电力电子实验

合集下载

电力电子技术实验报告全

电力电子技术实验报告全

电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。

通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。

常见的电力电子器件包括二极管、晶闸管、IGBT等。

三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。

2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。

3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。

4. 分析实验数据,验证电路设计的正确性和性能指标。

5. 根据实验结果,调整电路参数,优化电路性能。

六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。

实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。

七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。

实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。

这些技能对于我们未来的学习和工作都具有重要意义。

八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。

通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。

电力电子技术实验报告总结

电力电子技术实验报告总结

电力电子技术实验报告总结电力电子技术作为一门重要的电气工程学科分支,在现代工业和生活中有着广泛的应用。

通过一系列的电力电子技术实验,我不仅加深了对理论知识的理解,还提高了自己的实践操作能力和解决问题的能力。

以下是我对这些实验的总结。

一、实验目的和要求电力电子技术实验的主要目的是让我们熟悉各种电力电子器件的特性和工作原理,掌握基本电力电子电路的分析、设计和调试方法。

同时,培养我们的实验技能、数据处理能力和创新思维。

在实验过程中,我们被要求严格遵守实验室的安全规则,正确使用实验仪器设备,认真观察实验现象,准确记录实验数据,并对实验结果进行分析和总结。

二、实验设备和仪器实验所用到的设备和仪器包括示波器、信号发生器、万用表、电力电子实验箱等。

其中,示波器用于观测电路中的电压和电流波形,信号发生器用于产生各种控制信号,万用表用于测量电路中的电压、电流和电阻等参数,电力电子实验箱则集成了各种电力电子器件和电路模块,方便我们进行实验操作。

三、实验内容(一)单相半波可控整流电路实验在这个实验中,我们研究了单相半波可控整流电路在不同控制角下的输出电压和电流特性。

通过改变触发角,观察输出电压的平均值和有效值的变化,并与理论计算值进行对比。

同时,还分析了负载性质(电阻性负载、电感性负载)对电路工作性能的影响。

(二)单相桥式全控整流电路实验单相桥式全控整流电路是一种常见的整流电路结构。

在实验中,我们深入了解了其工作原理和特性。

通过调节触发角,观察输出电压和电流的波形,并计算输出电压的平均值和有效值。

此外,还研究了电路的有源逆变工作状态,以及逆变失败的原因和预防措施。

(三)三相桥式全控整流电路实验三相桥式全控整流电路是大功率整流装置中常用的电路拓扑。

通过这个实验,我们掌握了三相电路的工作原理和调试方法。

观察了不同控制角下的输出电压和电流波形,分析了三相电源的相序对电路工作的影响,并研究了电路在电阻性负载和电感性负载下的性能差异。

电力电子技术实验报告山交院

电力电子技术实验报告山交院

电力电子技术实验二单相桥式全控整流电路实验一.实验目的1.了解单相桥式整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电动势负载时的工作。

3.熟悉触发电路(锯齿波触发电路)。

二.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感负载。

三.实验线路及原理1)电源控制屏位于NMCL -32/MEL-002T等。

2)锯齿触发电路位于NMCL -36C或NMCL -05D等。

3) L 平波电抗器位于NMCL -331。

4) Rd 可调电阻位于NMEL -03/4或NMCL -03等。

5) G 给定(Ug )位于NMCL -31或NMCL -31A或SMCL -01调速系统控制单元中。

6) Uct 位于锯齿触发电路中。

四.实验设备及仪器1.教学实验台主控制屏2.触发电路(锯齿波触发电路)组件3.变压器组件4.双踪示波器(自备)5.万用表(自备)五.实验结果五.注意事项1实验载必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。

