《医药数理统计学》试题及答案
医药数理统计大纲_试题及答案
星期二 2010 03 09本科段《医药数理统计》考试大纲1课程性质和设置目的医药数理统计是运用数理统计的原理和方法来分析和解释中医药及医学研究中遇见的各种现象和试验调查资料的一门学科,已成为医药学研究中一种不可缺少的工具,在医药信息的正确收集、整理和分析中发挥着重要作用。
因此,本课程设置目的:1. 使学生了解统计学方法在现代生物科学尤其在医药学研究中的重要作用;2. 系统掌握医药数理统计的基本原理、基本概念、具体实验资料分析方法以及试验设计方法等的应用;3. 通过对医药数理统计的学习,培养学生严谨的科学态度与分析问题、解决问题的能力,为以后的科学研究打下基础。
3课程内容与考核目标根据中药学专业的设置特点及教学计划要求,该课程主要内容如下:第1章事件与概率着重介绍事件之间的关系和运算及概率的基本概念和运算。
熟悉随机事件、概率的基本概念,熟练掌握概率的计算方法,了解全概率与Bayes公式。
1随机事件及其运算2事件的概率——统计定义及古典概率3概率的运算4全概率与Bayes公式第2章随机变量的概率分布与数字特征熟悉随机变量、概率分布的基本概念,掌握随机变量的均数、方差(标准差)及其变异系数的计算方法和它们反映的数据意义,掌握二项分布、泊松分布、正态分布的概率计算方法及其数字特征的表达式。
了解三种分布的渐近关系和大数定律及中心极限定理。
第一节离散型变量的概率分布第二节连续型变量的概率分布第三节随机变量的数字特征第四节三种重要分布的渐近关系第五节大数定律及中心极限定理(只需了解)第3章随机抽样和抽样分布熟悉随机抽样和统计量的基本概念,掌握样本数字特征的计算方法和它们反映的数据意义,掌握几种从正态总体中抽取的样本统计量的u分布、ⅹ2分布、t分布、F分布表达公式。
了解概率纸及其应用的方法。
1随机抽样2样本的数字特征3抽样的分布4概率纸及其应用(只需了解)第4章连续型随机变量的参数估计与检验熟悉概率分布的参数概念和意义,掌握正态分布参数的三种估计(点估计、区间估计、假设检验)方法,了解假设检验的原理及两类检验错误的处理方法。
医药数理统计习题答案解析
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()n ni ii i x x x C ==-≤-∑∑ 证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nni ii i x x x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
医药数理统计课后答案
医药数理统计课后答案【篇一:医药数理统计(第二版)第七章习题解答】>1、解答(1)问题分析本题涉及一个因素a——接种方式,分三种方式,看作三个水平——a1,a2,a3 考察同一随机变量x——伤寒病菌的存活时间(天数)目的是接种方式对伤寒病菌的存活时间是否有显著影响。
将三种接种方式下伤寒病菌的存活时间分别记为x1,x2,x3,题目已知从三个总体中分别抽取的样本容量分别为10,9,11假定三总体x1,x2,x3均服从正态分布,且具有相同的方差,即xi~n(?i,?2),i?1,2,3这样,要考察三种接种方式下伤寒病菌的存活时间是否存在显著差异,体现为同时比较三总体的均值是否相等,构成一个假设检验问题,检验的原假设和备择假设如下:h0:?1??2??3, h0:?1,?2,?3不全相等由此,我们可以利用单因素方差分析解决问题。
(2)数据输入利用spss处理,定义两个变量(存活时间,接种方式),将30个存活时间数据均输在变量“存活时间”列,在“接种方式”列用“1”,“2”,“3”表示三种不同分数据的输入格式。
(3)数据处理点击analyze →compare means→ one-way anova 处理结果(方差分析表)(4)结果分析组间离差平方和 ssa?70.429 自由度df1?3?1?2 组内离差平方和sse?13.7 自由度df2?10?9?11?3?27 737组间均方msa?ssa/df1?35.215 组内均方mse?sse/df2?5.101检验统计量观测值f0?msa/mse?6.903检验p值,p?p{f?f0}?0.004(即自由度为(2,27)的f分布f0点右侧尾部的概率)。
选取显著水平??0.01,由于检验p值小于显著水平,数据支持拒绝原假设的结论,认为不同的接种方式其伤寒病菌的存活时间存在非常显著差别。
2、解答(1)问题分析问题涉及一个因素(药物成分含量的检测方法),分4个水平。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用软件进行统计作图、频数分布表及直方图生成、统计量的计算。
