海浪谱公式总结讲义

合集下载

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2
g 2 S() 8.110 5 exp[0.74( ) ] U
3
g2
式中:U为海面上19.5 m高处的风速。下图为不同风速 下的P-M谱分布。
PM谱的一般特性: ①与Neumann谱相比,两者比 较接近。 ②风速相同,低风速时: Neumann谱的峰值<PM谱的峰 值,高风速时:Neumann谱的 峰值>PM谱的峰值。


频率 无关,只是组成波方向 的函数,如
G ( ) An cos n
一种简单的近似处理方法是假定方向分布函数 G 与
n
2 范围内传播与分布。 2 2
为方向分布参数, ,波浪能量在主波向 ;
2 An ITTC(国际船舶拖曳水池会议)建议取n=2, 8 An ISSC(国际船舶结构会议)建议取n=4, 3 。
《海洋工程环境学》
第四章 海洋波浪
船舶工程学院 马山 副教授
5、海浪谱
前面我们讲解的都是确定性意义上的规则波理论。如线性 艾瑞波、椭圆余弦波、孤立波等。解释自然界波浪运动特征( 深水、浅水、非线性特征等)
自然界中的海浪随时间和空间随机性地发生变化。随机过 程的海浪远比采用一个确定函数描述的规则波复杂,属于非周 期性的不规则波,各种海浪要素都是随机变量。
t an cos(nt n )
n1

相位。
an 、 n 、 n 分别是第n个余弦组成波的振幅、圆频率和
下图表示某固定点5个简谐波叠加得到的合成海面波 动结果。
5.2 频谱
对任一组成波,其单位面积波能形式为:
En ga
1 2
n
2 n
对其任意圆频率间隔 内的波能求得总 能量后再除以圆频率间隔得到的表达式为:

海浪谱公式总结

海浪谱公式总结

exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
m0
S
d
0
0
A
5
exp
B
4
d
A 4B
因 W /3
4
m0
1/ 2
m0
2 W /3 16
所以:B
4A
2 W /3
由于P M谱中A 0.0081g 2
0.78,
B
4A
2 W /3
3.12
2
4
W /3
代入后得ITTC谱:
S
0.78
5
exp
3.12
2
4
W /3
式中:ζw/3为三一平均波高(不是波幅)。 金品质•高追求 我们让你更放心!
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on

海浪谱公式总结ppt课件

海浪谱公式总结ppt课件
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964 年提出。适用于充分成长的海浪。
S
式中:a=0.0081;
β=0.74;
ag2
5
exp
g
U
4
g为重力加速度;
U为离海面19.5m处的风速。
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
%3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on
S 1 4
j
4j
4
1
mj
4
j
j
H sj2
4 j1
exp
4j
4
1
mj
4
式中:j=1、2分别表示低频和高频部分。 六参数谱可表达任何发展阶段的风浪谱。
10.Wallops谱
1981年,美国Huang等基于理论研究和美国航空航天局wallops飞 行中心风浪流水槽实验资料,提出通用的二参数谱—wallops。他们认 为此谱适用于波浪发展、成熟和衰减各个阶段。合田把它改进成下列 形式,建议用于工程设计(Goda, 1999)
S f
0.257

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2

海洋工程环境课件07-1-海浪要素的统计分析,海浪谱2
0.076(
gF 0.22 ) 2 U10
为量纲为一的常数
F为风区长度,
U10为海面上10m高处风速;
为峰形参数,取


=0.07 =0.09

m m
第17届ITTC推荐如下的JONSWAP波浪谱。并引入 有义波高h1/3和特征周期T1两个参数,并考虑 T1=0.834T0得:


频率 无关,只是组成波方向 的函数,如
G ( ) An cos n
一种简单的近似处理方法是假定方向分布函数 G 与
n
2 范围内传播与分布。 2 2
为方向分布参数, ,波浪能量在主波向 ;
2 An ITTC(国际船舶拖曳水池会议)建议取n=2, 8 An ISSC(国际船舶结构会议)建议取n=4, 3 。
2g S ( ) 6 exp( 2 2 ) U
式中:U为海面上7.5 m高处的风速。下图给出不同 风速下的Neumann谱分布。
2.4
2
海浪谱特征初步认识: 谱的能量集中在窄的频带内; 随着风速的增大,谱峰频率变小。
不同风速下的Neumann谱分布
② Pierson-Moscowitz谱(P-M谱):根据北大西洋 1955~1960年间的观测资料进行谱分析得到,并被第11届 ITTC(国际船模水池会议)(1966)列为标准单参数谱。
不同风速下的P-M谱分布
③单参数谱不能合理表征非充分发展海浪特征,第15届 ITTC(1978)给出的频谱形式为:
S ( )
173H123 T 5
2m0 T m1
4
exp(
691
4T
4

海浪方向谱估计方法

海浪方向谱估计方法

海浪方向谱估计方法海浪谱(功率谱和方向谱)是随机海浪的一个重要统计性质,它不仅包含着海浪的二阶信息,而且还直接给出海浪组成波能量相对于频率和方向的分布,这正是海洋工程和航海领域等特别关心的。