2.为保护整流元件不受损坏,品闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。

(2)在控制电压U=0时,接通主电源。

然后逐渐增大Ua,使整流电路投入工作。

(3)断开整流电路时,应先把Ua降到零,使整流电路无输出,然后切断总电源。

3.注意示波器的使用。

六.总结在可控整流电路中,两个整流二极管VD2、VD4既起到整流作用,又起到续流作用。

电阻电感性负载时,无论接或不接续流二极管,输出直流电压Ud的波形均与接电阻性负载时的直流电压波形相同。

实验中,根据VT1.上的电压波形确定移相控制角a的度数,因此误差较大。

从实验波形中可见续流二极管的作用。

在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压Ud失控。

电力电子实验报告

电力电子实验报告

电力电子实验报告电力电子实验报告引言:电力电子是现代电气工程领域中重要的研究方向之一,它涉及到电力的转换、控制和调节等方面。

本次实验旨在通过实际操作,加深对电力电子原理的理解,并掌握电力电子器件的使用和调试技巧。

一、实验目的本次实验的主要目的是通过搭建电力电子系统,实现对交流电的变换、控制和调节,掌握电力电子器件的使用和调试技巧,加深对电力电子原理的理解。

二、实验装置与方法实验装置包括交流电源、电力电子器件(如整流器、逆变器等)、控制电路以及负载等。

实验方法主要是通过搭建电路,调试参数和观察输出结果,来验证电力电子原理。

三、实验内容1. 整流器实验通过搭建单相半波整流电路,将交流电转换为直流电。

调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。

2. 逆变器实验通过搭建单相半桥逆变电路,将直流电转换为交流电。

调节输入电压和负载电阻,观察输出的交流电压波形和电压波动情况,并记录实验数据。

3. DC-DC变换器实验通过搭建DC-DC变换电路,将直流电转换为不同电压的直流电。

调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。

4. AC-DC变换器实验通过搭建AC-DC变换电路,将交流电转换为直流电。

调节输入电压和负载电阻,观察输出的直流电压波形和电压波动情况,并记录实验数据。

四、实验结果与分析在整流器实验中,通过调节输入电压和负载电阻,可以得到稳定的直流输出电压。

而在逆变器实验中,通过调节输入电压和负载电阻,可以得到稳定的交流输出电压。

在DC-DC变换器和AC-DC变换器实验中,通过调节输入电压和负载电阻,可以得到不同电压的直流输出。

实验结果表明,电力电子器件能够有效地实现对电能的变换、控制和调节。

通过调整电路参数,可以实现不同电压、频率和波形的输出。

这为电力系统的稳定运行和能源的高效利用提供了技术支持。

五、实验总结通过本次实验,我深入了解了电力电子的基本原理和应用。

电力电子仿真实验实训报告

电力电子仿真实验实训报告

一、实验目的本次电力电子仿真实验实训旨在通过MATLAB/Simulink软件,对电力电子电路进行仿真分析,加深对电力电子电路工作原理、性能特点以及设计方法的了解,提高实际工程应用能力。

二、实验环境1. 软件环境:MATLAB R2020b、Simulink R2020b2. 硬件环境:计算机三、实验内容本次实验主要涉及以下内容:1. 单相桥式整流电路仿真2. 三相桥式整流电路仿真3. 逆变器电路仿真4. 直流斩波电路仿真四、实验步骤1. 单相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建单相桥式整流电路模型,包括二极管、电源、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

2. 三相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建三相桥式整流电路模型,包括二极管、电源、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

3. 逆变器电路仿真(1)建立仿真模型:在Simulink中搭建逆变器电路模型,包括电力电子器件、驱动电路、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率因数等参数。

4. 直流斩波电路仿真(1)建立仿真模型:在Simulink中搭建直流斩波电路模型,包括电力电子器件、驱动电路、负载等元件。

(2)设置仿真参数:设置电源电压、负载电阻等参数。

(3)运行仿真:启动仿真,观察仿真结果。

(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。

五、实验结果与分析1. 单相桥式整流电路仿真结果通过仿真实验,我们得到了单相桥式整流电路的输出电压、电流、功率等参数。

电力电子实验报告

电力电子实验报告

实验一:单相半波可控整流电路的仿真一、实验名称:单相半波可控整流电路的仿真二、实验原理:在大功率的电力电子电路中广泛采用可控整流电路对输出电压进行控制和调整,以满足各种功率较大的用电器对电源的要求。

可控整流电路最常用的控制器件是晶闸管,因为晶闸管性能可靠、价格低廉、控制电路简单。

整流电路按负载的不同可以分为带电阻负载和带阻感负载两种情况。

在生产实践中,更常见的是后者,即既有电感又有电阻,若负载中感抗ωL>>电阻R时,负载主要呈现为电感,成为电感负载。

三、仿真电路图各项参数为:图中V3 为220V, 50Hz 的正弦交流电源,X1 为晶闸管,V2 为晶闸管的触发脉冲信号源。

触发脉冲的幅度为-10V(对门、阴极间而言是+10V),脉冲宽度为0.lms,上升、下降时间均为1us,周期等于输入电源V3 的周期(20ms)。

电组R=2Ω,电感L取6.5mH。

四、波形图分析:电压波形图:现象:电压有跳变!上面是电阻电压,下面是电感电压。

相加大概为110V 左右,实验时占空比是50%,正好是110V。

电压突变是晶闸管由断态转向触发时所致。

电感两端的电压电流波形图:现象:上面是电感电流,下面是电感电压。

电压跳变是电流过0点时,晶闸管由断态触发开通时,由于电感L作用使电流不能突变。

电感很大的时候会没有跳变或跳变很小。

电阻电压电流波形图:结论:有跳变,电流从正向负跳变时候跳变要剧烈一点。

五、心得体会:通过本次实验基本上学会了此软件的基本用法。

同时仿真了单相半波可控整流电路,验证了晶闸管的作用及观察到其对电路的影响。

实验二:三相半波可控整流电路的仿真刘峻玮222007322042015 工程技术学院自动化1班一、实验名称:三相半波可控整流电路的仿真二、实验原理:当整流负载容量很大时,或要求直流电压脉动较小时,应采用三相整流电流,其交流侧由三相电源供电。

三相可控整流电路中,最基本的是三相电路可控整流电路,应用最为广泛的是三相桥式全控整流电路以及双反星形可控整流电路等等,均可在三相半波的基础上分析。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言电力电子技术是现代电力系统中不可或缺的一部分。