二、内容提要(一)数据的分类计算各组频数,进行列联表分析、2检验等非参数方法(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量总体方差2总体标准差3、描述分布形状的统计量称性 0时为对称; >0时为正偏或右偏; <0时为负偏或左偏峰度4224)3)(2)(1()1(])([3)()1(S n n n n x x x x n n K i i u -------+=∑∑(原始数据)3)(414--=∑=nS f x mK ki iiu (分组数据)反映数据分布的平峰或尖峰程度 0时为标准正态; >0时为尖峰分布; <0时为扁平分布* 在分组数据公式中,, 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值及其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()nnii i i xx x C ==-≤-∑∑证一:设 由函数极值的求法,对上式求导数,得11()2()22, ()2 nni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f (C )=0,得唯一驻点由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有 2211()()nni i i i x x x C ==-≤-∑∑。
医药数理统计课后练习题含答案
医药数理统计课后练习题含答案本篇文档包含了医药数理统计的课后练习题,旨在帮助学生提高对医药数理统计知识的理解和应用,加深对统计学概念的掌握。
答案也一并提供,供读者参考和核对。
注:下文中,标“*”的题目为答案题目。
第一章随机变量及分布1.1 题目1.已知$\\mathrm{P}(X=2)=0.5$,$\\mathrm{P}(X=3)=0.3$,$\\mathrm{P}(X=5)=0.2$,求E(X)和$\\mathrm{Var}(X)$。
2.某电子厂生产的某型号电子管寿命服从参数为$\\lambda$的指数分布,现有样本容量为n,样本均值为$\\bar{X}$,试推断$\\lambda$的值。
3.设事件A发生的概率为p,B发生的概率为q,A与B互不相容,试证:$P(A\\cup B)=p+q$。
4.设X与Y独立,X服从正态分布$N(\\mu_{1},\\sigma_{1}^{2})$,Y服从正态分布$N(\\mu_{2},\\sigma_{2}^{2})$,定义$Z=\\alpha X+\\beta Y$,其中$\\alpha$和$\\beta$为已知常数,试求Z的分布特征。
1.2 答案1.解:$$E(X)=2\\times0.5+3\\times0.3+5\\times0.2=3.1$$$$\\mathrm{Var}(X)=( 2-3.1)^2\\times0.5+(3-3.1)^2\\times0.3+(5-3.1)^2\\times0.2=1.69$$2.解:样本均值为$\\bar{X}=\\frac{1}{n}\\sum_{i=1}^{n}X_{i}$,则$\\lambda=\\frac{1}{\\bar{X}}$,$\\bar{X}$的方差为$\\mathrm{Var}(\\bar{X})=\\frac{\\lambda^2}{n}$,因此有$$E(\\frac{1}{\\bar{X}})=\\lambda+\\frac{\\lambda^3}{n}\\mathrm{Var} (\\bar{X})=$$$$\\frac{n+1}{n}\\lambda$$3.证明:$$\\because A\\mathrm{\\ and\\ }B\\mathrm{\\ are\\disjoint,}$$$$\\therefore A\\mathrm{\\ and\\ }B\\mathrm{\\ are\\ independent.}$$$$\\mathrm{So,}P(A\\cup B)=P(A)+P(B)=p+q$$4.解:由于X和Y独立,则$$E(Z)=\\alpha E(X)+\\betaE(Y)$$$$\\mathrm{Var}(Z)=\\alpha^{2}\\mathrm{Var}(X)+\\beta^{2}\\mathrm{ Var}(Y)$$因为X和Y均服从正态分布,所以Z服从正态分布。
医药数理统计学试题及答案..doc
(一)填充题1.统计数据可以分为数据、据等三类,其中数据、2.常用于表示定性数据整理结果的统计图有而、、、数据、数据、数据属于定性数据。
、;等是专用于表示定量数据的特征和规律的统计图。
3.用于数据整理和统计分析的常用统计软件有等。
4.描述数据集中趋势的常用测度值主要有、和等,其中最重要的是;描述数据离散程度的常用测度值主要有、、、等,其中最重要的是、。
(二)选择题1. 各样本观察值均加同一常数 c 后( )A .样本均值不变,样本标准差改变B.样本均值改变,样本标准差不变C.两者均不变 D. 两者均改变2.关于样本标准差,以下哪项是错误的()。
A .反映样本观察值的离散程度B.度量了数据偏离样本均值的大小C.反映了均值代表性的好坏D.不会小于样本均值3.比较腰围和体重两组数据变异度大小宜采用()2A .变异系数( CV )B.方差( S )C.极差(R)D.标准差(S)(三)计算题1. 测得 10 名接触某种病毒的工人的白细胞(109/L)如下:,,,,,,,,,(1)计算其样本均值、方差、标准差、标准误和变异系数。