谱方法已经成为研究海浪及其有关问题的有力工具,如何确定海浪谱(功率谱和方向谱)也成为海浪研究的中心问题之一。

海浪方向谱是二维海浪谱,可以描述海浪能量相对于频率和方向的分布,以及海浪空间的一些统计特征。

尽管海浪方向谱的研究要比海浪频谱困难的多,但由于海洋研究诸多领域(海气相互作用、上层海洋动力学、海浪预报、海洋遥感、海洋工程等)的迫切学要,近30年来人们通过各种手段来努力获取它。

获取海浪方向谱信息主要又两种方式:直接测量方式和遥感方式。

1直接测量方式又叫现场测量方式,主要有定点测量方法和阵列法两种。

定点测量方法常见的有PUV传感器法和方向波浮筒法。

测试仪器包括垂荡/纵摇/横摇浮筒、位移浮筒、速度跟踪浮筒、流速压力传感器矩阵(Allender1989)等。

早期的PUV传感器包括电磁速度传感器和压力传感器,在使用中要特别注意平均水深的变化,要精确设定压力传感器和速度传感器的高度。

高度不同会对波浪谱的谱型带来一定的影响。

近年来,由于声学传感器可以进行远程测量,远离传感器本身的噪声,而且它的测速精度更高,因此正逐渐取代电磁传感器。

如SZS2-1坐底式声学波流测量仪,该仪器自水底向上垂直测量水体的流速度剖面和波浪高度、反演波浪方向谱及波浪特征值。

系统集流速剖面与波浪方向谱、能谱以及波浪特征参数测量于一体,可长期连续测量,实时地以图形方式显示流速剖面、各层流速、流向,二维、三维波向谱图和各种辅助传感器的数据。

数据以文件形式存储并可通过RS-232口实时送出,使用起来非常方便。

阵列法阵列测波仪可以较好地测量波浪信息,但安装困难,分析复杂。

国家海洋局的林明森完成了海浪方向谱的阵列式波浪仪系统的波浪特征值、方向谱的计算软件及数据无线传输的软件研制。

第四章 海浪观测

第四章 海浪观测

100
( 4 )频率直方图
以模比系数为纵坐标,平均频率为横坐标, 以模比系数为纵坐标,平均频率为横坐标,绘 制波高平均频率直方图(见图.1)。 )。图上各个 制波高平均频率直方图(见图 )。图上各个 矩形的面积正是各组的区间频率, 矩形的面积正是各组的区间频率,其面积之和 为1.0。当组距趋于无限小时,直方图趋于曲线, 。当组距趋于无限小时,直方图趋于曲线, 该曲线与纵轴包围的面积就是 1.0,此时横坐标 , 转化为频率密度,而曲线即频率密度曲线。 转化为频率密度,而曲线即频率密度曲线。该 曲线的特点是“中间大、两头小” 曲线的特点是“中间大、两头小”,即平均值 附近的波高出现机会最多。 附近的波高出现机会最多。
压力测波仪
美国Inter Ocean公司的S4ADW型系列产品
五、波浪玫瑰图
表示某海区各向各级波浪出现频率基多大小的图. 表示某海区各向各级波浪出现频率基多大小的图 绘制方法同风玫瑰图类似
波向 N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW ╳ C ∑ 观测总 数
0.8~1.0 m m p /% 4 0.14 9 0.33 4 0.14 2 1 0.07 0.04
1.1~1.2 m m p /% 4 0.14 6 0.22 2 0.07
1.3~1.5 m m p /% 6 0.22
1
0.04
7 20 6
0.25 0.72 0.22
3 4
0.11 0.14
1 4 4
H /m 1.3 3.2 5.3 3.3 1.5 1.2 1.9 1.5 3.1 1.8 1.4 1.8 1.8 1.5 4.3 4.8 4.1 3.9 2.9 0.7

