通信原理仿真实验报告

合集下载

通信仿真实验报告

通信仿真实验报告

通信仿真实验报告一、实验目的本次实验旨在通过通信仿真软件对一些典型通信系统进行仿真实验,通过实验数据分析和结果对比,加深对通信系统原理的理解。

二、实验设备和软件1. 通信仿真软件:MATLAB/Simulink2.实验设备:个人电脑3.其他实验所需设备:无三、实验内容1.AM调制与解调2.FM调制与解调3.FSK调制与解调4.PSK调制与解调5.QPSK调制与解调四、实验步骤1.AM调制与解调实验首先,使用MATLAB/Simulink搭建AM调制系统。

将一个正弦信号作为载波信号,用一个矩形脉冲信号进行调制,调制结果通过一个图示仪表进行查看。

然后,再搭建相应的AM解调系统,将调制后的信号经过解调系统,恢复为原始的矩形脉冲信号。

通过调整调制信号的幅度、频率等参数,观察调制和解调系统的输入输出波形变化情况,分析调制和解调的效果。

2.FM调制与解调实验同样使用MATLAB/Simulink搭建FM调制系统,将一个正弦信号作为载波信号,用一个矩形脉冲信号进行调制。

调制结果通过一个图示仪表进行查看。

接着,搭建相应的FM解调系统,将调制后的信号经过解调系统,恢复为原始的矩形脉冲信号。

通过调整调制信号的幅度、频率调制指数等参数,观察调制和解调系统的输入输出波形变化情况,并进行分析比较。

3.FSK调制与解调实验使用MATLAB/Simulink搭建FSK调制系统,将两个正弦信号分别作为两种调制信号,用一个矩形脉冲信号进行调制。

调制结果通过一个图示仪表进行查看。

接着,搭建相应的FSK解调系统,将调制后的信号经过解调系统,恢复为原始的矩形脉冲信号。

通过调整调制信号的幅度、频率等参数,观察调制和解调系统的输入输出波形变化情况,并进行分析比较。

4.PSK调制与解调实验使用MATLAB/Simulink搭建PSK调制系统,将一个正弦信号作为载波信号,用一个矩形脉冲信号进行调制。

调制结果通过一个图示仪表进行查看。

接着,搭建相应的PSK解调系统,将调制后的信号经过解调系统,恢复为原始的矩形脉冲信号。

通信原理设计实验报告(3篇)

通信原理设计实验报告(3篇)

第1篇一、实验目的1. 理解通信原理的基本概念和原理。

2. 掌握通信系统中的信号传输、调制解调、信道编码和解码等基本技术。

3. 通过实验验证通信原理在实际系统中的应用,提高实际操作能力。

二、实验内容1. 信号传输实验(1)实验目的:验证信号传输过程中的基本特性,如幅度调制、频率调制、相位调制等。

(2)实验原理:通过改变输入信号的幅度、频率和相位,观察输出信号的相应变化,分析调制和解调过程。

(3)实验步骤:① 设计信号传输系统,包括调制器、传输信道和解调器;② 选择合适的调制方式,如AM、FM、PM等;③ 通过实验验证调制和解调过程,分析输出信号的特性;④ 分析实验结果,总结调制和解调过程中的关键因素。

2. 调制解调实验(1)实验目的:研究调制解调技术在通信系统中的应用,掌握调制解调的基本原理和方法。

(2)实验原理:通过实验验证调制解调过程,分析调制解调器的性能指标,如调制指数、解调误差等。

(3)实验步骤:① 设计调制解调系统,包括调制器、解调器和信道;② 选择合适的调制方式和解调方式,如AM、FM、PM、PSK、QAM等;③ 通过实验验证调制解调过程,分析调制解调器的性能指标;④ 分析实验结果,总结调制解调过程中的关键因素。

3. 信道编码和解码实验(1)实验目的:研究信道编码和解码技术在通信系统中的应用,掌握信道编码和解码的基本原理和方法。

(2)实验原理:通过实验验证信道编码和解码过程,分析编码和解码的性能指标,如误码率、信噪比等。

(3)实验步骤:① 设计信道编码和解码系统,包括编码器、信道和解码器;② 选择合适的信道编码方式,如BCH码、RS码等;③ 通过实验验证信道编码和解码过程,分析编码和解码的性能指标;④ 分析实验结果,总结信道编码和解码过程中的关键因素。

4. 通信系统综合实验(1)实验目的:综合运用通信原理中的各种技术,设计一个简单的通信系统,并验证其性能。

(2)实验原理:将上述实验中的技术综合应用于通信系统,验证系统的整体性能。

通信原理硬件仿真试验报告试验一我的要点

通信原理硬件仿真试验报告试验一我的要点

实验一数字基带信号一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握AMI、HDB码的编码规则。

3、掌握从HDB码信号中提取位同步信号的方法。

4、掌握集中插入帧同步码时分复用信号的帧结构特点。

5、了解HDB(AMI)编译码集成电路 CD22103二、实验内容1、用示波器观察单极性非归零码(NRZ、传号交替反转码(AM)、三阶高密度双极性码(HDB)、整流后的AMI码及整流后的HDB码。

2、用示波器观察从HDB码中和从AMI码中提取位同步信号的电路中有关波形。

3、用示波器观察HDB AMI译码输出波形。

三、实验步骤1、熟悉信源模块和HDB3编译码模块的工作原理,使直流稳压电源输出+5V, -12V 电压。

2、用示波器观察数字信源模块上的各种信号波形。

接通信源单元的+5V电源,用FS作为示波器的外同步信号,进行下列观察:(1、示波器的两个通道探头分别接 NRZ-OUT和BS-OUT对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);(2、用K1产生代码X 1110010(x为任意代码,1110010为7位帧同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧同步码时分复用信号帧结构,和NRZ码特点。

3、用示波器观察HDB编译单元的各种波形。

(3)将 K1、K2、K3 置于 0111 0010 0000 1100 0010 0000 态,观察并记录对应的AMI码和HDB码。

AMI 码:HDB3码:(4)将K1、K2、K3置于任意状态,K4置A或H端,CH1接NRZ-OUT CH2分别接(AMI) HDB3-D BPF BS-R和NRZ,观察这些信号波形。

