器 布置在炉膛壁面上直接吸收炉膛的辐射热量。
17
前屏过热器
热能与动力工程
18
前屏过热器
热能与动力工程
19
五、过热器的系统 1.将不同形式的过热器以最安全、最经济的 方式连接在一起,有各种不同的形式。 2.考虑的因素
(1)经济性:从传热性能出发,省金属。
先对流后辐射,形成总的逆流, 温差大,传热最理想。 (2)安全性:顺流最安全,使高温介质处于 低温烟区,先辐射后对流。 热能与动力工程
相关文档
最新文档