船舶控制原理:Chp4 海浪、海风及海流

船舶控制原理:Chp4 海浪、海风及海流
Page 55
注意: 具有各态历经性的随机过程必定是平稳随机过程, 但平稳随机过程不一定是各态历经的。在海浪、船舶运动中 所遇到的随机运动, 一般均能满足各态历经条件。
Page 56
✓超越概率
波浪幅值的超越概率
在分析研究海浪和船舶运动控制问题时,常要用到波 浪或船舶运动幅值随机变量A超过某一定值A1概率,称为 A>A1的超越概率。对于概率密度为雷利分布的情况,如 果以X代表幅值随机变量,x1为某一定幅值,则X>x1的超 越概率以P(X>x1)表示,并给出如下:
xcos+ysin
a cos(k1x k2y t)
20
➢水面下的波浪
波浪也存在于水下,根据流体力学的知识,波浪 随水深变化
ae-kz cos(k t)
波幅随水深呈指数率下降,上式表示的波面为次 波面,当水深较大时,该处的水的质点波动较水 表面处的小。
当z>λ/2,该处的水基本上没有波动了。
9
海浪海要浪要素素
海海浪浪是是海海水水运运动动形形式式之之一一,,它它的的产产生生是是外外力力、、重力与 重力与海水表面张力共同作用的结果。 海水表面张力共同作用的结果。
10
波峰:波浪剖面高于静水面的部份,其最高点称为波峰顶。
波谷:波浪剖面低于静水面的部份,其最低点称为波谷底。 波峰线:垂直波浪传播方向上各波峰顶的连线。 波向线:与波峰线正交的线,即波浪传播方向。 波高:相邻波峰顶和波谷底之间的垂直距离,通常以H表示,单 位以米(m)计。在我国台湾海峡曾记录到波高达15m的巨浪。 波长:两相邻波峰顶(或波谷底)之间的水平距离,通常以L表示, 单位以米(m)计。海浪的波长可达上百米,而潮波的波长则可达 数公里。 周期:波浪起伏一次所需的时间,或相邻两波峰顶通过空间固 定点所经历的时间间隔,通常以了表示,单位以秒(s)计。在我 国沿海波浪周期一般为4~8s,曾记录到周期为20s的长浪。 波陡:波高与波长之比,通常以δ表示,即δ=H/L。海洋上常 见的波陡范围在1/10~1/30之间。波陡的倒数称为波坦。 波速:波形移动的速度,通常以C表示,它等于波长除以周期, 即C=L/T,单位以米/秒(m/s)计。

海浪谱公式总结

海浪谱公式总结



m,βw为两个参数,改变m即可改变谱的宽窄形状,βw用于调整
谱面积,使之等于波浪总能量。
形状参数m和JONSWAP谱中的γ一样,其选用依靠工程师的经验 和判断。一般小的无因次风距gX/U2和大的γ或m值相关,而大的无因
次风距值gX/U2导致γ=1或m=5。在浅水,上述谱中采用m=3或4是合
适的。

3.12

2
W /3
4
S
0.78
5
3.12 exp 2 4 W /3

式中:ζw/3为三一平均波高(不是波幅)。
4.双参数海浪谱
1978年第15届ITTC采用了双参数谱,双参数谱改进了ITTC谱,对成 长中的海浪也适用。
基于ITTC谱有: 1 A 3 B exp d 1 4 3/ 4 0 0 5 3B 4 3 式中:为函数, 1 0.91906 ,因此有: 4 m1 S d
11.方向谱
长峰不规则波是假定海浪沿单一方向传播的;实际海浪除了沿 主方向传播外,还向其他方向扩散,称为短峰不规则波;短峰不规则 波可以看成传播方向不同的长峰不规则波叠加而成。描述海浪沿不同 方向组成的波谱,称为方向谱。
S , S D,
式中:S(ω)为长峰不规则波的海浪谱;θ为组成波与主浪向的夹角。
9.六参数谱
奥启和汉伯尔(Ochi,Hubble, 1976)提出了一个六参数谱公式, 它把整个谱分成低频部分和高频部分两个组成部分,每一部分分别用 三个参数—有效波高Hs、谱峰频ωp和形状参数λ表示。
4 j 1 4 mj 4 2 H sj 4 j 1 mj 1 4 S exp 4 j 1 4 j j 4

海浪谱公式总结.

海浪谱公式总结.
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964
年提出。适用于充分成长的海浪。
4 ag g S 5 exp U 式中:a=0.0081; β=0.74; 2
g为重力加速度; U为离海面19.5m处的风速。
8.斯科特谱
斯科特(Scott,1965)对于充分发展的海浪建议用下列谱公式:
1/ 2 2 2 p S 0.214H s exp 0 . 065 0 . 26 p
式中:-0.26<ω-ωp<1.65, Hs为有效波高;ωp为谱峰频率。 此谱和北大西洋以及印度西海岸实测谱符合得很好。
b.由波高和波浪周期表示的谱公式
0.159 Tp 1 2 exp 2 2
1948 S 319 .34 4 5 3.3 4 Tp Tp