通过电力电子技术,我们可以实现电能的高效转换、传输和控制,提高能源利用效率,减少能源浪费。

本实验报告旨在介绍电力电子技术的基本原理和实验结果,以及对现代电力系统的应用。

一、整流电路实验整流电路是电力电子技术中最基本的电路之一。

通过整流电路,我们可以将交流电转换为直流电,以满足不同电器设备的电源要求。

在实验中,我们使用了半波和全波整流电路进行测试。

半波整流电路通过单个二极管将交流电信号的负半周去除,只保留正半周。

实验中,我们使用了一个变压器将220V的交流电降压为12V,然后通过一个二极管进行半波整流。

实验结果显示,输出电压为正半周的峰值。

全波整流电路通过两个二极管将交流电信号的负半周转换为正半周,实现了更高的电压转换效率。

实验中,我们使用了一个中心引线变压器将220V的交流电降压为12V,然后通过两个二极管进行全波整流。

实验结果显示,输出电压为正半周的峰值,且相较于半波整流电路,输出电压更加稳定。

二、逆变电路实验逆变电路是电力电子技术中另一个重要的电路。

通过逆变电路,我们可以将直流电转换为交流电,以满足不同电器设备的电源要求。

在实验中,我们使用了单相逆变电路和三相逆变电路进行测试。

单相逆变电路通过一个开关管和一个滤波电感将直流电转换为交流电。

实验中,我们使用了一个12V的直流电源,通过一个开关管和一个滤波电感进行逆变。

实验结果显示,输出电压为交流电信号,频率与输入直流电源的频率相同。

三相逆变电路是现代电力系统中常用的逆变电路。

它通过三个开关管和三个滤波电感将直流电转换为三相交流电。

实验中,我们使用了一个12V的直流电源,通过三个开关管和三个滤波电感进行逆变。

实验结果显示,输出电压为三相交流电信号,频率与输入直流电源的频率相同。

三、PWM调制实验PWM调制是电力电子技术中常用的一种调制方式。

通过改变脉冲宽度的方式,可以实现对输出电压的精确控制。

电力电子实验报告

电力电子实验报告
(2)当α在[0°,90°]之间时电路工作在整流状态,当α>90°时电路工作在逆变状态。这是因为α在[0°,90°]之间时,整流输出能量大于逆变输出反馈回电网的能量,以整流为主,当α>90°时,逆变输出能量大于整流输出能量以逆变为主。
第三章实验十二单相交流调压电路实验
一、原理概述
通过改变反并联晶闸管或双向晶闸管的控制角α,从而改变交流输出电压的大小。因为触发脉冲为窄脉冲时,会造成晶闸管工作不对称,所以交流调压电路通常采用宽脉冲或脉冲列触发。
二、实验报告
(2)α=30°时
α=60°时α=90°时
阻感性负载和阻性负载波形相同在此略
(3)在负载侧并联一个续流二极管,使负载电流通过续流二极管续流,而不再经过T1、D1或T3、D2这样可使晶闸管恢复阻断能力。
三、思考题
(1)电路在正常运行情况下,突然把触发脉冲切断或者α角增大到180°,就会产生“失控”。
三、思考题
实现有源逆变的条件有两个
(1)外部条件:外部有一个直流电势,方向与晶闸管导通方向一致,值稍大于变流器侧输出的平均电压。
(2)内部条件:逆变电路的主电路为全控结构,α>90°,处于逆变区。
本电路直流电势由整流输出电压提供,使用心式变压器进行升压,使直流电势值稍大于变流器侧输出的平均电压。
第三章实验八三相半波可控整流电路实验
二、实验报告
(1)当α=90°时,Ud、UVT波形如图所示。
(2)
(3)由波形可以看出当晶闸管导通时输入电压全部加在输出电压Ud两端,当晶闸管截止时,输入电压全部加在晶闸管两端;带感性负载时,由于电流不能突变,输出电压出现负压,此时电压由变压器提供。
三、思考题
(1)由 知C1越大, 越小,反之,C1越小, 越大。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告电力电子技术实验报告引言:电力电子技术是现代电力系统中不可或缺的一部分。

它涉及到电力的转换、控制和传输等方面,对于提高电力系统的效率、稳定性和可靠性具有重要意义。

本实验报告将介绍我所参与的电力电子技术实验,并对实验结果进行分析和总结。

实验一:直流电源的设计与实现在这个实验中,我们设计并搭建了一个直流电源电路。

通过选择合适的电路元件,我们成功地将交流电转换为稳定的直流电。

在实验过程中,我们注意到电路中的电容和电感元件对于滤波和稳压起到了关键作用。

通过实验,我们进一步理解了直流电源的工作原理和设计方法。

实验二:交流电压调节器的性能测试在这个实验中,我们测试了不同类型的交流电压调节器的性能。

通过改变输入电压和负载电流,我们测量了调节器的输出电压和效率。

实验结果表明,稳压调节器能够在不同负载条件下保持稳定的输出电压,而开关调压器则具有更高的效率和更好的调节性能。

这些结果对于电力系统的稳定运行和节能优化具有重要意义。

实验三:功率因数校正电路的设计和优化在这个实验中,我们设计了一个功率因数校正电路,并对其进行了优化。

通过使用功率因数校正电路,我们能够降低电力系统中的谐波失真和电能浪费。

实验结果显示,优化后的功率因数校正电路能够有效地提高功率因数,并减少电网对谐波的敏感性。

这对于提高电力系统的能效和稳定性具有重要意义。

实验四:逆变器的设计与应用在这个实验中,我们设计并搭建了一个逆变器电路,并将其应用于太阳能发电系统中。

通过将直流电能转换为交流电能,逆变器可以实现电力的输送和利用。

实验结果表明,逆变器能够稳定地将太阳能发电系统的输出电能转换为适用于家庭和工业用电的交流电。

这对于推广和应用太阳能发电技术具有重要意义。

结论:通过参与电力电子技术实验,我们深入了解了电力电子技术的原理和应用。

实验结果表明,电力电子技术在提高电力系统的效率、稳定性和可靠性方面具有重要作用。

我们还通过实验掌握了电力电子电路的设计和优化方法,为今后从事相关工作奠定了基础。

电力电子整流实验报告

电力电子整流实验报告

一、实验目的1. 理解电力电子整流电路的基本原理和组成;2. 掌握单相半波、全波和桥式整流电路的工作特性;3. 分析整流电路的输出波形和纹波系数;4. 学习整流电路在工程实际中的应用。

