第15章《轴对称图形和等腰三角形》期末总复习资料.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15章《轴对称图形和等腰三角形》期
末总复习资料
本章需要理解掌握的知识点有:一、轴对称图形和轴对称1、轴对称图形是一个图形沿一条直线对折,直线两旁的部分能够完全重合。
2、轴对称是指两个图形沿一条直线对折,直线两旁的两个图形能够完全重合。
3、对称轴都是直线
4、联系:如果把轴对称图形两旁的部分看成两个图形,那么这两个图形成轴对称如果把成轴对称的两个图形看成一个整体,那么这个整体就是轴对称图形。二、轴对称的性质如果两个图形关于某直线对称,那么对称轴是对应点所连线段的垂直平分线三、轴对称的判定如果两个图形上对应点所连线段都被同一条直线垂直平分,那么这两个图形关于这条直线对称。(作一个图形关于某直线对称图形的依据;找对称图形对称轴的依据)四、线段垂直平分线1、性质:线段垂直平分线上的点到线段两端点的距离相等(证线段相等的依据)2、判定:到线段两端点距离相等的点在这条线段的垂直平分线上(判断垂直的依据)3、在题目中只要遇到线段垂直平分线,就要想着把垂直平分线上的点和线段两端点连起来。就能得到线段相等。4、三角形三边垂直平分线交于一点(外心),该点到三角形三个顶点的距离相等五、坐标系中的对称点p(a,b)关于x轴对称点的坐标为(a,-b)点p(a,b)关于y轴对称点的坐标为(-a,b)六、等腰三角形(一)等腰三角形性质性质1、等腰三角形两底角相等(等边对等角)在一个三角形证明角相等
的重要依据。性质2、等腰三角形顶角平分线垂直平分底边也就是:等腰三角形顶角平分线、底边上高和底边中线互相重合。(二)等腰三角形判定:1、定理:等角对等边2、推论1、三个角都相等的三角形是等边三角形3、推论2、有一个角是60度的等腰三角形是等边三角形4、定理、在直角三角形中,30度角所对直角边等于斜边的一半。
七、角的平分线1、性质:角平分线上的点到角两边的距离相等2、判定:角的内部到角两边距离相等的点在角的平分线上。3、三角形三个内角平分线交于一点(内心),该点到三角形三边的距离相等。4、在题目中只要遇到角平分线,就要想着把角平分线上的点向角的两边作垂线段。就能得到线段相等。
本章需要理解掌握的知识点有:一、轴对称图形和轴对称1、轴对称图形是一个图形沿一条直线对折,直线两旁的部分能够完全重合。
2、轴对称是指两个图形沿一条直线对折,直线两旁的两个图形能够完全重合。
3、对称轴都是直线
4、联系:如果把轴对称图形两旁的部分看成两个图形,那么这两个图形成轴对称如果把成轴对称的两个图形看成一个整体,那么这个整体就是轴对称图形。二、轴对称的性质如果两个图形关于某直线对称,那么对称轴是对应点所连线段的垂直平分线三、轴对称的判定如果两个图形上对应点所连线段都被同一条直线垂直平分,那么这两个图形关于这条直线对称。(作一个图形关于某直线对称图形的依据;找对称图形对称轴的依据)四、线段垂直平分线1、性质:线段垂直平分线上的点到线段两端点的距离相等
(证线段相等的依据)2、判定:到线段两端点距离相等的点在这条线段的垂直平分线上(判断垂直的依据)3、在题目中只要遇到线段垂直平分线,就要想着把垂直平分线上的点和线段两端点连起来。就能得到线段相等。4、三角形三边垂直平分线交于一点(外心),该点到三角形三个顶点的距离相等五、坐标系中的对称点p(a,b)关于x轴对称点的坐标为(a,-b)点p(a,b)关于y轴对称点的坐标为(-a,b)六、等腰三角形(一)等腰三角形性质性质1、等腰三角形两底角相等(等边对等角)在一个三角形证明角相等的重要依据。性质2、等腰三角形顶角平分线垂直平分底边也就是:等腰三角形顶角平分线、底边上高和底边中线互相重合。(二)等腰三角形判定:1、定理:等角对等边2、推论1、三个角都相等的三角形是等边三角形3、推论2、有一个角是60度的等腰三角形是等边三角形4、定理、在直角三角形中,30度角所对直角边等于斜边的一半。
七、角的平分线1、性质:角平分线上的点到角两边的距离相等2、判定:角的内部到角两边距离相等的点在角的平分线上。3、三角形三个内角平分线交于一点(内心),该点到三角形三边的距离相等。4、在题目中只要遇到角平分线,就要想着把角平分线上的点向角的两边作垂线段。就能得到线段相等。
本章需要理解掌握的知识点有:一、轴对称图形和轴对称1、轴对称图形是一个图形沿一条直线对折,直线两旁的部分能够完全重合。
2、轴对称是指两个图形沿一条直线对折,直线两旁的两个图形能够
完全重合。3、对称轴都是直线4、联系:如果把轴对称图形两旁的部分看成两个图形,那么这两个图形成轴对称如果把成轴对称的两个图形看成一个整体,那么这个整体就是轴对称图形。二、轴对称的性质如果两个图形关于某直线对称,那么对称轴是对应点所连线段的垂直平分线三、轴对称的判定如果两个图形上对应点所连线段都被同一条直线垂直平分,那么这两个图形关于这条直线对称。(作一个图形关于某直线对称图形的依据;找对称图形对称轴的依据)四、线段垂直平分线1、性质:线段垂直平分线上的点到线段两端点的距离相等(证线段相等的依据)2、判定:到线段两端点距离相等的点在这条线段的垂直平分线上(判断垂直的依据)3、在题目中只要遇到线段垂直平分线,就要想着把垂直平分线上的点和线段两端点连起来。就能得到线段相等。4、三角形三边垂直平分线交于一点(外心),该点到三角形三个顶点的距离相等五、坐标系中的对称点p(a,b)关于x轴对称点的坐标为(a,-b)点p(a,b)关于y轴对称点的坐标为(-a,b)六、等腰三角形(一)等腰三角形性质性质1、等腰三角形两底角相等(等边对等角)在一个三角形证明角相等的重要依据。性质2、等腰三角形顶角平分线垂直平分底边也就是:等腰三角形顶角平分线、底边上高和底边中线互相重合。(二)等腰三角形判定:1、定理:等角对等边2、推论1、三个角都相等的三角形是等边三角形3、推论2、有一个角是60度的等腰三角形是等边三角形4、定理、在直角三角形中,30度角所对直角边等于斜边的一半。
七、角的平分线1、性质:角平分线上的点到角两边的距离相等2、