2


W /3
式中:Tp为谱峰周期,波谱峰值对应的周期。
0 0
A B exp d 4 5 4B A
因 W / 3 4m0 所以:B
1/ 2
m0

2
W /3
16
4A

2
W /3
由于P M谱中A 0.0081 g 2 0.78, B 代入后得ITTC谱:
4A

2
W /3
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包 含一个参数U,不足以表征复杂的海浪情况。
3. ITTC谱

《海浪谱公式总结》课件

《海浪谱公式总结》课件
《海浪谱公式总结》PPT 课件
海浪是海洋中的一种重要现象,它们的形成和特征对于许多领域有着深远的 影响。本课件将为您介绍海浪谱的定义、特征及其应用领域。
海浪谱
定义
海浪谱是描述海浪高度和能量随频率变化规律的数学函数。
特征
海浪谱可以用来描述海浪的高度、周期、相速度等参数,以及海浪的谱峰、谱宽等特征。
浪形成机制
1 风起因素
海浪的形成主要与风的作用有关,风的能量 传递到海面上产生了波浪。
2 其他因素
除了风起因素外,地球自转、海洋地形和海 洋潮汐等因素也会影响海浪的形成和发展。
浪高的测量方法
海面高度计
通过安装在设备上的传感器测量海浪的高度,可以 得到准确的浪高数据。
测量船
在海上使用测量船进行实地观测,可以获得更详细 的海浪数据。
海浪谱公式的局限性
海浪谱公式在描述复杂海洋 环境下的海浪时存在一定的 局限性。
发展前景
随着科技的进步和数据的积 累,海浪谱公式将不断得到 改进和应用,为海洋相关领 域的发展提供支持。
海浪能量传递
1
总能量
海浪在传播过程中会损失部分能量,但
固定平台能量传递
2
总能量保持不变。
海浪与固定平台相互作用,使平台受到
力的作用,能量传递到平台上。
3
浮动平台能量传递
海浪与浮动平台相互作用,使平台上的 部分能量被吸收或反射。
海浪预报
1 海浪预报方法
通过分析风向、风速、海洋地形等因素,使用数学模型进行海浪预报。
海浪参数
周期
海浪的周期是指波峰或波谷通过 给定点所需的时间。
频率
海浪的频率是指单位时速度是指波峰或波谷在 水平方向上传播的速度。

海浪谱公式总结84313

海浪谱公式总结84313

exp
1.03
1 TH1/
3
4
S
400.5
Hs T2
H1/ 3
2
1
5
exp1605
1
T H1/ 3
4
式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
◆语文•选修\中国小说欣赏•(配人教版)◆
1.Neumann谱
由半经验的方法,假定海浪的某些外观特征反映其内部结构,由 观测到的波高和周期间的关系推导出来。于50年代首先提出。
S
C
4
1
6
exp
2g2
U 22
式中:U为海面上7.5米高处的风速;常数C=3.05m/s2
金品质•高追求 我们让你更放心!
S f
H T2 1m w 1/3 p
f
m
exp
m 4
Tp f
4
金品质•高追求 我们让你更放心!
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
10.Wallops谱
式中:
w
0.06238mm1/ 4 4m5/ 4 m 1
1 0.7458 m 2 1.057
Tp
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964
年提出。适用于充分成长的海浪。
S
式中:a=0.0081;
β=0.74;
ag2
5
exp

海浪谱

海浪谱

描述海浪内部能量相对于频率和方向的分布。

为研究海浪的重要概念。

通常假定海浪由许多随机的正弧波叠加而成。

不同频率的组成波具有不同的振幅,从而具有不同的能量。

设有圆频率ω的函数S(ω),在ω至(ω+ω)的间隔内,海浪各组成波的能量与S(ω)ω成比例,则S(ω)表示这些组成波的能量大小,它代表能量对频率的分布,故称为海浪的频谱或能谱。

同样,设有一个包含组成波的圆频率ω和波向θ的函数S(ω,θ),且在ω至(ω+ω)和θ至(θ+ω)的间隔内,各组成波的能量和S(ω,θ)ωθ成比例,则S(ω,θ)代表能量对ω和θ的分布,称为海浪的方向谱。

将组成波的圆频率换为波数,可得到波数谱;将ω换为2π(频率为周期的倒),得到以表示的频谱S()数。

以上各种谱统称为海浪谱。

海浪谱不仅表明海浪内部由哪些组成波构成,还能给出海浪的外部特征。

比如,理论上可由谱计算各种特征波高和平均周期,利用这些特征量连同波高与周期的概率密度分布,可推算海浪外观上由哪些高低长短不同的波所构成。

若已知海浪的谱,海浪的内外结构都可得到描述,因此谱是非常有用的概念。

事实上,海浪的研究(包括许多应用问题),大多和谱有关。

频谱在海浪谱中,风浪频谱得到最广泛的研究,因为它的应用最广,也最易于得到。

但尚无基于严格理论的风浪频谱。

已提出的经验的或半经验的频谱很多,大多数用[245-1]的乘积来表达。

通常p为5~7,q为2~4,在正量A和B之内。

除了数值常数外,还包含风要素(如风速、风时和风区)或浪要素(如特征波高和周期)作为参量,故谱的形状随风的状态或对应的浪的状态而变化。

上述两项的乘积代表的谱,在ω=0处为0,在0附近的值很小,ω增加时,它骤然增大至一个峰值,然后随频率的增大而迅速减小,在ω→∞ 时趋于0。

这表明谱的频率范围在理论上虽为0~∞,但其显著部分却集中在谱峰附近。

海面上存在的许多波,其显著部分的周期范围很小,恰和理论结果相对应。

随着风速的增大,谱曲线下面的面积(从而风浪的总能量或波高)增大,峰沿低频率方向推移,表明风浪显著部分的周期增大。

海洋要素计算与预报(海浪3)

海洋要素计算与预报(海浪3)