二、实验原理电力电子整流电路是一种将交流电转换为直流电的装置。

其主要原理是利用二极管等电力电子器件的导通和截止特性,将交流电的正半周或负半周转换为直流电。

三、实验内容1. 单相半波整流电路实验(1)搭建单相半波整流电路实验平台;(2)观察整流电路的输出波形,记录整流输出电压Ud和输入电压U2的波形;(3)计算整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

2. 单相全波整流电路实验(1)搭建单相全波整流电路实验平台;(2)观察整流电路的输出波形,记录整流输出电压Ud和输入电压U2的波形;(3)计算整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

3. 单相桥式整流电路实验(1)搭建单相桥式整流电路实验平台;(2)观察整流电路的输出波形,记录整流输出电压Ud和输入电压U2的波形;(3)计算整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

四、实验步骤1. 实验准备(1)准备实验所需的实验设备,包括交流电源、整流电路组件、示波器、万用表等;(2)熟悉实验设备的操作方法和注意事项。

2. 单相半波整流电路实验(1)按照实验原理图搭建单相半波整流电路;(2)使用示波器观察整流电路的输出波形,记录Ud和U2的波形;(3)使用万用表测量整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

3. 单相全波整流电路实验(1)按照实验原理图搭建单相全波整流电路;(2)使用示波器观察整流电路的输出波形,记录Ud和U2的波形;(3)使用万用表测量整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

4. 单相桥式整流电路实验(1)按照实验原理图搭建单相桥式整流电路;(2)使用示波器观察整流电路的输出波形,记录Ud和U2的波形;(3)使用万用表测量整流输出电压Ud的平均值Ud(AV)和纹波系数Sd。