观察时应注意:当输入码为.0101 0101 1111 1111 0000 0000 时输出波形(AMI) HDB3-D码的波形:AMI、HDB码是占空比等于 0.5的双极性归零码,AMI-D HDBD是占空比等于0.5的单极性归零码。

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

通信原理软件仿真实验报告

通信原理软件仿真实验报告

西安邮电大学《通信原理》软件仿真实验报告实验名称:《通信原理》软件实验院系:通信与信息工程学院专业班级:电科1003学生姓名:易海博学号:03102085(班内序号)13指导教师:李莉报告日期:2012年11月3日实验一● 实验目的:1、正弦信号的产生;2、双极性不归零码的产生;3、单极性不归零码的产生;4、四进制数字信号的产生;5、模拟滤波器的设计;6、单位冲激信号的产生;7、直流信号的产生;8、高斯白噪声的产生;9、矩形脉冲序列的产生; 10、低通带限型信号的产生。

● 仿真设计电路及系统参数设置:1、正弦信号的产生:振幅5V ,频率100Hz ,初相为452、双极性不归零码的产生:幅度±10V ,频率100Hz3、单极性不归零码的产生:幅度2V ,频率100Hz4、四进制数字信号的产生:幅度±1V 、±3V ,频率100Hz5、模拟滤波器的设计: 1、低通滤波器:最高截止频率200Hz ,极点个数为62、带通滤波器: 6、单位冲激信号的产生:增益为1,出现时刻0.7s ,即()0.7t δ-7、直流信号的产生:幅度5V8、高斯白噪声的产生:功率谱密度6110/W Hz -⨯9、矩形脉冲序列的产生:幅度2V ,频率100Hz (周期0.01s ),脉宽0.002s (占空比20%)10、低通带限型信号的产生:最低截止频率300Hz ,最高截止频率3400Hz仿真波形及实验分析:1、正弦信号的产生:2、双极性不归零码的产生:3、单极性不归零码的产生:4、四进制数字信号的产生:5、模拟滤波器的设计:1、低通滤波器:2、带通滤波器:6、单位冲激信号的产生:7、直流信号的产生:8、高斯白噪声的产生:9、矩形脉冲序列的产生:10、低通带限型信号的产生:实验分析:1、在产生图形的时候,一定要选好时钟频率,用书上给出的时钟频率,有时候得到的图形不是很清晰,这时候可以适当的调小时钟频率,得到清晰的图样。

通信原理实验报告答案(3篇)

通信原理实验报告答案(3篇)

第1篇一、实验目的1. 理解通信系统的基本原理和组成。

2. 掌握通信系统中的调制、解调、编码、解码等基本技术。

3. 熟悉实验仪器的使用方法,提高动手能力。

4. 通过实验,验证通信原理理论知识。

二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。

2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。

3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。

三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。

2. 信号源:提供调制、解调所需的信号。

3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。

四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。

(2)将信号源信号输入调制器,观察调制后的信号波形。

(3)调整解调器参数,如解调方式、解调频率等。

(4)将调制信号输入解调器,观察解调后的信号波形。

2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。

(2)将调制信号输入解调器,观察解调后的信号波形。

(3)调整调制器参数,如调制方式、调制频率等。

(4)将解调信号输入调制器,观察调制后的信号波形。

3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。

(2)将信息信号输入编码器,观察编码后的数字信号。

(3)设置解码器参数,如解码方式、解码长度等。

(4)将编码信号输入解码器,观察解码后的信息信号。

4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。

(2)将信号源信号输入传输线路,观察传输过程中的信号变化。

(3)调整传输线路参数,如衰减、反射等。

(4)观察传输线路参数调整对信号传输的影响。

五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。

2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。

通信原理仿真——多径信道仿真实验

通信原理仿真——多径信道仿真实验

多径信道仿真实验报告一、AM 、DSB 调制及解调要求:用matlab 产生一个频率为1Hz,功率为1的余弦信源()m t ,设载波频率10c Hz ω=,02m =,试画出:AM 及DSB 调制信号的时域波形;12345678910tAM 时域波形图12345678910tDSB 时域波形图01002003004005006007008009001000NAM 频谱图1002003004005006007008009001000NDSB 频谱图● 采用相干解调后的AM 及DSB 信号波形;1002003004005006007008009001000AM 波1002003004005006007008009001000-1.5-1-0.50.511.5DSB 波● AM 及DSB 已调信号的功率谱;10020030040050060070080090010005105AM 波功率谱0100200300400500600700800900100051015x 104DSB 波功率谱调整载波频率及m0,观察分的AM 的过调与DSB 反相点现象。

在接收端带通后加上窄带高斯噪声,单边功率谱密度00.1n ,重新解调。

%% 加噪解调noise=wgn(1,length(sAM),0、2); %高斯噪声h2=fir1(100,[2*8、9/100,2*11、1/100]); %带通滤波器设计znoise=conv(noise,h2); %窄带高斯噪声sAM2=sAM+znoise(101:end);sDSB2=sDSB+znoise(101:end);spAM2=sAM2、*ct;spDSB2=sDSB2、*ct;b=fir1(100,0、12*2);sdAM2=filter(b,1,spAM2);sdAM_2=2、*sdAM2-m0;sdAM__2=sdAM_2(50:end); %去暂态figure(6);plot(sdAM__2,'r');hold on;plot(mt);legend('加噪解调后','原信号');title('AM波');% 同理画DSB1002003004005006007008009001000-2-1.5-1-0.500.511.52AM 波1002003004005006007008009001000-2-1.5-1-0.500.511.52DSB 波二、SSB 调制及解调要求:用matlab 产生一个频率为1Hz,功率为1的余弦信源,设载波频率10c Hz ω=,,试画出:● SSB 调制信号的时域波形;12345678910-1-0.500.51tSSB 下边带时域波形1002003004005006007008009001000010*******400NSSB 下边带频谱图● 采用相干解调后的SSB 信号波形;1002003004005006007008009001000-1.5-1-0.50.511.5SSB 波● SSB 已调信号的功率谱;0100200300400500600700800900100024681012144SSB 波功率谱在接收端带通后加上窄带高斯噪声,单边功率谱密度00.1n =,重新解调。