海浪要素及统计分布(短期分布) §1.3 海浪要素及统计分布(短期分布) 海浪要素及特征波要素
通常需要对波面记录进行预处理。 通常需要对波面记录进行预处理。 上(下)跨零点法 。 谷法。 峰-谷法。 谷法 由波面记录读取的波高和周期均为随机量。 由波面记录读取的波高和周期均为随机量。
海浪要素及特征波要素 (1)部分大波平均波 )
B exp − q ωp ω A
S (ω ) =
Pierson-Moscowitz(P-M)谱(1964) ( ) ) 从北大西洋的460组风浪观测资料中挑选出 组属于充分 组风浪观测资料中挑选出54组属于充分 从北大西洋的 组风浪观测资料中挑选出 成长情形的数据,依风速分成 组并将各组谱进行平均 组并将各组谱进行平均, 成长情形的数据,依风速分成5组并将各组谱进行平均, 发现它们有良好的相似性。 发现它们有良好的相似性。 采用Kitaigorodskii的相似定律对 个平均的谱进行因次 的相似定律对5个平均的谱进行因次 采用 的相似定律对
~ ~ S (ω )dω = 1
1~ ∑ j cj =1 j =1
~ jc j e − j = 0 ∑
j =1
n
n
~ ~ dS (ω ) =0 ~ dω ω =1 ~
n
ω R= ω0
ω = ( m 2 / m 0 )1 / 2

j =1
1 ~ 1 2 c = R 3 j j 2
文氏谱( 文氏谱(1994) )
1 H p = ∫ Hf ( H )dH p H0
概率密度分布函数

p=

∫ f ( H )dH
H0
p = 1 / 100, 1 / 10, 1 / 3, 1

常见海浪波谱word版本

常见海浪波谱word版本

常见海浪波谱word版本1.Neumann谱由半经验的方法,假定海浪的某些外观特征反映其内部结构,由观测到的波高和周期间的关系推导出来。

于50年代首先提出。

式中:U为海面上7.5米高处的风速;常数C=3.05m/s2。

2.P-M谱皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964年提出。

适用于充分成长的海浪。

式中:a=0.0081;β=0.74;g为重力加速度;U为离海面19.5m处的风速。

P-M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。

目前采用的大多数标准波谱主要是基于P-M谱的形式建立的。

但是它仅包含一个参数U,不足以表征复杂的海浪情况。

3.ITTC谱国际拖曳水池会议(ITTC,1972)对P-M谱进行了修改,得到ITTC谱。

基于P-M谱有:由于P-M谱中:代入后得ITTC 谱:式中:ζw/3为三一平均波高,不是波幅。

4.双参数海浪谱1978年第15届ITTC 采用了双参数谱,双参数谱改进了ITTC 谱,对成长中的海浪也适用。

基于ITTC 谱有:3/410.30638m A /B =1/4410112 5.127691T m /m /B B /T π===或代入后得到双参数海浪谱:5.ISSC 谱国际船舶结构会议ISSC1964推荐下列谱公式,且常称之为ISSC 谱。

()24250.10.1110.110.44s H S f exp T f T f ⎡⎤⎛⎫⎛⎫⎢⎥=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦6.JONSWAP 谱该谱由“北海海浪联合计划”测量分析得到,在60年代末期提出,适合像北海那样风程被限定的海域,有两种表示形式。

a.由风速和风程表示的谱公式:()()()24225 1.25p p exp p g S exp ωωσωζωαωγωω⎡⎤-⎢⎥-⎢⎥⎢⎥⎣⎦⎧⎫⎛⎫⎪⎪=-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭式中:α为无因次常数,可取α=0.0076(gx/U 2)-0.22;x 为风区长度(风程);U 为平均风速; ωp 为谱峰频率,可取ωp =22(g/U)(gx/U 2)-0.33 ; γ为谱峰提升因子,平均值为3.3;σ为峰形参数,当ω≤ωp 时,可取σ=0.07;当ω>ωp 时,取σ=0.09。

海洋工程环境 4-5波浪

海洋工程环境  4-5波浪

0
m1 S d
m0为能量谱密度函数的0 谱矩(零阶矩)。
m1为能量谱密度函数一阶矩。
其他波高特征 H1/3 4.005 m0
相应的平均周期为:
平均频率为:
T 2 m0
m1
m1
m0
其中
mn nS d
0
为能量谱密度函数的n阶矩。顺便给出谱宽系数:
2 1 m22
m0m4
50
线性变换系统
• …….
方向能量谱密度函数 方向谱的一般形式:
S , S G
G 为方向函数,有
G d 1
G An cosn
ITTC : n=2, An=2/ ISSC : n=4, An=8/(3)
4.3.2 海浪要素特征
频谱与海浪特征值有密切关系
平均波高
H 2.507 m0
其中
m0 S d
浅水波:1/2>h/>1/25
C2
g 2
tanh
2 h
深水波(短波):h/≥1/2
C2 C02
0
tanh
2
h
C02
g0 2
C2 C02
0
tanh
2
h
假定周期T随水深不变。由C=λ/T,有
所以有
C C0 0
C2 C02
2 02
0
tanh
2 h
C C0
0
tanh
2 h
谱函数的特点:
• 谱函数在整个频率范围内,两端值极小,集中在较窄 频率带内。因此频率较小或较大的波提供的能量很小, 能量较大的波主要集中在某些频率范围内。
• 谱函数为非负函数,恒等于或大于零,于第一象限。