(2)求出该组数据对应的标准化值;(3)计算其偏度。
10解:( 1) x i7.1 6.55.9567.75 ,n=10i110x i 27.12 6.525.952i 1样本均值 x1 nx i 67 .75 6 .775n i 110方差 S21n2 nx 2)1(462.35 10 6.7752 ) 0.371 ( x in 1 i 1 9 标准差 S S 2 = 0.371 ≈标准误 S xS 0.609 0.193n 40变异系数S100% 0.609100% =%; CV==| x | 6.775( 2)对应的标准化值公式为对应的标准化值为,,,,,,,,,;n ( x ix )33 =。
(3) S k1)( n 2)S ( n六、思考与练习参考答案(一)填充题1. 定类,定序,数值,定类,定序2. 条形图、圆形图;直方图、频数折线图、茎叶图、箱形图3. SAS 、SPSS 、Excel4. 均值、众数、中位数,均值,极差、方差、标准差、变异系数,方差、标准差(二)选择题1. B ; ;(三)、 1. 测得 10 名接触某种病毒的工人的白细胞(109/L )如下:,,,,,,,,,( 1)计算其样本均值、方差、标准差、标准误和变异系数。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()nnii i i xx x C ==-≤-∑∑证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nnii i i xx x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
医药数理统计习题答案
医药数理统计习题答案第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类数据类型定性数据(品质数据)定量数据定类数据(计数数据)定序数据(等级数据)数值数据(计量数据)表现形类别类别数值2式(无序)(有序)(+-×÷)对应变量定类变量定序变量数值变量(离散变量、连续变量)主要统计方法计算各组频数,进行列联表分析、 2检验等非参数方法计算各种统计量,进行参数估计和检验、回归分析、方差分析等参数方法常用统计图形条形图,圆形图(饼图)直方图,折线图,散点图,茎叶图,箱形图(二)常用统计量1、描述集中趋势的统计量名公式(原始数公式(分意义3称据)组数据)均值x11niix xn==∑11ki iix m fn=≈∑反映数据取值的平均水平,是描述数据分布集中趋势的最主要测度值,中位数M e⎪⎪⎩⎪⎪⎨⎧+=++为偶数当为奇数当,nxxnxMnnne),(21)12()2()21(中位数所在组:累积频数超过n/2的那个最低组是典型的位置平均数,不受极端值的影响众数M o 数据中出现次数最多的观察值众数所在组:频数最大测度定性数据集中趋势,对于定量数4的组据意义不大2、描述离散程度的统计量名称公式(原始数据)公式(分组数据)意义极差R R = 最大值-最小值R≈最高组上限值-最低组下限值反映离散程度的最简单测度值,不能反映中间数据的离散性总体方差σ2∑=-=NiixxN122)(1σ2211()ki iim x fNσ=≈-∑反映每个总体数据偏离其总体均值的平均程度,是离散程度的最重要测度值, 其中标准差具有与观察值数据相同的量纲总体标准差σ2211()Niix xNσσ===-∑2211()Ni iim x fNσσ==≈-∑56样本方差 S 2∑=--=n i i x x n S 122)(11i ki i f x m n S ∑=--=122)(11反映每个样本数据偏离其样本均值的平均程度,是离散程度的最重要测度值, 其中标准差具有与观察值数据相同的量纲样本标准差S∑=--==ni i x x n S S 122)(11i ki i f x m n S S ∑=--==122)(11 变异系数 CV CV =%100||⨯x S 反映数据偏离其均值的相对偏差,是无量纲的相对变异性测度样本标准nS S x =反映样本均值偏离总体均值的平7误x S均程度,在用样本均值估计总体均值时测度偏差3、描述分布形状的统计量名 称公 式(原始数据)公 式(分组数据)意 义 偏度S k33)2)(1()(Sn n x x n S i k ---=∑313)(nSf x mS ki iik ∑=-=反映数据分布的非对称性S k =0时为对称; S k >0时为正偏或右偏; S k <0时为负偏或左偏8峰度 K u4224)3)(2)(1()1(])([3)()1(S n n n n x x x x n n K i i u -------+=∑∑ (原始数据)3)(414--=∑=nSf x mK ki iiu (分组数据)反映数据分布的平峰或尖峰程度 K u =0时为标准正态; K u >0时为尖峰分布; K u <0时为扁平分布* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
医药数理统计学(专升本)