电力电子仿真实验报告

电力电子仿真实验报告

电力电子仿真实验报告电力电子仿真实验报告概述:电力电子是现代电力系统中的重要组成部分,其在电能转换、调节和控制方面发挥着关键作用。

为了更好地理解电力电子的工作原理和性能特点,本次实验通过电力电子仿真实验平台进行了一系列电路的仿真实验,以探索电力电子在电力系统中的应用。

实验一:单相半桥逆变器单相半桥逆变器是一种常见的电力电子设备,可以将直流电压转换为交流电压。

本实验中,通过仿真平台搭建了一个单相半桥逆变器电路,并进行了性能测试。

通过改变输入直流电压和负载电阻,观察逆变器的输出波形和效率变化。

实验结果表明,逆变器的输出波形呈现出交流正弦波,并且随着输入电压和负载电阻的变化,逆变器的效率也相应变化。

实验二:三相全桥整流器三相全桥整流器是一种常用的电力电子设备,可以将三相交流电转换为直流电。

本实验中,通过仿真平台搭建了一个三相全桥整流器电路,并进行了性能测试。

通过改变输入交流电压的幅值和频率,观察整流器的输出直流电压和纹波变化。

实验结果表明,整流器的输出直流电压稳定,纹波较小,且随着输入电压的增加,输出直流电压也相应增加。

实验三:PWM调制技术PWM调制技术是电力电子中常用的调节技术,通过改变脉冲宽度来实现对输出电压的调节。

本实验中,通过仿真平台搭建了一个PWM调制电路,并进行了性能测试。

通过改变调制信号的频率和占空比,观察PWM调制电路的输出波形和频谱变化。

实验结果表明,PWM调制电路能够产生稳定的输出波形,并且通过调节占空比可以实现对输出电压的精确调节。

实验四:电力电子应用案例电力电子在现代电力系统中有着广泛的应用,例如变频器、充电器、逆变器等。

本实验中,选择了一个典型的电力电子应用案例进行仿真实验。

通过搭建相应的电路和参数设置,观察电力电子设备在实际应用中的性能表现。

实验结果表明,电力电子设备能够实现电能的高效转换和精确控制,为现代电力系统的稳定运行提供了重要支持。

结论:通过电力电子仿真实验,我们深入了解了电力电子的工作原理和性能特点。

电力电子大实验报告

电力电子大实验报告

一、实验目的1. 熟悉电力电子实验的基本流程和操作规范。

2. 掌握电力电子器件的工作原理和特性。

3. 了解电力电子电路的设计与调试方法。

4. 培养实际动手能力和团队协作精神。

二、实验内容1. 电力电子器件实验(1)实验原理:通过实验观察电力电子器件(如二极管、晶闸管、GTR、MOSFET 等)在电路中的工作状态和特性。

(2)实验步骤:a. 根据实验要求,搭建实验电路。

b. 测量并记录器件的静态特性,如正向导通电压、反向阻断电压、开通和关断时间等。

c. 通过实验观察器件在不同工作状态下的表现。

2. 电力电子电路实验(1)实验原理:通过实验了解电力电子电路(如整流电路、逆变电路、变频电路等)的工作原理和特性。

(2)实验步骤:a. 根据实验要求,搭建实验电路。

b. 测量并记录电路的静态特性,如输出电压、电流、功率等。

c. 通过实验观察电路在不同工作状态下的表现。

3. 电力电子电路控制实验(1)实验原理:通过实验了解电力电子电路的控制方法,如PWM控制、斩波控制等。

(2)实验步骤:a. 根据实验要求,搭建实验电路。

b. 利用控制信号对电力电子器件进行控制,观察控制效果。

c. 分析控制信号的时序和波形,优化控制策略。

三、实验结果与分析1. 电力电子器件实验结果与分析(1)实验结果:通过实验观察,二极管、晶闸管、GTR、MOSFET等器件在电路中的工作状态和特性符合理论分析。

(2)实验分析:实验结果验证了电力电子器件的基本特性和工作原理。

2. 电力电子电路实验结果与分析(1)实验结果:通过实验观察,整流电路、逆变电路、变频电路等电力电子电路在不同工作状态下的表现符合理论分析。

(2)实验分析:实验结果验证了电力电子电路的基本工作原理和特性。

3. 电力电子电路控制实验结果与分析(1)实验结果:通过实验观察,利用PWM控制、斩波控制等控制方法对电力电子器件进行控制,实现了电路的稳定运行。

(2)实验分析:实验结果验证了电力电子电路控制方法的有效性。

电力电子实验报告

电力电子实验报告

电力电子实验报告一、实验目的本实验旨在通过搭建电力电子电路和测量电路参数,深入理解电力电子的基本原理和应用。

二、实验装置与仪器1. 稳压直流电源2. 功率电子器件(如二极管、晶闸管、MOS管等)3. 示波器4. 变压器5. 整流电路、逆变电路等电力电子实验电路板6. 电阻、电容、电感等元件7. 其他必要的实验器材和配件三、实验内容1. 实验一:整流器的实验a. 搭建并测量单相半波和全波整流电路的输出电压波形、输出电压和电流的平均值、有效值等参数。

b. 分析和比较两种整流电路的性能差异,并讨论其应用特点和限制。

2. 实验二:逆变器的实验a. 搭建并测量单相半桥和全桥逆变电路的输出电压波形、输出电压和电流的平均值、有效值等参数。

b. 分析和比较两种逆变电路的性能差异,并讨论其应用特点和限制。

3. 实验三:电力电子开关功率调节实验a. 搭建开关转换器或斩波电路实验电路,测量不同调节方式下的输出电压、电流和效率等参数。

b. 讨论开关功率调节的优缺点,以及不同调节方式的适用场景。

4. 实验四:PWM调制电路的实验a. 搭建简单的PWM调制电路,测量输出电压的调节范围、带宽等参数。

b. 分析PWM调制电路的工作原理和调节性能,探讨其在电力电子中的应用前景。

5. 实验五:电力电子控制系统的实验a. 搭建基于微控制器的电力电子控制系统,实现对某一电力电子器件的自动控制。

b. 测试并分析控制系统的稳定性、响应速度等性能指标,并讨论控制系统的设计考虑因素。

四、实验步骤与结果根据实验内容,按照以下步骤进行实验并记录实验结果:1. 记录实验所使用的电路和元件的连接方式和参数设置。

2. 使用示波器等仪器测量电路各个节点的电压和电流,并记录数据。

3. 分析实验结果,计算输出电压的平均值、有效值、波形畸变率等参数。

4. 对比实验数据,进行数据处理和性能比较。

5. 撰写实验结果报告并进行讨论。

五、实验结果分析根据实验结果,对各个实验内容进行数据分析和讨论,包括:1. 整流电路的性能比较:比较半波和全波整流电路的输出电压波形、平均值、有效值等参数,分析其差异和应用场景。