海浪海风及海流

海浪海风及海流

p
()R()ejd
R()21 P()ejd
Page 62
或 简记为
p
(f)R()ej2fd
R() P(f)ej2fdf R(τ) Pξ(ω)
以上称为维纳-辛钦关系,它是联系频域和时域两种分 析方法的基本关系式。在平稳随机过程的理论和应用中是一 个非常重要的工具。
根据上述关系式及自相关函数R(τ)的性质,不难推演功 率谱密度Pξ(ω)有如下性质:
Page 63
超越概率
雷利分布的超越概率
在解决实际问题时,常要用到随机过程的幅值随机变 量A超过某一定值A1概率,称为A>A1的超越概率。对于 概率密度为雷利分布的情况,如果以X代表幅值随机变量, x1为某一定幅值,则X>x1的超越概率以P(X>x1)表示,并 给出如下:
P X R x 1 1 x 12 R x e x p x 2 2x 2 d x e x p x 1 2 2x 2
它们的平均振幅(或摇幅)和振荡特性随着时间的增长基本 上没有变化。显然,对于平稳随机过程它离运动的起点是 充分远的,运动的初始条件对平稳随机过程已不起作用。
Page 55
平稳随机过程和谱
由此可知,如果一个随机函数X(t)所有的概率特征都与时 间t无关,则称此X(t)是平稳的。
因为平稳随机函数的变化与时间无关,因此必然要求平稳 随机函数的数学期望是常数。
计程仪 罗经 陀螺 ……….
典型的控制系统 3
4
5
本章内容
平面进行波概念 随机海浪概念 随机海浪统计规律及海浪功率谱概念 海风和海风的谱分析—理解 海流—理解
6
0 概述
7
前言
船舶在海面上行驶 海浪--〉海风---〉海流 影响 重点:海浪的影响 最常见的海浪---风浪 风浪是不规则的 充分成长的海浪----〉平稳随机过程

第七章 波浪理论及其计算原理

第七章 波浪理论及其计算原理

第七章 波浪理论及其计算原理在自然界中;常可以观察到水面上各式各样的波动,这就是常讲的波浪运动,它造成海洋结构的疲劳破坏,也影响船的航行和停泊的安全。

波浪的动力作用也常引起近岸浅水地带的水底泥沙运动,致使岸滩崩塌,建筑物前水底发生淘刷,港口和航道发生淤积,水深减小,影响船舶的通航和停泊。

为了海洋结构物、驾驶船舶和船舶停靠码头的安全,必须对波浪理论有所了解。

一般讲,平衡水面因受外力干扰而变成不平衡状态,但表面张力、重力等作用力则使不平衡状态又趋于平衡,但由于惯性的作用。

这种平衡始终难以达到,于是,水体的自由表面出现周期性的有规律的起伏波动,而波动部位的水质点则作周期性的往复振荡运动。

这就是波浪现象的特性。

波浪可按所受外界的干扰不同进行分类。

由风力引起的波浪叫风成波。

由太阳、月亮以及其它天体引起的波浪叫潮汐波。

由水底地震引起的波浪叫地震水波由船舶航行引起的波浪叫船行波。

其中对海洋结构安全影响最大的是风成波。

风成波是在水表面上的波动,也称表面波。

风是产生波动的外界因素,而波动的内在因素是重力。

因此,从受力的来看;称为重力波。

视波浪的形式及运动的情况,波浪有各种类型。

它们可高可低,可长司短。

波可是静止的一一驻波(即两个同样波的相向运动所产生的波,也可以是移动的——推进波以一定的速度将波形不变地向一个方向传播的波),可以是单独的波,也可以是一个接一个的一系列波所组成的波群。

§7-1 液体波动理论一、流体力学基础1、速度场 描述海水质点的速度随空间位置和时间的变化规律的一个矢量。

),,,(t z y x V V =它的三个分量为:x 方向的量:),,,(t z y x u u =y 方向的量:),,,(t z y x v v =z 方向的量:),,,(t z y x w w =2、速度势 对于作无旋运动的液体,存在一个函数,它能反映出速度的变化,但仅仅是反映速度大小的变化,这个函数称为速度v的势函数,简称速度势: ),,,(t z y x φφ=3、速度与速度势的关系x u ∂∂=φ, y v ∂∂=φ, zw ∂∂=φ 二、海水运动的基本假设1、海水无粘性,只有重力是唯一的外力;2、液体自由液面上的压力为常数;3、液体波动振幅相对于波长为无限小;4、液体作无旋运动。