第一套202105医药数理统计学(专升本)交卷时间2023-04-28 17:05:57一、单选题(每题1.5分,共20道小题,总分值30分)1.在求正态总体均值的置信区间时,若样本容量为n,总体方差未知,应选择t 统计量的自由度为(1.5分)AnBn-1C1Dn+1纠错正确答案B您的答案是未作答回答错误展开2.随机变量X,Y相互独立,方差分别为1和4 ,则下有3X-2Y 的方差为(1.5分)A 25B104C13D-5正确答案A您的答案是未作答回答错误展开3.要检验两个正态总体均值是否相等,大样本时,我们应做(1.5分)At检验Bu检验C卡方检验DF检验正确答案B您的答案是未作答回答错误展开4.若A,B是两个事件, P(AB)=P(A) *P(B)则A和B(1.5分)A互斥B互不相容C对立D独立正确答案D您的答案是未作答回答错误展开5.某个班的考试成绩方差特别小,说明(1.5分)A同学们成绩差异比较大B老师可能划重点了C同学们成绩考得特别差D该试卷区分度好正确答案B您的答案是未作答回答错误展开6.利用四格表检验两个总体率是否相等,n大于40且存在理论值Eij大于1但小于5时,我们应用(1.5分)APearson卡方检验B校正的Pearson卡方检验CFisher确切概率法DRidit分析正确答案B您的答案是未作答回答错误展开7.要检验两个总体方差是否相等,我们应做(1.5分)At检验Bu检验C卡方检验DF检验正确答案D您的答案是未作答回答错误展开8.若随机事件A,B的概率分别为0.6 和0.7,则A与B一定(1.5分)A相互对立B相互独立C互不相容D相容正确答案D您的答案是未作答回答错误展开9.在很多游戏中都要掷骰子,比较掷出的点数的大小,点数大的优先,比如下棋、赛球等。
假设有甲乙双方,若甲先投一颗均匀骰子,然后乙掷,谁掷出的点数多谁赢。
问甲赢的概率有多大?(1.5分)A5/12B1/2C7/12D2/3正确答案A您的答案是未作答回答错误展开10.利用四格表检验两个总体率是否相等,n小于40或存在理论值Eij小于1时,我们应用(1.5分)APearson卡方检验B校正的Pearson卡方检验CFisher确切概率法DRidit分析正确答案C您的答案是未作答回答错误展开11.要检验两个两点总体率是否相等,小样本时,我们应用(1.5分)At检验Bu检验C卡方拟合检验D直接概率法正确答案D您的答案是未作答回答错误展开12.若A,B是两个事件, P(A-B)=P(A) -P(B)则A和B的关系为(1.5分)A互斥BB包含于AC对立D独立正确答案B您的答案是未作答回答错误展开13.要检验正态总体的方差是否发生改变,我们应做(1.5分)At检验Bu检验C卡方检验DF检验正确答案C您的答案是未作答回答错误展开14.若要以小样本检验正态总体均值是否为某常数,应选择统计量(1.5分)AtBuC卡方DF正确答案A您的答案是未作答回答错误展开15.要检验两个正态总体均值是否相等,小样本时,我们应做(1.5分)At检验Bu检验C卡方检验DF检验正确答案A您的答案是未作答回答错误展开16.什么条件下使用泊松近似计算二项分布中的随机事件的概率较为合适(1.5分)An很小,p很小Bn很大,p很小Cn很大,p很大Dn很小,p很大正确答案B您的答案是未作答回答错误展开17.设随机变量X服从参数为3的泊松分布,则D(2X+1)等于(1.5分)A12B13C7D6正确答案A您的答案是未作答回答错误展开18.已知5%的男性和0.25%的女性是色盲,假设男性女性各占一半。
医药数理统计习题答案解析
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()n ni ii i x x x C ==-≤-∑∑ 证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nni ii i x x x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
医药数理统计方法第六版习题答案
医药数理统计方法第六版习题答案
第六版医药数理统计方法习题试题及答案:
1.在哪种研究中,我们可以用t检验来确定两组的时间和数量的组合?
A.单因素分析
B.双因素分析
C.重复测量分析
D.相关分析
答案:C.重复测量分析。
2.下面哪种情况可以用t检验来考察?
A.两个样本的平均数
B.一组数据的中值
C.一组数据的总和
D.两组数据的比例
答案:A.两个样本的平均数。
3.假设检验是用来:
A.检查两组样本是否相等
B.检查一组样本是否具有特定的统计特性
C.确定一组样本的平均数
D.比较一组样本的总和
答案:B.检查一组样本是否具有特定的统计特性。
4.假定检验的目的之一是检查双重限制假设,下列哪种假设是错误的:
A.样本的平均数是不变的
B.样本之间的方差是不变的
C.样本的数量是不变的
D.样本的总和是不变的
答案:D.样本的总和是不变的。
5.下列哪种类型的试验可以用卡方分析来检验?
A.实验室实验
B.研究对照组
C.双因素研究
D.观察法
答案:D.观察法。
6.下列哪种研究不能用卡方分析来检验?