电力电子实验心得

电力电子实验心得

电力电子实验心得一、引言电力电子是一门研究电力器件和电力电路的学科,它在能源转换和电力控制领域具有广泛的应用。

在大学学习电力电子课程时,实验是不可或缺的一部分。

通过实验,我们可以更加直观地理解电力电子的原理和特性,提高我们的实践能力与工程素质。

本文将分享我在电力电子实验中的一些心得体会。

二、实验一:单相半控桥整流电路实验在本实验中,我对单相半控桥整流电路进行了实验。

通过调整触发角度和负载电阻,我观察了输出电压波形和效率的变化。

实践中,我发现合理选择触发角度和阻值可以显著改变整流电路的性能。

首先,触发角度的选择对整流电路的波形和效率有着重要影响。

如果触发角度较大,即延迟触发,那么导通角度较小,电压输出波形将具有较大的谐波成分,且平均输出电压较小。

反之,如果触发角度较小,即提前触发,导通角度较大,电压输出波形将更接近理想的直流波形,且平均输出电压会更大。

因此,在实践中,我们需要根据需要调整触发角度,以获得期望的输出电压波形。

其次,负载电阻对整流电路的效率有显著影响。

在实验中,我尝试了不同的负载电阻值,并观察了效率的变化。

结果发现,在合适的负载电阻条件下,整流电路的效率最高。

但是,如果负载电阻过小或过大,效率都会下降。

这是因为负载电阻过小时,导通损耗占比较大,而负载电阻过大时,开关损耗占比较大。

因此,在实践中,我们需要根据具体情况选择合适的负载电阻值,以获得最高的效率。

三、实验二:直流电机调速系统实验在本实验中,我探究了直流电机调速系统的原理及其调速性能。

通过控制电机的励磁电流和电枢电压,我成功实现了直流电机的变速调节,并观察了电机转速和输出扭矩的变化。

在实验中,我发现励磁电流对电机转速和输出扭矩有直接影响。

当励磁电流增大时,电机转速逐渐增加,输出扭矩也变大。

这是因为励磁电流的增大会使磁场强度增强,进而提高电机的转矩和转速。

因此,在实际应用中,我们可以通过控制励磁电流来实现对电机的调速。

另外,电枢电压也对电机调速系统有重要影响。

电力电子实验报告仿真

电力电子实验报告仿真

电力电子实验报告仿真电力电子是关于电力系统中的电力变换和控制的一门学科,它主要应用于电力系统中的功率调节、电能质量控制和电能传输等方面。

在电力电子实验中,我们通过仿真软件对电力电子器件和系统进行建模、仿真和分析。

下面是一份关于电力电子实验仿真的报告,旨在介绍电力电子的基本原理、实验内容和结果分析。

实验名称:电力电子的仿真实验实验目的:通过仿真软件对电力电子器件和系统进行建模、仿真和分析,学习电力电子的基本原理和应用。

实验装置和器件:电力电子仿真软件、开关管、二极管、滤波电容、电源、负载等。

实验原理:电力电子是利用电子器件来对电能进行变换和控制的学科,其主要包括开关电源、直流调速、电能质量控制等方面。

在本实验中,我们将模拟建立电力电子器件和系统的模型,并通过仿真软件进行仿真和分析。

实验步骤:1.模拟建立电力电子器件和系统的模型。

根据实验要求,选择适当的电力电子器件和系统,建立相应的电路模型。

2.进行仿真实验。

在模拟建立模型后,通过仿真软件对电路进行仿真实验,记录下相关的参数和波形。

3.分析实验结果。

根据仿真结果,分析电路的性能和特点,探讨电力电子器件和系统的优化方案。

实验结果和分析:在本次实验中,我们选择了一个开关电源电路进行仿真实验。

通过调节电源和负载的参数,我们得到了不同工作状态下的电压、电流和功率波形。

根据仿真结果,我们可以看到开关电源具有宽的输入电压范围,输出电压稳定,响应速度快等特点。

同时,我们还发现,在输入电压变化较大时,开关电源的输出电压仍能保持稳定,表明开关电源具有良好的稳压性能。

结论:通过本次仿真实验,我们进一步了解了电力电子的基本原理和应用,学会了使用仿真软件进行电力电子器件和系统的建模、仿真和分析。

同时,通过对开关电源电路的仿真实验,我们验证了开关电源具有宽输入电压范围、稳压性好的优点。

实验心得:电力电子实验是电力专业中重要的实践环节,通过仿真实验,我们更深入地理解了电力电子的工作原理和特点。

电力电子技术实验内容

电力电子技术实验内容

电力电子技术实验内容电力电子技术实验内容电力电子技术是现代电力工业中的关键技术之一,其作用是将电能在电力系统中转换、控制、调节和保护。

电力电子技术的应用范围广泛,包括电力变换、灯光控制、电动机驱动、UPS系统、遥控、遥测、安全监控、节能措施等领域。

电力电子技术实验是电力电子理论的实践部分,通常是电力电子课程的学习和教学中重要的一环。

本文将介绍电力电子技术实验的内容,包括基础实验和高级实验两部分。

一、基础实验1. 半波整流电路实验半波整流电路是最简单的电力电子电路之一,实验主要是通过半波整流电路的实现原理,掌握半波整流电路的基本工作原理、电流及电压的波形特点、电路的计算方法、及其应用等。

2. 全波整流电路实验全波整流电路相对于半波整流电路来说功能更强大,也更加的复杂。

在全波整流电路实验中,主要是掌握全波整流电路的实现原理、工作状态、电路计算方法等。

3. 三相半波整流电路实验三相半波整流电路是工业中常用的电力电子电路之一,用于三相有源电力负载与电网间的电能转换。

在三相半波整流电路实验中,主要是通过对三相系统与半波整流电路的联接和三相半波整流电路的实现原理、工作状态、电路计算方法等的探究,从而深入理解三相半波整流电路的必要性。

4. 交流电调压电路实验交流电调压电路是电力电子技术中的一项重要技术,用于将交流电转换成直流电,实现加工、生产、交通,安全控制系统等领域的控制与输送。

在交流电调压电路实验中,主要是掌握交流电调压电路的实现原理、电路计算方法等。

5. 电容滤波电路实验电容滤波电路也是电力电子技术中的一项重要技术,主要是用于将电路中的高频信号或杂波滤除,保证电路中的信号干净。

在电容滤波电路实验中,主要是掌握电容滤波电路的实现原理、电路计算方法等方面的知识。

6. 电感滤波电路实验电感滤波电路也是电力电子技术中的一种重要技术,其作用是滤除低频杂波。

在电感滤波电路实验中,主要是掌握电感滤波电路的实现原理、电路计算方法等知识。

电力电子实验报告

电力电子实验报告

一、实验目的1. 熟悉电力电子器件的基本特性和工作原理。

2. 掌握电力电子电路的组成和功能。

3. 了解电力电子电路在实际应用中的工作情况。

4. 培养动手实践能力和分析问题、解决问题的能力。

二、实验器材1. 电力电子实验箱2. 万用表3. 示波器4. 信号发生器5. 晶闸管6. 二极管7. 电阻8. 电容9. 电感10. 连接线三、实验内容及步骤1. 电力电子器件特性实验(1)晶闸管导通特性实验:观察晶闸管在不同触发角下的导通情况,分析其导通特性。