通信原理实验仿真报告

通信原理实验仿真报告

实验一. A率13折线编码一、 A率13折线编码简介1、A率13折线的产生A率13折线的产生是从不均匀量化的基点出发,设法用13段折线逼近A=87.6的A率压缩特性。

具体方法是:把输入x轴和输出y轴用两种不同的方法划分。

对x轴在0~1(归一化)范围内不均匀分成8段,分段的规律就是每次以二分之一对分,第一次在0到1之间的1/2处对分,第二次在0到1/2之间的1/4处对分,其余类推。

对y 轴在0~1(归一化)范围内采用等分法,均匀分成8段,每段间隔均为1/8。

然后把x,y各对应段的交点连接起来构成8段直线,得到近似A=87.6的A率压缩特性。

这种近似中会得到13段(正负)斜率不同的折线,所以称其为A率13折线。

2、A率13折线的编码M==个量在13折线编码中,普遍采用8位二进制码,对应有82256化级,即正、负输入幅度范围内各有128个量化级。

这需要将13折线中的每个折线段再均匀分为16个量化级,由于每个段落长度不均⨯=个不均匀的量化匀,因此正或负输入的8个段落被划分成816128级。

按折叠二进制码的码型,这8位码的安排如下:极性码段落码段内码其中,第一位表示采样点的极性,第二到第四位表示采样点所在段落。

第五到第八位表示每段内的一个均匀量化级。

3、13折线幅度码及其对应电平表一4、段内码表二二、1、流程图1)编码2)译码2、编程思路编码根据电平的极性判断C1码,正为1,负为0。

——>根据电平范围可按照表一判断出段落码C2C3C4——>用电平值减去段落起始电平,除以相应的量化间隔,将得到的十进制数转换成二进制数,根据表二就可以判断出相应的段内码C5C6C7C8.译码根据C1来判断电平的极性,1为正,0为负。

——>量化段序号i=4*C2+2*C3+C4+1,则根据表一判断出起始电平I(i)——>j=8*C5+4*C6+2*C7+C8,段内码对应的电平值为I1(i)=j*ΔV(i)Δ—>译码后电平值为I(i)+ I1(i)。

通信原理仿真报告

通信原理仿真报告

1、眼图
电路原理图:
图一电路图
仿真结果:
图二基带信号
图三经过低通滤波器后的信号
图四恢复出的信号
图五观测到的眼图2、Nuquist采样定理验证
电路原理图:
图一电路图
仿真结果:
采样频率设置为100Hz,码元频率设置为10Hz时,基带信号和恢复出来的信号:
对比上面的图,可以看出当采样频率大于2倍的基带信号频率时,恢复出来的信号与基带信号完全一致。

现在将采样频率设置为15Hz,即采样率小于2倍的基带信号频率时,仿真出来的波形如下图所示:
对比Sink5和Sink8,可以看出,波形已经发生了改变,说明恢复出来的信号与基带信号不一致,有失真,验证了Nuquist采样定理。

通信原理实验报告浙大

通信原理实验报告浙大

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理。

2. 掌握通信系统各组成部分的功能和作用。

3. 学习模拟通信和数字通信的基本技术和方法。

4. 培养实验操作能力和分析问题、解决问题的能力。

三、实验器材1. 通信原理实验箱2. 示波器3. 计算机及软件4. 实验指导书四、实验原理通信原理实验主要涉及模拟通信和数字通信两部分。

模拟通信主要包括调制解调、滤波、放大等基本技术;数字通信主要包括编码、解码、调制解调、信道编码、纠错编码等基本技术。

五、实验步骤1. 模拟通信实验(1)调幅(AM)实验:观察调制和解调过程,分析调制信号和载波信号的关系。

(2)调频(FM)实验:观察调制和解调过程,分析调制信号和载波信号的关系。

(3)滤波实验:观察滤波器对不同频率信号的衰减情况,分析滤波器的特性。

(4)放大实验:观察放大器对信号的放大作用,分析放大器的特性。

2. 数字通信实验(1)编码实验:观察编码和解码过程,分析编码和解码的原理。

(2)调制解调实验:观察调制和解调过程,分析调制和解调的原理。

(3)信道编码实验:观察信道编码和解码过程,分析信道编码的原理。

(4)纠错编码实验:观察纠错编码和解码过程,分析纠错编码的原理。

六、实验数据与分析1. 模拟通信实验(1)调幅(AM)实验:通过实验观察到调制信号和载波信号的关系,验证了调幅的原理。

(2)调频(FM)实验:通过实验观察到调制信号和载波信号的关系,验证了调频的原理。

(3)滤波实验:通过实验观察到滤波器对不同频率信号的衰减情况,验证了滤波器的特性。

(4)放大实验:通过实验观察到放大器对信号的放大作用,验证了放大器的特性。

2. 数字通信实验(1)编码实验:通过实验观察到编码和解码过程,验证了编码和解码的原理。

(2)调制解调实验:通过实验观察到调制和解调过程,验证了调制和解调的原理。

(3)信道编码实验:通过实验观察到信道编码和解码过程,验证了信道编码的原理。

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)

通信原理实验报告(优秀范文5篇)第一篇:通信原理实验报告通信原理实验报告1、实验名称:2、实验目的:3、实验步骤:(详细记录你的实验过程)例如:(1)安装MATLAB6.5软件;(2)学习简单编程,画图plot(x,y)函数等(3)进行抽样定理验证:首先确定余弦波形,设置其幅度?、频率?和相位?等参数,然后画出该波形;进一步,设置采样频率?。

画出抽样后序列;再改变余弦波形的参数和抽样频率的值,改为。

,当抽样频率?>=余弦波形频率2倍时,怎么样?否则的话,怎么样。

具体程序及图形见附录1(或者直接放在这里,写如下。

)(4)通过DSP软件验证抽样定理该软件主要有什么功能,首先点“抽样”,选取各种参数:a, 矩形波,具体参数,出现图形B,余弦波,具体参数,出现图形然后点击“示例”中的。

具体参数,图形。

4、思考题5、实验心得6、附录1有附录1的话有这项,否则无。

第二篇:通信原理实验报告1,必做题目1.1 无线信道特性分析 1.1.1 实验目的1)了解无线信道各种衰落特性;2)掌握各种描述无线信道特性参数的物理意义;3)利用MATLAB中的仿真工具模拟无线信道的衰落特性。