A.对照研究
B.双因素实验
C.回归分析
D.实验室实验
答案:C.回归分析。
7.如何使用非参数统计?。
高等教育医药数理统计考试试及答案
医药数理统计考试试题一、单选题1、数理统计是以()为基础,通过对随机现象观察数据的收集整理和分析推断来研究其统计规律的学科。
[单选题] *A.数学理论B.概率论√C.哲学理论D.随机理论2、统计学的核心是()。
[单选题] *A.数据收集B.数据整理C.数据分析√D.数据解释3、下列不属于统计学常用的软件的是()。
[单选题] *A.SPSSB.SASC.R软件D. Photoshop√4、下列关于数据的说法错误的是()。
[单选题] *A.不同类型数据需要使用不同的统计方法进行分析和处理B.数据可分为定类数据、定序数据和数值数据等三种类型C.定类数据和定序数据数据属于定性数据D.数值数据属于定性数据√5、下列关于数据分布的特征描述有误的一项是()。
[单选题] *A.对数据分布的特征进行描述只需要描述其集中趋势即可√B.均值是数据分布集中趋势的最主要统计量C.中位数和众数主要用于描述数据分布的集中趋势D.描述数据分布离散程度的最重要的统计量是方差和标准差6、下列不属于随机试验特点的是()。
[单选题] *A.试验在相同条件下可重复进行B.能事先明确试验的所有可能结果C.试验之前能确定哪一个结果会出现√D.试验之前不能确定哪一个结果会出现7、下面的维恩图显示事件A与B之间的关系为()。
[单选题] *8、若事件A和B互不相容,P(A)=0.3,P(B)=0.6,则P(A+B)=()。
[单选题] *B.0.42C.0.30D.0.90√9、有100张从1到100号的卡片,从中任取一张,取到卡号是7的倍数的概率为()。
[单选题] *A. 7/50√B. 7/100C. 7/48D. 15/10010、下列说法正确的是()。
[单选题] *A.任一事件的概率总在(0,1)之内B.不可能事件的概率不一定为0C.必然事件的概率一定为1√D.以上均不对11、下列变量属于离散型随机变量的是()。
[单选题] *A.人的体重B.人的血压C.考试成绩D.骰子点数√12、正态分布有两个参数μ与σ,()相应的正态曲线的形状越扁平。
医药数理统计(2)
医药数理统计试题一、填空题(本大题共10小题,每题2分,共20分)1.设X 服从参数u=1,σ2=4的正态散布,那么⎪⎭⎫⎝⎛-21X E =__________________,2.已知P(A)=,P(B)=,P(A ∪B)=,那么P (AB )=__________________.3.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧<<.,010,32其它 x x ,那么p(x=21)=__________________.4.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧<< 其它 .,010,sin 21x x ,那么X 落入区间[2π,π]中的概率为__________________.5.甲、乙两人独立地对同一目标各射击一次,他们的命中率别离为和,现已知目标被击中,那么它是甲射中的概率是__________________.6.设两个彼此独立的随机变量X 和Y 的方不同离为5和2,那么随机变量X-Y 的方差大小为__________________.7.设整体X~N(μ,σ2),X1,X 2,…,X n 是整体X的一个样本,S 2为样本方差,那么随机变量22)1σS n-( 服从的散布是__________________.8.对显著性水平为α的查验结果而言,犯第一类(弃真)错误的概率为__________________. 9.回归方程的要紧应用是__________________.10.以两个方差之比为统计量,处置多个正态整体均数比较问题的统计方式称为__________________. 二、单项选择题(本大题共8小题,每题3分,共24分)1.设A 、B 、C 是三个事件,那么A 、B 、C 同时发生的事件可表示为( ) ∪B ∪C C.A B C D. A ∪ B ∪ C2.设10件产品中有3件次品,从中随机地抽取3件,那么其中至少有一件次品的概率为( )A. 2421B. 247C. 2417D. 2431,A 2,A 3为三个独立事件,且P(A k )=P(k=1,2,3,0<P<1),那么这三个事件不全发生的概率为( )A.(1-P)3 (1-P)(1-P)+3P 2(1-P)4.设A 、B 互不相容,且P(A)≠0,P(B)≠0,那么( ) (B|A)=P(B) (B|A)=0 C.P(A|B)=P(A)(B|A)=15.设X 服从参数为n,p 的二项散布且E(X)=24,D(X)=,那么n,p 的值为( ) =40,p= =60,p= C.n=80,p==60,p=6.