(2)二极管反向恢复特性实验:测量二极管在反向电压作用下的恢复时间,分析其反向恢复特性。

2. 电力电子电路实验(1)单相半波可控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。

(2)三相半波可控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。

(3)单相桥式全控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。

(4)三相桥式全控整流电路实验:观察电路在不同触发角下的输出电压波形,分析其整流效果。

3. 电力电子电路应用实验(1)交流调压电路实验:观察电路在不同输入电压下的输出电压,分析其调压效果。

(2)直流稳压电路实验:观察电路在不同输入电压下的输出电压,分析其稳压效果。

四、实验结果与分析1. 晶闸管导通特性实验通过实验,观察到晶闸管在触发角为0°时导通,随着触发角的增大,导通时间逐渐缩短。

这说明晶闸管的导通特性受触发角的影响。

2. 二极管反向恢复特性实验通过实验,测量出二极管在反向电压作用下的恢复时间为5μs。

这说明二极管的反向恢复特性对电路的开关速度有一定影响。

3. 电力电子电路实验(1)单相半波可控整流电路实验通过实验,观察到电路在触发角为0°时输出电压最高,随着触发角的增大,输出电压逐渐降低。

这说明触发角对整流效果有较大影响。

(2)三相半波可控整流电路实验通过实验,观察到电路在触发角为0°时输出电压最高,随着触发角的增大,输出电压逐渐降低。

电力电子技术实验指导书

电力电子技术实验指导书

试验一单相半波可控整流电路试验一、试验目旳(1) 加深理解锯齿波同步移相触发电路旳工作原理及各元件旳作用。

(2) 掌握锯齿波同步移相触发电路旳调试措施。

(2) 掌握单相半波可控整流电路在电阻负载及电阻电感性负载时旳工作。

(3) 理解续流二极管旳作用。

二、试验所需设备(1) DJDK-1型电力电子技术及电机控制试验装置。

其所需挂件如下:① DJK01 电源控制屏② DJK02 晶闸管主电路③ DJK03 晶闸管触发电路④ DJK06 给定及试验器件⑤ D42三相可调电阻(2) 双踪示波器三、试验内容(1) 锯齿波同步移相触发电路各点波形旳观测和分析。

(2) 单相半波整流电路带电阻性负载时U d/U2=f(α)特性旳测定。

(3) 单相半波整流电路带电阻电感性负载时U d/U2=f(α)特性旳测定。

(4) 续流二极管作用旳观测。

四、预习规定(1) 阅读本教材电力电子技术教材中有关锯齿波同步移相触发电路旳内容,弄清锯齿波同步移相触发电路旳工作原理。

(2) 复习单相半波可控整流电路旳有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时旳工作波形。

(3) 掌握单相半波可控整流电路接不一样负载时U d、I d旳计算措施。

五、思索题(1) 锯齿波同步移相触发电路有哪些特点?(2) 锯齿波同步移相触发电路旳移相范围与哪些参数有关?(3) 单相半波可控整流电路接电感性负载时会出现什么现象?怎样处理?六、试验措施1. 锯齿波同步移相触发电路调试(1)将DJK01上旳钥匙式三相“电源总开关”置于“开”旳位置,操作控制屏左上角切换开关观测输入旳三相电网电压与否平衡。

(2) 将DJK01上旳电源选择开关打到“直流调速”侧(不能打到“交流调速”侧)。

用两根导线将DJK01旳A、B(200V)交流电压接到DJK03旳“外接220V”端,按下“启动”按钮。

(3) 打开DJK03电源开关,用双踪示波器观测锯齿波同步触发电路各观测孔旳电压波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2-16
实验
一、
1.掌握开环直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。
2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。
3.熟悉H型PWM变换器的各种控制方式的原理与特点。
二、
1.PWM控制器SG3525性能测试。
2.控制单元测试。
3.H型PWM变换器性能测试。
三、
在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。
图2-1

1.按图接好主回路。
2.接好触发脉冲的控制回路。将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33面板上的Ublf接地。
打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。
(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o的幅度相同的双脉冲。
(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1” 脉冲超前“2” 脉冲600,则相序正确,否则,应调整输入电源。
二、实验仪器
1.MCL-III教学实验台主控制屏
2.NMCL-22实验
3.双踪示波器
4.万用表
三、脉宽调制信号产生原理
脉宽调制信号由专用集成芯片SG3525产生。SG3525芯片不仅能产生频率灵活可变的方波,而且可输出正弦PWM(SPWM)信号,以提高后接变压器的工作频率。为了使SG3525产生一个SPWM信号,可在芯片的9脚处加入一个幅度可变的正弦波(图b),与5脚处的锯齿波(图a)信号进行比较,从而获得SPWM控制信号,改变正弦波的幅值,即改变调制度M(调制度定义为正弦波调制波峰Urm与锯齿波载波峰值Utm之比,即M=Urm/Utm)就可以改变输出电压的幅值,.
(2)观察电压波形。
同时观察输出电压Uo的波形和输入电压E的波形;改变触发脉冲的占空比,观察负载电压的变化;记录占空比为0.5时,输出电压Uo的波形和输入电压E的波形(应用两个示波器探头同时测量)并应用万用表测量E和Uo的值(记录数据)。自定2个不同的占空比,观察波形变化并验证输出和输入的数量关系。
随着占空比的增加,输出电流波形变化如下,其平均值也逐渐增大。
图1-7图1-8图1-9
当输出连续电流时,对应的输出电压波形:
图1-10图1-11
当输出断续电流波形时,对应的输出电压波形:
图1-12图1-13
波形分析:
输出电流断续的原因在于负载中的L较小,且晶闸管导通时间较短,当晶闸管关断后,L上的储存的能量不足,R会消耗完L的储能,因此负载电流会衰减到零。而输出电压就等于电源的电动势。因此波形中出现了台阶。
4.电路模拟故障现象观察。
在=60O时,断开某一晶闸管元件的触发脉冲开关,则该元件无触发脉冲即该支路不能导通,观察并记录此时的Ud波形。
5.整流电路的有源逆变工作状态观察
直接使用NMCL-22上由六个二极管组成的电路或者用MCL-33的六个二极管对U、V、W三相整流构成直流电动势,二极管桥和晶闸管桥之间串联接入灯箱。接通电源,调节触发角 的值。观察全桥输出电压Ud波形。
2.Boost Chopper
(V)
E(V)
(V)
0.5
28.15
14.66
29.32
0.63
36.83
14.66
39.62
0.08
15.30
14.70
15.98
表1-2
图1-14 =0.5图1-15 =0.63图1-16 =0.08
3.Buck- Boost Chopper
(V)
E(V)
(V)
0.5
2.掌握斩波电路的连接,斩波电路的波形观察及电压测试方法。
二、
1.电力电子教学试验台主控制屏
2.MCL-22组件
3.双踪示波器
4.万用表
三、
1.Buck Chopper
图1-1
(1)连接电路。
按照面板上的电路图接成buck chopper斩波器。将PWM波形发生器产生的触发信号接入VT1的G端,注意须将VT1的E端和PWM波形发生器的“地”相连接。
12.85
14.72
14.72
0.63
23.05
14.70
25.03
0.08
0.879
14.73
1.28
表1-3
图1-17 =0.5图1-18 =0.63图1-19 =0.08
实验