1.1.2 实验内容1)基于simulink搭建一个QPSK发送链路,QPSK调制信号经过了瑞利衰落信道,观察信号经过衰落前后的星座图,观察信道特性。

仿真参数:信源比特速率为500kbps,多径相对时延为[0 4e-06 8e-06 1.2e-05]秒,相对平均功率为[0-3-6-9]dB,最大多普勒频移为200Hz。

例如信道设置如下图所示:移动通信系统1.1.3 实验作业1)根据信道参数,计算信道相干带宽和相干时间。

fm=200;t=[0 4e-06 8e-06 1.2e-05];p=[10^0 10^-0.3 10^-0.6 10^-0.9];t2=t.^2;E1=sum(p.*t2)/sum(p);E2=sum(p.*t)/sum(p);rms=sq rt(E1-E2.^2);B=1/(2*pi*rms)T=1/fm2)设置较长的仿真时间(例如10秒),运行链路,在运行过程中,观察并分析瑞利信道输出的信道特征图(观察Impulse Response(IR)、Frequency Response(FR)、IR Waterfall、Doppler Spectrum、Scattering Function)。

她通信原理实验报告(3篇)

她通信原理实验报告(3篇)

第1篇一、实验目的1. 理解通信系统的基本组成和原理。

2. 掌握模拟通信和数字通信的基本知识。

3. 通过实验,验证通信系统中的调制、解调、编码、解码等基本过程。

二、实验器材1. 通信原理实验平台2. 信号发生器3. 示波器4. 数字信号发生器5. 计算机及实验软件三、实验原理通信原理实验主要涉及模拟通信和数字通信两个方面。

模拟通信是将模拟信号通过调制、传输、解调等过程实现信息传递;数字通信则是将数字信号通过编码、传输、解码等过程实现信息传递。

四、实验内容及步骤1. 模拟通信实验(1)调制实验① 打开通信原理实验平台,连接信号发生器和示波器。

② 设置信号发生器输出正弦波信号,频率为1kHz,幅度为1V。

③ 将信号发生器输出信号接入调制器,选择调幅调制方式。

④ 通过示波器观察调制后的信号波形,记录调制信号的幅度、频率和相位变化。

⑤ 调整调制参数,观察调制效果。

(2)解调实验① 将调制后的信号接入解调器,选择相应的解调方式(如包络检波、同步检波等)。

② 通过示波器观察解调后的信号波形,记录解调信号的幅度、频率和相位变化。

③ 调整解调参数,观察解调效果。

2. 数字通信实验(1)编码实验① 打开数字信号发生器,生成二进制信号序列。

② 将信号序列接入编码器,选择相应的编码方式(如曼彻斯特编码、差分曼彻斯特编码等)。

③ 通过示波器观察编码后的信号波形,记录编码信号的时序和幅度变化。

(2)解码实验① 将编码后的信号接入解码器,选择相应的解码方式。

② 通过示波器观察解码后的信号波形,记录解码信号的时序和幅度变化。

五、实验结果与分析1. 模拟通信实验结果(1)调制实验:调制信号的幅度、频率和相位发生了变化,实现了信息的传递。

(2)解调实验:解调信号的幅度、频率和相位与原始信号基本一致,验证了调制和解调过程的有效性。

2. 数字通信实验结果(1)编码实验:编码后的信号波形符合编码方式的要求,实现了信息的编码。

(2)解码实验:解码后的信号波形与原始信号基本一致,验证了编码和解码过程的有效性。

通信原理实验报告设想(3篇)

通信原理实验报告设想(3篇)

第1篇一、实验目的本次实验旨在通过一系列的通信原理实验,使学生深入理解并掌握通信系统的基本概念、原理和关键技术。

通过实验操作,培养学生动手能力、分析问题和解决问题的能力,同时增强对通信理论知识的实际应用能力。

二、实验内容1. 信号与系统基础实验- 信号波形观察与分析- 信号的时域与频域分析- 系统的时域与频域响应2. 模拟通信原理实验- 模拟调制与解调实验(如AM、FM、PM)- 信道特性分析- 噪声对通信系统的影响3. 数字通信原理实验- 数字调制与解调实验(如2ASK、2FSK、2PSK、QAM)- 数字基带传输与复用- 数字信号处理技术4. 现代通信技术实验- TCP/IP协议栈原理与实现- 无线通信技术(如Wi-Fi、蓝牙)- 物联网通信技术(如ZigBee)5. 通信系统设计实验- 基于MATLAB的通信系统仿真- 通信系统性能分析与优化三、实验步骤1. 实验准备- 熟悉实验原理和实验设备- 编写实验报告提纲- 准备实验数据和分析工具2. 实验操作- 按照实验步骤进行操作,记录实验数据 - 分析实验现象,总结实验规律- 对实验结果进行误差分析3. 实验报告撰写- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会四、实验报告格式1. 封面- 实验报告题目- 学生姓名、学号、班级- 指导教师姓名、职称- 实验日期2. 目录- 实验报告各部分标题及页码3. 正文- 实验目的与背景- 实验原理与步骤- 实验结果与分析- 实验结论与讨论- 实验心得与体会4. 参考文献- 列出实验过程中参考的书籍、论文、网络资源等五、实验报告撰写要求1. 实验报告内容完整、结构清晰、逻辑严谨2. 实验原理阐述准确,实验步骤描述详细3. 实验数据真实可靠,分析结论具有说服力4. 实验报告格式规范,语言表达流畅六、实验报告评价标准1. 实验原理掌握程度2. 实验操作熟练程度3. 实验数据分析能力4. 实验报告撰写质量5. 实验心得体会通过本次通信原理实验,学生将能够全面了解通信系统的基本原理和关键技术,提高实际应用能力,为今后从事通信领域的工作打下坚实基础。