设X 1,X 2,X 3是整体N(μ,1)的一个样本,μ未知,以下估量量是μ的无偏估量量的是( )A.3321X X +B. 363321X XX ++ C. 3331X X + D.442321X X X ++7.设样本X 1,X 2,…,X n (n>1)取自正态整体X ,且X~N(μ,σ2).令∑==ni iXnX 11那么D(X )=( )A.σ2 σ2 C.σ2/n D.σ2/n 28.设X~N(μ1, 21σ),Y~N(μ2,22σ))为两独立整体,X,Y 的样本方不同离是2221,S S ,两样本容量别离是n 1和n 2,在H 0∶σ1=σ2为真时,统计量F=2221S S 服从的散布是( )(n 1,n 2) (n 1-1,n 2-1) (n 2,n 1) (n 2-1,n 1-1)三、计算题(本大题共3小题,第1,2小题每题6分,第3小题8分,共20分) X~N(1,22),用标准正态散布函数表示P(-1<X ≤1)2.从一批零件中,随机抽取9个,测得其直径的平均值为x =(mm),样本标准差为s=。
《医药数理统计方法》试题及答案-最新
单选题:1 下面的变量中是分类变量的是A.身高B.体重C.年龄D.血型E.血压2 下面的变量中是是数值变量的是A.性别B.年龄C.血型D.职业 E 疗效3.随机事件的概率P 为A.P=0B. P=1C. P=-0.5D. –0.5<P<0.5E. 0<P<14.用样本作推断, 样本应是A. 总体中典型的一部分B. 总体中任一部分C. 总体中随机抽取的一部分D. 总体中按比例分配的一部分E. 总体中信息明确的一部分5.若以发汞含量大于2.6ug/kg为异常,调查某地1000 人中多少人属于异常,这资料可看作A.计量资料 B. 计数资料 C. 等级资料D. 实验资料 E. 以上均不对6. 统计工作的步骤是:A. 作假设、计算统计量、查界值表和作结论B. 整理资料、分析资料、假设检验C. 统计设计、收集资料、整理和分析资料D. 设立对照组、估计样本、重复试验E. 统计描述、区间估计、假设检验7. 反映计量资料集中趋势的指标是____ 。
A. 标准差B. 标准误C. 率D. 全距E. 均数8. 编制频数表中错误的做法是____ 。
A. 找出最大值和最小值, 计算极差B. 定组距, 常用等组距, 一般分8~15 组为宜C. 写组段时组段可重叠,如“2~4, 4~6,…”D. 用划记法计频数E. 第一个组段应包括变量最小值,最后一个组段应包括变量最大值9. 在描述资料的变异程度时,最宽的范围是___。
A 均数 标准差B 极差C 四分位数间距D 95%的参考值范围E P5~P95 间距10.比较20 头河马体重和20 只小白鼠体重两组数据变异程度大小宜采用____A.变异系数(CV) B.方差C.极差(R) D.标准差(S) E.四份位数间距11. 对血清滴度资料表示平均水平的最常用统计量是::A .均数B .中位数C .几何均数D .全距E .标准差12.描述一组偏态分布资料的变异程度时,适宜的统计量是:A . 变异系数(CV)B . 方差C . 极差(R)D . 标准差(S)E . 四份位数间距13. 关于标准正态分布曲线下的面积,错误的是____A. -1.96 到 1.96 间曲线下面积是 95%B. 1.96 到 2.58 间曲线下面积是 2%C. 大于 1.645 的曲线下面积是 2.5%D. -1.96 到-1.645 间曲线下面积是 2.5%E. 大于 1.96 的曲线下面积为 2.5%14. 1.96μσ±范围内占正态曲线下面积的____ 。
医药数理统计试题
医药数理统计试题一、选择题(每题2分,共30题)1. 下列哪项是描述资料的集中趋势的指标?A. 方差B. 标准差C. 中位数D. 相关系数2. 以下哪种图形最适合表示离散型变量的分布?A. 散点图B. 饼图C. 散点矩阵图D. 条形图3. 在假设检验中,P值是指:A. 原假设成立的概率B. 备择假设成立的概率C. 得到当前观察结果或更极端结果的概率D. 样本总体的标准差4. 以下哪个统计量主要用于度量两个变量之间的线性关系?A. 标准差B. 方差C. 相关系数D. 回归系数5. 正态分布曲线是一个:A. 对称的分布B. 正值为中心的分布C. 负值为中心的分布D. 不对称的分布6. 在95%的置信水平下,自由度为10的t分布的临界值是:A. 2.100B. 2.228C. 1.812D. 2.7647. 如果样本的标准差增加,置信区间的宽度会:A. 减小B. 不变C. 增大D. 无法确定8. 当两个变量之间存在强烈的负相关关系时,相关系数的值会接近:A. -1B. 0C. 1D. 29. 以下哪个是描述数据离散程度的指标?A. 均值B. 方差C. 中位数D. 相关系数10. 假设检验中的拒绝域是:A. 接受原假设的取值范围B. 无法确定的取值范围C. 接受备择假设的取值范围D. 拒绝原假设的取值范围......二、计算题(每题10分,共3题)1. 按照下列数据,计算样本的均值、标准差、中位数和四分位数:数据:12, 15, 19, 20, 23, 26, 28, 29, 30, 322. 某医院随机抽取了100名病人的体温数据,结果如下:平均体温:37.2℃标准差:0.5℃计算在95%的置信水平下的置信区间。