海浪海风及海流PPT课件

海浪海风及海流PPT课件
二元不规则波-----长峰波
(, t)
涌浪 35
36
37
随机过程
成熟期海浪 成熟期海浪—平稳随机过程 随机扰动下的控制理论
38
风浪成长与风时、风区的关系
常言道“风大浪高”,也有“无风不起浪”等说 法,这是对风与浪关系的一种描述。但这只是部 分正确。
人所共知,小小的水湾中,那怕再大的风也决不 会掀起汪洋大海中那种惊涛骇浪,因为它受到了 水域的限制。
它们的平均振幅(或摇幅)和振荡特性随着时间的增长基本 上没有变化。显然,对于平稳随机过程它离运动的起点是 充分远的,运动的初始条件对平稳随机过程已不起作用。
Page 54
平稳随机过程和谱
由此可知,如果一个随机函数X(t)所有的概率特征都与时 间t无关,则称此X(t)是平稳的。
因为平稳随机函数的变化与时间无关,因此必然要求平稳 随机函数的数学期望是常数。
有义波高当记录到的海浪时间曲线上依次取3n个波高值从大到小进行排列取前面的n个幅值进行平4923随机海浪的统计特性和谱分析50对波高进行采样515253窄带谱和非窄带谱54随机过程概率论中的随机变量是指在某些保持不变的确定条件下由实验测得的随机量它的统计特征可在实验中得到一个唯一的值但预先是未知的
课程内容
另外,即便是在辽阔的海洋中,短暂的风也不会 产生滔天巨浪。
可见风浪的成长与大小,不是只取决于风力,而 是与风所作用水域的大小和风所作用时间的长短 有密切关系。
39
风时/风区
风时:指状态相同的风持续作用在海面上的 时间。
风区:是指状态相同的风作用海域的范围。 习惯上把从风区的上沿,沿风吹方向到某一 点的距离称为风区长度,简称为风区。
Page 53
平稳随机过程和谱

第四讲 海浪的谱特征

第四讲  海浪的谱特征

第四讲海浪的谱特征
佚名
【期刊名称】《中国海洋平台》
【年(卷),期】1990(000)004
【摘要】天然海浪是一种极其复杂的运动过程,不但用规则波不能代表它,即使是不规则波各波要素的统计分布,也只能反映海浪的外观表视特征,而不能说明海浪的内部结构。

所谓内部结构,就是研究海浪的能量随频率(ω=2π/T)及方向θ(来波向)的
分布情况。

海浪谱对于研究海岸泥沙运动、海浪预报及海工建筑物的动力分析问题等都是重要工具。

【总页数】5页(P38-42)
【正文语种】中文
【中图分类】TE5
【相关文献】
1.由模拟波面分析双峰谱型海浪的统计特征 [J], 潘玉萍;葛苏放;沙文钰;申双和
2.长江口外高桥水域海浪的特征波及谱要素间的统计分析 [J], 何金林
3.实测海浪方向谱的统计特征 [J], 吴秀杰;腾学春
4.南海深水区双峰型海浪谱特征研究 [J], 任叙合;谢波涛;宋转玲
5.海浪非线性性的实验研究——Ⅱ.风浪二阶谱及其与非线性外观特征间的关系 [J], 丁平兴;孔亚珍;侯伟
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S
0.214H
2 s
exp


0.065

p p
2
0.26
1/ 2



式中:-0.26<ω-ωp<1.65, Hs为有效波高;ωp为谱峰频率。 此谱和北大西洋以及印度西海岸实测谱符合得很好。
9.六参数谱
奥启和汉伯尔(Ochi,Hubble, 1976)提出了一个六参数谱公式, 它把整个谱分成低频部分和高频部分两个组成部分,每一部分分别用 三个参数—有效波高Hs、谱峰频ωp和形状参数λ表示。
1.Neumann谱
由半经验的方法,假定海浪的某些外观特征反映其内部结构,由 观测到的波高和周期间的关系推导出来。于50年代首先提出。
S

C

4
1
6
exp
2g2
U 22

式中:U为海面上7.5米高处的风速;常数C=3.05m/s2
2.P-M谱
皮尔逊和莫斯克维奇根据在北大西洋一定点上测得的大量数据,于1964 年提出。适用于充分成长的海浪。
6.JONSWAP谱
b.由波高和波浪周期表示的谱公式
S


319.34
2 W /3
Tp45

1948
Tp 4
3.3e
xp


0.159Tp
2 2
12


式中:Tp为谱峰周期,波谱峰值对应的周期。
7.Bretschneider谱
由于P M谱中A 0.0081g 2

0.78,
B

4A
2 W /3


3.12
2
4
W /3
代入后得ITTC谱:
S

0.78
5
exp



3.12
2
4
W /3

式中:ζw/3为三一平均波高(不是波幅)。
4.双参数海浪谱
1978年第15届ITTC采用了双参数谱,双参数谱改进了ITTC谱,对成 长中的海浪也适用。
S 1 4
j