通信原理仿真实验报告

通信原理仿真实验报告

通信原理仿真实验报告一、引言通信原理是现代社会中不可或缺的一部分,它涉及到信息的传输和交流。

为了更好地理解通信原理的工作原理和效果,我们进行了一次仿真实验。

本报告将详细介绍实验的目的、方法、结果和分析。

二、实验目的本次实验的目的是通过仿真实验,深入了解通信原理的基本原理和信号传输过程,掌握通信系统中常见的调制解调技术,并通过实验验证理论知识的正确性。

三、实验方法1. 实验平台:我们使用MATLAB软件进行仿真实验,该软件具有强大的信号处理和仿真功能,可以模拟真实的通信环境。

2. 实验步骤:a. 设计信号源:根据实验要求,我们设计了一种特定的信号源,包括信号的频率、幅度和相位等参数。

b. 调制过程:通过调制技术将信号源与载波信号进行合成,得到调制后的信号。

c. 信道传输:模拟信号在信道中的传输过程,包括信号的衰减、噪声的干扰等。

d. 解调过程:通过解调技术将接收到的信号还原为原始信号。

e. 信号分析:对解调后的信号进行频谱分析、时域分析等,以验证实验结果的准确性。

四、实验结果我们进行了多组实验,得到了一系列的实验结果。

以下是其中两组实验结果的示例:1. 实验一:调幅调制a. 信号源:频率为1kHz的正弦信号。

b. 载波信号:频率为10kHz的正弦信号。

c. 调制后的信号:将信号源与载波信号相乘,得到调制后的信号。

d. 信号分析:对调制后的信号进行频谱分析,得到频谱图。

e. 解调过程:通过解调技术,将接收到的信号还原为原始信号。

f. 结果分析:通过对比解调后的信号与原始信号,验证了调幅调制的正确性。

2. 实验二:频移键控调制a. 信号源:频率为1kHz的正弦信号。

b. 载波信号:频率为10kHz的正弦信号。

c. 调制后的信号:将信号源与载波信号相加,得到调制后的信号。

d. 信号分析:对调制后的信号进行频谱分析,得到频谱图。

e. 解调过程:通过解调技术,将接收到的信号还原为原始信号。

f. 结果分析:通过对比解调后的信号与原始信号,验证了频移键控调制的正确性。

通信原理实验报告实验一

通信原理实验报告实验一

实验一模拟线性调制系统仿真实验1实验目的掌握常规AM调制、DSB调制、单边带调制(SSB)的原理和方法,并验证这三种方法的可行性。

并掌握Commsim的常用使用方法。

2实验内容和结果2.1模拟线性调制系统(AM)2.2抑制载波双边带调制(DSB)2.3单边带调制(SSB)3 实验分析3.1模拟线性调制系统(AM)的分析:任意AM 已调信号可以表示为Sam(t)=c(t)m(t)当)()(0t f A t m +=,)cos()(0θω+=t t c c 且A0不等于0时称为常规调幅,其时域表达式为:)cos()]([)()()(00θω++==t t f A t m t c t s c am 3.2抑制载波双边带调制(DSB ):任意DSB 已调信号都可以表示为DSB S )()()(t m t c t =当)()(0t f A t m +=;)cos()(0θω+=t t c c 且A 0等于0时称为抑制载波双边带调制。

其时域表达式为t t f t m t c t s c DSB ωcos )()()()(==;频域表达式为:C DSB F t s ωω+=([)(C F ωω-+()2)]÷3.3单边带调制(SSB ):设调制信号为单边带信号f(t)=A m cosωm t ,载波为c(t)=cosωc t 则调制后的双边带时域波形为:2/])cos()cos([cos cos )(t A t A t t A t S m c m m c m c m m DSB ωωωωωω-++==保留上边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m USB ωωωωωω-=+=保留下边带,波形为:2/)sin sin cos (cos 2/])cos([)(t t t t A t A t S m c m c m m c m LSB ωωωωωω+=-=4 实验体会通过此次实验我进一步理解了AM 、DSB 、SSB 的调制方法的原理和方法,以及如何通过Commsim 软件来模拟这一调制的过程。