3. 下表是两个变量的相关性矩阵,请根据表格计算两个变量的相关系数。
\begin{array}{ccc}& X & Y \\X & 1.00 & 0.75 \\Y & 0.75 & 1.00 \\\end{array}......三、应用题(每题20分,共2题)1. 某药物在两个厂家生产,需要比较两个厂家所生产的药物的有效成分含量是否有差异。
医药数理统计习题答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()nnii i i xx x C ==-≤-∑∑证一:设 21()()ni i f C x C ==-∑由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()nnii i i xx x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
医药-数理统计习题-答案
第一章数据的描述和整理一、学习目的和要求1. 掌握数据的类型及特性;2.掌握定性和定量数据的整理步骤、显示方法;3.掌握描述数据分布的集中趋势、离散程度和分布形状的常用统计量;4.能理解并熟练掌握样本均值、样本方差的计算;5.了解统计图形和统计表的表示及意义;6. 了解用Excel软件进行统计作图、频数分布表与直方图生成、统计量的计算。
二、内容提要(一)数据的分类(二)常用统计量1、描述集中趋势的统计量2、描述离散程度的统计量3、描述分布形状的统计量* 在分组数据公式中,m i , f i 分别为各组的组中值和观察值出现的频数。
三、综合例题解析例1.证明:各数据观察值与其均值之差的平方和(称为离差平方和)最小,即对任意常数C ,有2211()()n niii i x x xC ==-≤-∑∑证一:设 21()()n i i f C x C ==-∑ 由函数极值的求法,对上式求导数,得11()2()22, ()2 n ni i i i f C x C x nC f C n =='''=--=-+=∑∑令 f '(C )=0,得唯一驻点11= ni i C x x n ==∑由于()20f x n ''=>,故当C x =时f (C )y 有最小值,其最小值为21()()ni i f x x x ==-∑。
证二:因为对任意常数C 有22222211111222212()()(2)2(2)()0nn n n nii iii i i i i i ni i xx x C x nx x C x nC nx C x nC n x Cx C n x C ======---=---+=-+-=--+=--≤∑∑∑∑∑∑故有2211()()n niii i x x x C ==-≤-∑∑。
四、习题一解答1.在某药合成过程中,测得的转化率(%)如下:94.3 92.8 92.7 92.6 93.3 92.9 91.8 92.4 93.4 92.6 92.2 93.0 92.9 92.2 92.4 92.2 92.8 92.4 93.9 92.0 93.5 93.6 93.0 93.0 93.4 94.2 92.8 93.2 92.2 91.8 92.5 93.6 93.9 92.4 91.8 93.8 93.6 92.1 92.0 90.8 (1)取组距为0.5,最低组下限为90.5,试作出频数分布表; (2)作频数直方图和频率折线图;(3)根据频数分布表的分组数据,计算样本均值和样本标准差。
(完整word版)医药数理统计习题和答案.doc
第一套试卷及参考答案一、选择题(40分)1、根据某医院对急性白血病患者构成调查所获得的资料应绘制(B )A条图 B百分条图或圆图C线图 D直方图2、均数和标准差可全面描述 D 资料的特征A 所有分布形式 B负偏态分布 C正偏态分布 D正态分布和近似正态分布3、要评价某市一名5岁男孩的身高是否偏高或偏矮,其统计方法是(A )A用该市五岁男孩的身高的95%或99%正常值范围来评价B用身高差别的假设检验来评价C用身高均数的95%或99%的可信区间来评价D不能作评价4、比较身高与体重两组数据变异大小宜采用( A )A 变异系数B 方差 C标准差 D四分位间距5、产生均数有抽样误差的根本原因是( A )A.个体差异B.群体差异C.样本均数不同D.总体均数不同6.男性吸烟率是女性的10倍,该指标为(A )(A)相对比(B)构成比(C)定基比(D)率7、统计推断的内容为(D )A用样本指标估计相应的总体指标 B.检验统计上的“检验假设”C. A和B均不是D. A和B均是8、两样本均数比较用t检验,其目的是检验( C )A两样本均数是否不同B两总体均数是否不同C两个总体均数是否相同D两个样本均数是否相同、1和n2.在进行成组设计9 有两个独立随机的样本,样本含量分别为n资料的t检验时,自由度是(D )(A) n + n (B ) n + n -11 2 1 2(C) ni + n2 +1 ( D) ni + n2 -210、标准误反映(A )A抽样误差的大小B总体参数的波动大小C重复实验准确度的高低D数据的离散程度11、最小二乘法是指各实测点到回归直线的(C)A垂直距离的平方和最小B垂直距离最小C纵向距离的平方和最小D纵向距离最小12、对含有两个随机变量的同一批资料,既作直线回归分析,又作直线相关分析。