4
j 4
1
4 mj


j
j
H sj2
4 j1
exp


4j
4
1

mj
4




式中:j=1、2分别表示低频和高频部分。 六参数谱可表达任何发展阶段的风浪谱。
10.Wallops谱
基于ITTC谱有:
m1

S

d

0
0
A
5
exp

B
4
d


1 3
A B3/4
1
3 4
式中:为函数,1

3 4

0.91906,因此有:
m1 0.30638A / B3/ 4
T1 2m0 / m1 5.127 / B1/ 4或B 691/ T14
f
m
exp

m 4
Tp f
4
11.方向谱
长峰不规则波是假定海浪沿单一方向传播的;实际海浪除了沿 主方向传播外,还向其他方向扩散,称为短峰不规则波;短峰不规则 波可以看成传播方向不同的长峰不规则波叠加而成。描述海浪沿不同 方向组成的波谱,称为方向谱。
S, SD,
%4.双参数海浪谱 h=2.8; w=0.3:0.01:4; B=3.12/(h^2)./(w.^4); T1=5.127./(B.^0.25); S4=173*h^2./(T1.^4)./(w.^5).*exp(-691./(T1.^4)./(w.^4)); plot(w,S4,'m-')
1.4
1.2
%2.P-M谱 a=0.0081; b=0.74; g=9.8; U=11.5; w=0.3:0.01:4; S2pm=a*g^2./(w.^5).*exp(-b*(g/U./w).^4); plot(w,S2pm,'r-'),hold on
%3.ITTC谱 h=2.8; w=0.3:0.01:4; S3ittc=0.78./(w.^5).*exp(-3.12/(h^2)./(w.^4)); plot(w,S3ittc,'g-'),hold on
S

400.5
Hs T2
H1/ 3
2

1
5
exp1605
1
T H1/ 3
4




式中:Hs为有效波高,表示波列中波高最大的1/3波浪的平均波高; TH1/3为有效波周期,表示波列中波高最大的1/3波浪周期的平均值。
8.斯科特谱
斯科特(Scott,1965)对于充分发展的海浪建议用下列谱公式:
布氏于1959年由无因次波高和无因次波长的联合分布函数导出二参数 谱,适用于成长阶段或者充分成长的风浪。后经日本光易恒(Mitsuyasu)改进 如下:
S f

0.257
Hs T2
H1/ 3
2

1 f5
TH1/ 3
exp

1.03
1 TH1/
3
4





1 f5
exp

0.44
1 T0.1
f
4




6.JONSWAP谱
该谱由“北海海浪联合计划”测量分析得到,在60年代末期提 出,适合像北海那样风程被限定是海域,有两种表示形式。
a.由风速和风程表示的谱公式
S


g 2 5
exp
1.25
p
4



e
xp


p 2 p 2

式中:α为无因次常数,可取α=0.0076(gx/U2)-0.22; x为风区长度(风程);U为平均风速; ωp为谱峰频率,可取 ωp=22(g/U)(gx/U2)-0.33 ; γ为谱峰提升因子,平均值为3.3; σ为峰形参数,当ω≤ωp时,可取 σ=0.07;当ω>ωp时,取σ=0.09.
式中:S(ω)为长峰不规则波的海浪谱;θ为组成波与主浪向的夹角。
D(ω,θ)的一般形式为: D , kn cosn
(|θ|≤π)
国际船舶结构协会会议(ISSC)建议用一下两种n值
n=2, k2=2/π; n=4, k4=8/3π;
典型谱画图
%1.Neumann谱 C=3.05;U=11.5;g=9.8; w=0.3:0.01:4; S1neum=C*pi/4./w.^6.*exp(-2*g^2/U^2./w.^2); plot(w,S1neum,'b-'),hold on
1
0.8
0.6
0.4
0.2
0
0
0.5
1
1.5
2
2.5Leabharlann 33.54
注:ITTC谱中的三一平均波幅是按照 风速U=11.5kn,U=6.85(ζw/3 )0.5 计算得 出h=2.8。
S
式中:a=0.0081;

β=0.74;
ag2
5
exp




g
U
4


g为重力加速度;
U为离海面19.5m处的风速。
P一M谱为经验谱,依据的资料比较充分,分析方法合理,使用也方便。
目前采用都的大多数标准波谱主要是基于P-M谱的形式建立的。但是它仅包
含一个参数U,不足以表征复杂的海浪情况。
3. ITTC谱
国际拖曳水池会议(ITTC, 1972)对P-M谱进行了修改,得到ITTC谱。
基于P M谱有:
m0

S

d

0
0
A
5
exp
B
4
d


A 4B
因 W /3

4
m0
1/ 2
m0

2 W /3 16
所以:B

4A
2 W /3
A 4Bm0

B 2 W /3 4

173
2
W
T14
/3
代入后得到双参数海浪谱:
S

173
2
W
/3
T145
exp
691
T14 4

5.ISSC谱
国际船舶结构会议ISSC1964推荐下列谱公式,且常 称之为ISSC谱。
2
S
f


0.11
Hs T2
0.1
1981年,美国Huang等基于理论研究和美国航空航天局wallops飞 行中心风浪流水槽实验资料,提出通用的二参数谱—wallops。他们认 为此谱适用于波浪发展、成熟和衰减各个阶段。合田把它改进成下列 形式,建议用于工程设计(Goda, 1999)
S f

H T2 1m w 1/3 p
相关文档
最新文档