通信原理仿真实验

通信原理仿真实验

通信原理仿真实验实验一各种信道码性能比较[实验要求]1.单极性(不)归零码的波形及其功率谱2.双极性(不)归零码的波形及其功率谱[程序设计]global dt t df N close allN=2^15;L=32;M=N/L ;Rb=2;Ts=1/Rb;dt=Ts/L;df=1/(N*dt);T=N*dt;Bs=N*df/2 ;Na=4;f=[-Bs+df/2:df:Bs];t=[-T/2+dt/2:dt:T/2]; SumPRZ=zeros(size(f)); SumPNRZ=zeros(size(f)); SumPdRZ=zeros(size(f)); SumPdNRZ=zeros(size(f)); Again=100;for ii=1:Againa=round(rand(1,M));b=sign(randn(1,M)); sNRZ=zeros(1,N);sRZ=zeros(1,N);sdNRZ=zeros(1,N);sdRZ=zeros(1,N);for jj=1:L分栏显示sNRZ(jj+[0:M-1]*L)=a;endfor kk=1:0.5*Ts/dt;sRZ(kk+[0:M-1]*L)=a;endfor jj=1:LsdNRZ(jj+[0:M-1]*L)=b;endfor kk=1:0.5*Ts/dt;sdRZ(kk+[0:M-1]*L)=b;endXRZ=t2f(reshape(sRZ,1,N));XNRZ=t2f(reshape(sNRZ,1,N));XdRZ=t2f(reshape(sdRZ,1,N));XdNRZ=t2f(reshape(sdNRZ,1,N)); SumPRZ=SumPRZ+(XRZ.*conj(XRZ))/T; SumPNRZ=SumPNRZ+(XNRZ.*conj(XNR Z))/T;SumPdRZ=SumPdRZ+(XdRZ.*conj(XdRZ) )/T;SumPdNRZ=SumPdNRZ+(XdNRZ.*conj(X dNRZ))/T;endPRZ=SumPRZ/Again;PNRZ=SumPNRZ/Again;PdRZ=SumPdRZ/Again;PdNRZ=SumPdNRZ/Again;figure(1)PRZ=30+10*log10(PRZ+eps);PNRZ=30+10*log10(PNRZ+eps);PdRZ=30+10*log10(PdRZ+eps);PdNRZ=30+10*log10(PdNRZ+eps); subplot(2,2,1);plot(f/Rb,PRZ,'g');axis([-8,+8,-20,50]);title('单极性归零码功率谱','fontsize',20); xlabel('f/Rb','fontsize',20);ylabel('P(mdB)','fontsize',20);subplot(2,2,2);plot(f/Rb,PNRZ);axis([-8,+8,-20,50]);title('单极性不归零码功率谱','fontsize',20); xlabel('f/Rb','fontsize',20);ylabel('P(mdB)','fontsize',20);subplot(2,2,3);plot(f/Rb,PdRZ,'g');axis([-8,+8,-20,50]);title('双极性归零码功率谱','fontsize',20); xlabel('f/Rb','fontsize',20);ylabel('P(mdB)','fontsize',20);subplot(2,2,4);plot(f/Rb,PdNRZ);axis([-8,+8,-20,50]);title('双极性不归零码功率谱','fontsize',20); xlabel('f/Rb','fontsize',20);ylabel('P(mdB)','fontsize',20);figure(2)codet=dt*L;subplot(2,2,1)plot(t/codet,reshape(sRZ,1,N),'g','LineWidt h',3)title('单极性归零码码型','fontsize',20); axis([-8,8,-0.2,1.2])xlabel('t/Ts','fontsize',20)grid onsubplot(2,2,2)plot(t/codet,reshape(sNRZ,1,N),'g','LineWi dth',3)title('单极性不归零码码型','fontsize',20); axis([-8,8,-0.2,1.2])xlabel('t/Ts','fontsize',20) grid onsubplot(2,2,3)plot(t/codet,reshape(sdRZ,1,N),'g','LineWid th',3)title('双极性归零码码型','fontsize',20); axis([-8,8,-1.2,1.2])xlabel('t/Ts','fontsize',20)grid onsubplot(2,2,4)plot(t/codet,reshape(sdNRZ,1,N),'g','LineW idth',3)title('双极性不归零码码型','fontsize',20); axis([-8,8,-1.2,1.2])xlabel('t/Ts','fontsize',20) grid on[实验结果][实验结论]通过实验结果可以明显看到,单极性码的功率谱具有双极性码所不具有的离散分量,而归零码的带宽是不归零码的带宽的两倍(归零码占空比为0.5)实验二:升余弦滚降系统设计[实验要求]当滚降系数α=05.,发送码元幅值为0、2时,作出升余弦滚降波形的眼图及功率谱[程序设计]global dt t df N close allN=2^13;L=32;M=N/LRb=2;Ts=1/Rb; dt=Ts/L; df=1/(N*dt) T=N*dt Bs=N*df/2 Na=4;alpha=0.5t=[-T/2+dt/2:dt:T/2];f=[-Bs+df/2:df:Bs];g1=sin(pi*t/Ts)./(pi*t/Ts);g2=cos(alpha*pi*t/Ts)./(1-(2*alpha*t/Ts).^2); g=g1.*g2;G=t2f(g);figure(1)set(1,'Position',[10,50,300,200])figure(2)set(2,'Position',[400,50,300,200])hold ongrid xlabel('t in us')ylabel('s(t) in V')EP=zeros(size(f))+eps; for ii=1:100a=sign(randn(1,M))+1; imp=zeros(1,N);imp(L/2:L:N)=a/dt;S=t2f(imp).*G;s=f2t(t2f(imp).*G);s=real(s);P=S.*conj(S)/T;EP=(EP*(ii-1)+P+eps)/ii;figure(1)plot(f,30+10*log10(EP),'g'); gridaxis([-3,+3,-50,50])xlabel('f (MHz)')ylabel('Ps(f) (dBm/MHz)')figure(2)tt=[0:dt:Na*L*dt];for jj=1:Na*L:N-Na*L plot(tt,s(jj:jj+Na*L)); endend[实验结果]实验三:取样偏差与误码率[实验要求]试作出最佳基带系统的Pe E N b ~0曲线,并与理论误码作一比较。

通信原理仿真实验报告

通信原理仿真实验报告

通信原理仿真实验报告学院通信工程学院班级 1401014班分组参数姓名学号目的:(1)熟悉()通信系统的工作原理、电路组成和信息传输特点;(2)熟悉上述通信系统的设计方法与参数选择原则;(3)掌握使用参数化图符模块构建通信系统模型的设计方法;(4)熟悉各信号时域波形特点;(5)熟悉各信号频域的功率谱特点。

实验内容一:(1)使用m序列为数字系统输入调试信号,采用正弦载波,码速率及载波频率参见附表;(2)采用模拟调制或数字检控实现2PSK调制;(3)通过相干解调完成2PSK解调,恢复初始m序列;(4)从时域观测各信号点波形,获得接收端信号眼图;(5)观测各信号功率谱;(6)完成串并及并串转换模块设计;实验内容二:(7)通过不少于三个频率正弦信号叠加而成的模拟信号作为系统真实输入信号,并采用PCM编码方法实现数模转换;(8)模拟输入信号转换形成的数字信号通过2PSK调制解调系统实现数字频带传输;(9)通过PCM解码恢复初始模拟信号;(10)从时域重点观测模拟信号点波形;(11)从频域重点观察模拟信号功率谱。

方案:通信模拟信号的数字传输通信系统的组成框图如图1所示。

系统输入的模拟随机信号 m(t),经过该通信系统后要较好地得到恢复。

推荐方案:推荐的模拟信号数字频带传输通信系统的组成框图如图2所示。

通过PCM 方式完成数模与模数变换,采用2/BPSK调制方式完成基本数字频带传输。

在2PSK中,通常用初始相位0和分别表示二进制“1”和“0”。

因此,2PSK信号的时域表达式为:即发送二进制符号“1”时(an取+1),e2PSK(t)取0相位;发送二进制符号“0”时(an取-1),e2PSK(t)取相位(也可以反之)。

这种以载波的不同相位直接去表示相应二进制数字信号的调制方式,称为二进制(绝对)相移方式。

已调信号e2PSK(t)典型波形如下图。

2PSK信号的调制器原理方框图模拟调制的方法:2PSK信号的解调器(想干解调)原理方框图和波形图:2PSK仿真结果及分析电路图:时域波形:输入信号:与载波相乘后的波形:经过带通滤波器后的波形:经过低通滤波器后的波形:眼图:输出波形:功率谱图:输入信号:经带通滤波器后的信号:经低通滤波器后的信号:输出信号:带通幅频特性曲线:低通幅频特性曲线:编号名称参数0 Source: PN Seq Amp = 1 vOffset = 0 vRate = 14e+3 HzLevels = 2Phase = 0 degMax Rate = 700e+3 Hz32 Multiplier: Non Parametric Inputs from t0p0 t26p0Outputs to 6 28Max Rate = 700e+3 Hz26 Source: Sinusoid Amp = 1 vFreq = 56e+3 HzPhase = 0 degOutput 0 = Sine t32Output 1 = Cosine电路图:串并。