令对相关系数检验的t值为t,,对回归系数检验的t值为tb, 二者之间具有什么关系?( C)A t r >t bB t r <t bC tr = tb D二者大小关系不能肯定13、设配对资料的变量值为XI和X2,则配对资料的秩和检验(D )A分别按xl和x2从小到大编秩B把xl和x2综合从小到大编秩C把xl和x2综合按绝对值从小到大编秩D把xl和x2的差数按绝对值从小到大编秩 14、四个样本率作比较,x2>x20gv可认为(A )A各总体率不同或不全相同B各总体率均不相同C各样本率均不相同D各样本率不同或不全相同 15、某学院抽样调查两个年级学生的乙型肝炎表面抗原,其中甲年级调查35人,阳性人数4人;乙年级调查40人,阳性人数8人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)填充题
1.统计数据可以分为数据、数据、数据、据等三类,其中数据、数据属于定性数据。
2.常用于表示定性数据整理结果的统计图有、;
而、、、等是专用于表示定量数据的特
征和规律的统计图。
3.用于数据整理和统计分析的常用统计软件有等。
4. 描述数据集中趋势的常用测度值主要有、和
等,其中最重要的是;描述数据离散程度的常用测度值主要
有、、、等,其中最重要的是、。
(二)选择题
1. 各样本观察值均加同一常数c后( )
A.样本均值不变,样本标准差改变B.样本均值改变,样本标准差不变C.两者均不变 D. 两者均改变
2.关于样本标准差,以下哪项是错误的()。
A.反映样本观察值的离散程度 B.度量了数据偏离样本均值的大小
C.反映了均值代表性的好坏 D.不会小于样本均值
3.比较腰围和体重两组数据变异度大小宜采用()
2).方差(S B A.变异系数(CV)
C.极差(R) D.标准差(S)
(三)计算题
9/L)如下:10 1. 测得10名接触某种病毒的工人的白细胞(7.1,6.5,7.4,6.35,6.8,7.25,6.6,7.8,6.0,5.95
(1)计算其样本均值、方差、标准差、标准误和变异系数。
(2)求出该组数据对应的标准化值;
(3)计算其偏度。
10?n7567.?.??.?.?x7165?595=10
,)1解:(i1?i
???xx?6.775样本均值
10?2222?.95?.16.5???5x?7462.35 i1?in75671.
?2222?x?nxS)(3710775.)?10?(462.35??6.方差
i10n1i?n11
i1?n91?i2SS?3710.0.609
=≈标准差S0.609?0.??S193 标准误x40n609.0S%100?%100?==8.99%=;变异系数CV775.6||x)对应的标准化值公式为(2 对应的标准化值为;
0.534,-0.452,1.026,-0.698,0.041,0.78,-0.287,1.683,-1.273,-1.355?3)x(x? n i?S)=0.204。
(3k3S))((n?1n?2六、思考与练习参考答案
(一)填充题 1. 定类,定序,数值,定类,定序条形图、圆形图;直方图、频数折线图、茎叶图、箱形图2.
Excel
、SAS、SPSS3.
均值、众数、中位数,均值,极差、方差、标准差、变异系数,方差、标准差4.
(二)选择题3.A
;; 2.D1. B9)如下:/L测得10名接触某种病毒的工人的白细胞(10、(三)1.
5.95 ,7.8,,
6.06.35,,6.8,
7.25,6.66.57.1,,7.4 )计算其样本均值、方差、标准差、标准误和变异系数。
(1 )求出该组数据对应的标准化值;(2 )计算其偏度。
(310?n75.67955?5617?x.?.??.?=10
,)1解:(i1?i
??x775x??6.样本均值
10?2222?.95??5x?7.1?6.5?462.35 i1i?n751.67
?2222?()x?nxS371)?.7750.6?(462.35?10?方差
i10n1?in11
i1?n91?i2S?S3710.0.609
=≈标准差S0.609?0?S?.193 标准误x40n6090.S%?100%?100==CV;=8.99%变异系数775.6|x|)对应的标准化值公式为(2 对应的标准化值为;
0.534,-0.452,1.026,-0.698,0.041,0.78,-0.287,1.683,-1.273,-1.355?3)?xn x(i?S。
3()=0.204k3S)2?n)(1?n(。