1.熟悉三相桥式全控整流电路的接线、器件和保护情况。
2.明确对触发脉冲的要求。
3.掌握电力电子电路调试的方法。
4.观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。
验证公式:
电阻负载:
ห้องสมุดไป่ตู้阻感负载:
由上表可知,在 , 时,带电阻负载或阻感负载的输出电压 测量值与计算值误差很小,可以认为与公式相符;而 时,误差较大。
分析原因可能是:
触发角不是严格的 ,带电阻负载时,实际 ,而带阻感负载时,实际 ;
带阻感负载时, 为临界触发角,外部干扰或电路内部干扰使晶闸管自行关断,导致 偏小。
5) 调整RP2,使占空比为0.75,用万用表记录H桥输出的电压值(参考方向为6->7)同时观察灯泡的亮度有何变化。
6) 实验完毕,断开主电源。
3.DC/DC带电阻-电感(灯箱与700mH电感串联)负载
1)拆掉电阻负载
2)将电阻-电感负载以串联的方式(灯箱)接入“6”端和“7”端
3)调整RP2电位器,将占空比调整为50%。合上主电源,观察并记录H桥的“6”端和“7”端输出电压的波形。
3.DC/DC带电阻-电感(灯箱与700mH电感串联)负载
(V)
现象
0.5
0.25
0.75
表3-2阻感负载时不同占空比的输出电压和现象
图3-5 =0.5图3-6 =0.25图3-7 =0.75
实验
一、实验目的
1.掌握单相正弦波(SPWM)逆变电路的组成、工作原理、特点、波形分析与使用场合。
2.熟悉正弦波发生电路、PWM专用集成电路SG3525的工作原理与使用方法。
四、
1.MCL系列教学实验台主控制屏。
2.NMCL-22实验箱。
3.直流电动机M03及测速发电机
4.双踪示波器、万用表。
五、
采用NMCL—22挂箱
1.控制电路的测试——逻辑延时时间的测试
将UPW的“2”端与DLD(逻辑延迟环节)的“1”相连接。用示波器同时观察DLD的“2”端和“3”端。记录延迟时间 。
(3)观察负载电流波形。
用示波器观察并记录流过负载的电流波形(电阻R两端波形)。
2.BoostChopper
图1-2
(1)连接电路。
按照面板上的电路图接成boost chopper斩波器。将PWM波形发生器产生的触发信号接入VT1的G端,注意须将VT1的E端和PWM波形发生器的“地”相连接。
(2)观察电压波形。
4)调整RP2,使占空比为0.25,记录H桥输出的电压波形和电压值(参考方向为6->7),同时观察灯泡两端的亮度变化。
5) 调整RP2,使占空比为0.75,记录H桥输出的电压波形和电压值(参考方向为6->7),同时观察灯泡两端的亮度变化。
6)实验完毕,断开主电源。
六、
1.控制电路的测试——逻辑延时时间的测试
五、
(1)电阻负载和阻感负载下波形与数据记录
RL
130.0
61.6
77.2
61.6
3.35
62.6
R
130.0
61.5
77.1
61.6
13.12
64
表2-1
输出电压波形图(左图为 ,右图为 )
电阻负载
图2-2图2-3
电阻负载
图2-4图2-5
电阻负载
图2-6图2-7
阻感负载时,输出电压波形和晶闸管VT1两端的电压波形:
5.模拟故障情况,观察故障下的输出电压波形。
6.观察整流电路在有缘逆变情况下输出电压和电流的波形。

1.MCL-III教学实验台主控制屏。
2.MCL—33组件及MCL35组件。
3.双踪示波器
4.万用表
5.电阻(灯箱)

实验线路图见后面。主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。
2.DC/DC带电阻负载
1)将H桥的U、V、W分别与电源的U、V、W相连。H桥的1、3相连。
2)将电阻负载以串联的方式(灯箱)接入“6”端和“7”端。
3)调整RP2电位器,将占空比调整为50%。合上主电源,观察并记录负载两端的电压波形,同时观察灯泡的亮度。
4)调整RP2,使占空比为0.25,用万用表记录H桥输出的电压值(参考方向为6->7),同时观察灯泡的亮度有何变化。
3.三相桥式全控整流电路
(1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使在30o~90o范围内,用示波器观察记录=30O、60O、90O时,整流电压Ud=f(t),晶闸管两端电压UVT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。
(2)电路带阻感负载的情况下:在负载中串入700mH的电感调节Uct(Ug),使在30o~90o范围内,用示波器观察记录=30O、60O、90O时,整流电压Ud=f(t),晶闸管两端电压UVT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。
电力电子综合实验报告
( 2014-- 2015年度 第1学期)
名称:电力电子综合实验
院系:电气与电子工程学院
班级:
学号:
学生姓名:
指导教师:
设计周数:一周
成绩:
日期:年月日-年月日
相关文档
最新文档