通信原理仿真实验报告

通信原理仿真实验报告

实验报告课程:通信原理学院:电子与信息工程学院专业:电子与信息工程班级:电信17-班姓名:学号:指导教师:实验项目名称: 实验一DSB 调幅实验 实验日期: 5月25日【实验目的及实验设备】 1、实验目的:(1)通过实验了解集成乘法器幅度调制的工作原理,验证普通调幅波(AM )和抑制载波双边带调幅波(AM SC DSB -/)的相关理论。

2、实验设备及仪器名称:1、 M atlab 仿真软件simulink2、 正弦波发生器模块 2个3、 乘法模块2个4、 带能滤波模块 1个5、 低能滤波模块 1个6、 加法器模块 1个7、 噪声源模块 1个 9、测量仪表若干3、实验原理 1.调制原理:在幅度调制的一般模型中,若假设滤波器为全通网络(H(w)=1),调制信号m(t)中无直流分量,则输出的已调信号就是无载波分量的双边带调制信号(DSB),每当信源信号极性发生变化时,调制信号的相位都会发生一次突变π。

t t m t S c DSB ωcos )()(=。

调制的目的就是进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而提高系统信息传输的有效性和可靠性。

DSB 调制原理框图如图:DSB 信号实质上就是基带信号与载波直接相乘,频域上就是卷积,表达式为:[])()(21)(c c DSB M M t S ωωωω-++=2. 解调原理:DSB 只能进行相干解调,其原理框图与AM 信号相干解调时完全相同,利用恢复的载波与信号相乘,将频谱搬移到基带,还原出原基带信号。

解调原理框图如下:2)载波信号设置3)带通滤波器设置【实验结果】1. 仿真调制过程中各点波形(给出各点波形的解释)波形分析:图a为调制信号,频率为120 rad/s图b为载波波形,频率为1200rad/s图c为以上两信号相乘后波形图d为加入高斯噪声后的波形2.解调过程中的各点波形(给出各点波形的解释)(改变噪声大小和滤波器带宽,观察波形变化)图a为解调后的信号的波形图b为已调信号与载波信号相乘的波形图c为通过解调后信号的波形图d为调制信号的波形3.调制前后频谱分析(给出各点波形的解释)图a 已调波频谱图b 解调乘法器后信号频谱图c 解调出的调制信号频谱【实验结论】1.调制后信号对比调制前的信号,周期变小,频率变大了,幅度随时间在不断的呈现周期性变化。

光纤仿真实验报告(3篇)

光纤仿真实验报告(3篇)

第1篇一、实验目的本次实验旨在通过仿真软件对光纤通信系统进行设计和分析,了解光纤通信的基本原理和关键技术,掌握光纤传输的特性,并学会使用仿真软件进行系统设计和性能评估。

二、实验内容1. 系统设计:- 设计一个简单的光纤通信系统,包括光发射机、光纤传输线路和光接收机。

- 选择合适的波长,设定传输速率。

- 设置系统参数,如光纤长度、损耗、色散等。

2. 仿真分析:- 利用仿真软件对系统进行仿真,观察系统性能。

- 分析不同参数对系统性能的影响,如光纤长度、损耗、色散等。

- 比较不同系统配置下的性能差异。

3. 性能评估:- 评估系统的误码率、信噪比等性能指标。

- 分析系统在实际应用中的可行性和局限性。

三、实验原理光纤通信是利用光波在光纤中传输信息的一种通信方式。

其基本原理如下:1. 光源:光源产生光信号,通常为激光或LED。

2. 调制:将电信号调制到光信号上,实现信息的传输。

3. 光纤:光信号在光纤中传输,光纤具有低损耗、高带宽等特点。

4. 解调:将光信号解调为电信号,恢复原始信息。

四、实验步骤1. 系统设计:- 选择合适的仿真软件,如OptiSystem。

- 设计光发射机,选择光源类型、波长和调制方式。

- 设计光纤传输线路,设置光纤长度、损耗、色散等参数。

- 设计光接收机,选择解调方式。

2. 仿真分析:- 运行仿真软件,观察系统性能。

- 分析不同参数对系统性能的影响。

- 比较不同系统配置下的性能差异。

3. 性能评估:- 评估系统的误码率、信噪比等性能指标。

- 分析系统在实际应用中的可行性和局限性。

五、实验结果与分析1. 系统性能:- 通过仿真,观察到不同参数对系统性能的影响。

- 光纤长度增加,系统误码率升高。

- 光纤损耗增加,系统信噪比降低。

- 色散增加,系统带宽降低。

2. 系统优化:- 根据仿真结果,对系统进行优化。

- 调整光纤长度、损耗、色散等参数,以降低误码率和提高信噪比。

- 选择合适的调制方式和解调方式,以提高系统性能。

通信原理仿真实验报告

通信原理仿真实验报告

通信原理仿真实验报告一、实验目的本实验旨在通过仿真实验的方式,深入理解通信原理的基本原理和技术,掌握通信系统的仿真设计方法,并通过实验结果分析和总结,加深对通信原理的认识和理解。

二、实验原理1. 通信原理基础知识在通信系统中,信号的传输是通过信道进行的。

信道可以是有线或无线的,其中有线信道主要是指电缆、光纤等,而无线信道主要是指无线电波的传播。

通信系统的基本组成部分包括发送端、信道和接收端。

2. 信号的调制与解调调制是将原始信号转换为适合传输的信号形式的过程,而解调则是将接收到的信号还原为原始信号的过程。

常见的调制方式有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)等。

3. 信道编码与解码为了提高信号的可靠性和抗干扰能力,通信系统通常采用信道编码和解码技术。

常见的信道编码方式有海明码、卷积码和纠错码等,通过增加冗余信息来提高信号的可靠性。

4. 信道传输特性的仿真通信系统中的信道具有不同的传输特性,如衰落信道、多径传输等。

通过仿真实验,可以模拟不同的信道传输特性,进而探究信号传输过程中的效果和问题。

三、实验步骤1. 实验环境搭建搭建仿真实验所需的软件环境,如MATLAB、Simulink等。

2. 选择信号调制方式根据实验要求,选择合适的信号调制方式,如ASK、FSK或PSK等。

3. 设计信号调制电路根据选择的信号调制方式,设计相应的信号调制电路,包括载波生成、调制器和滤波器等。

4. 仿真信号调制过程利用仿真工具,对设计的信号调制电路进行仿真,观察信号调制的过程和结果。

5. 设计信道传输模型根据实验要求,设计合适的信道传输模型,包括信道衰落、多径传输等。

6. 仿真信道传输过程利用仿真工具,对设计的信道传输模型进行仿真,观察信号传输过程中的效果和问题。

7. 设计信号解调电路根据实验要求,设计相应的信号解调电路,包括解调器和滤波器等。

8. 仿真信号解调过程利用仿真工具,对设计的信号解调电路进行仿真,观察信号解调的过程和结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10Operator:Linear Sys11Operator:Compare33Source:Sinusoid12Operator:Sampler13Operator:HoldButterworth Lowpass IIR 3 Poles Fc = 14e+3 Hz Quant Bits = None InitCndtn = Transient DSP Mode Disabled Max Rate = 700e+3 Hz Comparison = '>=' True Output = 1 v False Output = 0 v A Input = t10 Output 0 B Input = t33 Output 0 Max Rate = 700e+3 Hz Amp = 0 v Freq = 56e+3 Hz Phase = 0 deg Output 0 = Sine t11 Output 1 = Cosine Max Rate (Port 0) = 700e+3 Hz Interpolating Rate = 700e+3 Hz Aperture = 0 sec Aperture Jitter = 0 sec Max Rate = 700e+3 Hz Last Value Gain = 1 Out Rate = 700e+3 Hz Max Rate = 700e+3 Hz
带通幅频特性曲线:低通幅频特性曲线:
图符参数设置表: 编号 名称 0 Source: 参数 Amp = 1 v Offset = 0 v Rate = 14e+3 Hz Levels = 2 Phase = 0 deg Max Rate = 700e+3 HzPN Seq32Multiplier:Non Parametric Inputs from t0p0 t26p0 Outputs to 6 28 Max Rate = 700e+3 Hz Amp = 1 v Freq = 56e+3 Hz Phase = 0 deg Output 0 = Sine t32 Output 1 = Cosine Max Rate (Port 0) = 700e+3 Hz Inputs from t32p0 t5p0 Outputs to 7 Max Rate = 700e+3 Hz26Source:Sinusoid6Adder:Non Parametric5Source:7827Std Dev = 100e-3 v Mean = 0 v Max Rate = 700e+3 Hz Operator: Linear Sys Butterworth Bandpass IIR 2 Poles Low Fc = 42e+3 Hz Hi Fc = 70e+3 Hz Quant Bits = None InitCndtn = Transient DSP Mode Disabled Max Rate = 700e+3 Hz Multiplier: Non Parametric Inputs from t7p0 t27p0 Outputs to 10 Max Rate = 700e+3 Hz Source: Sinusoid Amp = 1 v Freq = 56e+3 Hz Phase = 0 deg Output 0 = Sine t8 Output 1 = Cosine Max Rate (Port 0) = 700e+3 HzGauss Noise
PCM 仿真结果及分析: 电路图:串并
因此, 2PSK 信号的时域表达式为:
即发送二进制符号“1”时(an取+1),e2PSK(t)取0相位;发送二进制符号“0” 时(an取-1),e2PSK(t)取?相位(也可以反之)。
这种以载波的不同相位直接 去表示相应二进制数字信号的调制方式,称为二进制(绝对)相移方式。
已调信号 e2PSK(t)典型波形如下图。
方案: 通信模拟信号的数字传输通信系统的组成框图如图 1 所示。
系统输入的模拟 随机信号 m(t),经过该通信系统后要较好地得到恢复。
推荐方案: 推荐的模拟信号数字频带传输通信系统的组成框图如图 2 所示。
通过 PCM 方式完成数模与模数变换,采用 2/BPSK 调制方式完成基本数字频带传输。
在 2PSK 中,通常用初始相位 0 和?分别表示二进制“1”和“0”。
实验内容一: (1)使用m序列为数字系统输入调试信号,采用正弦载波,码速率及载波 频率参见附表; (2)采用模拟调制或数字检控实现2PSK调制; (3)通过相干解调完成2PSK解调,恢复初始m序列; (4)从时域观测各信号点波形,获得接收端信号眼图; (5)观测各信号功率谱; (6)完成串并及并串转换模块设计; 实验内容二: (7) 通过不少于三个频率正弦信号叠加而成的模拟信号作为系统真实输入 信号,并采用PCM编码方法实现数模转换; (8) 模拟输入信号转换形成的数字信号通过2PSK调制解调系统实现数字频 带传输; (9)通过PCM解码恢复初始模拟信号; (10)从时域重点观测模拟信号点波形; (11)从频域重点观察模拟信号功率谱。
2PSK信号的调制器原理方框图 模拟调制的方法:2PSK 信号的解调器(想干解调)原理方框图和波形图:
2PSK 仿真结果及分析 电路图:
时域波形: 输入信号:与载波相乘后的波形:
经过带通滤波器后的波形:经过低通滤波器后的波形:
眼图:输出波形:
功率谱图: 输入信号:经带通滤波器后的信号:
经低通滤波器后的信号:பைடு நூலகம்出信号:
通信原理仿真实验报告
通信原理仿真实验报告学 班分 参院通信工程学院 级 1401014 班组 数姓 学名 号
目的: (1)熟悉()通信系统的工作原理、电路组成和信息传输特点; (2)熟悉上述通信系统的设计方法与参数选择原则; (3)掌握使用参数化图符模块构建通信系统模型的设计方法; (4)熟悉各信号时域波形特点; (5)熟悉各信号频域的功率谱特点。
相关文档
最新文档