汽轮机组启停过程中胀差的分析和控制
汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。
当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。
一.汽轮机胀差的产生汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。
由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。
同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。
汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。
同样转子也因受热发生热膨胀。
转子膨胀大于汽缸,其相对膨胀差被称为正胀差。
汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。
二.胀差过大的危害胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。
汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。
因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。
当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。
不同容量的汽轮机组胀差允许极限值不同。
汽轮机组启动过程中胀差的控制

汽轮机组启动过程中胀差的控制作者:王雷来源:《科技风》2018年第01期摘要:本文从胀差产生的原理,差胀的重要性,影响差胀的因素及如何控制等方面进行了详细的分析,对汽轮机在启动、停运及正常运行时如何控制胀差有一定的指导作用。
关键词:胀差;膨胀死点;泊桑效应一、胀差的认识大功率汽轮机组由于长度增加,机组膨胀死点多,汽缸多采用双层缸、分流缸等结构。
在启停过程中,转子与汽缸因材质、形状、结构以及与蒸汽的接触面积等不同,使得金属与蒸汽进行的热交换条件不同,从而造造成汽缸与转子在轴向的膨胀程度不一致,即出现相对膨胀,相对膨胀通常也俗称为胀差。
胀差是机组启停与甩负荷等过程中需要重点关注的一项重要指标,胀差的大小反应了汽轮机轴向动静间隙的变化情况。
胀差过大或过小,均有造成汽缸与转子的动静部分发生碰磨的可能性,会给机组安全运行造成很大的影响,严重时可能会造成设备毁坏。
因此胀差值做了热工保护,若胀差超限,则热工保护动作使机组紧急停机,可避免发生事故,损坏设备。
二、胀差的分类胀差分为正胀差与负胀差。
一般规定转子膨胀大于汽缸膨胀时为正胀差,表明动叶与静叶入口的间隙减小,通常这一间隙设计得较大。
当进入汽轮机的蒸汽温度明显升高或汽轮机暖机时,转子和汽缸同时受热膨胀,转子由于质量相对汽缸要小,受热后膨胀要快,在轴向上膨胀量要大于汽缸的膨胀量,表现为正胀差。
汽缸膨胀大于转子膨胀时为负胀差,说明静叶与动叶入口间隙减小。
当进入汽轮机的蒸汽温度明显降低或汽轮机滑参数停机时,转子和汽缸同时受冷收缩,转子由于质量相对汽缸要小,受冷后收缩要快,在轴向上收缩量要大于汽缸的收缩量,表现为负胀差。
三、胀差产生的原因胀差产生的原因大致可分为以下几点:(1)转子和汽缸的制造材料不同,金属热膨胀系数不同。
(2)转子与汽缸质量不同,转子与蒸汽接触面积大,汽缸大与蒸汽接触面积小;转子质量轻、表面积大,质面比较小,汽缸质量大、表面积小,则质面比较大。
(3)转子转动时蒸汽对转子表面的放热系数高于对汽缸表面的放热系数,因此温升速率不一致。
汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理汽轮发电机是一种利用汽轮机转动发电机发电的装置。
汽轮发电机的低压缸胀差是指在使用过程中,低压缸前后缸衬之间的胀差变大,导致压力泄漏增加,功率减弱,工作效率下降的问题。
下面将对汽轮发电机低压缸胀差大的原因进行分析,并提供相应的解决方法。
1.低压缸衬材质问题:低压缸衬材质选择不合适,导致其抗热胀性能不足,容易在工作温度下产生较大胀差。
解决方法是更换高性能的衬套材料,如高温合金。
2.温度控制问题:在汽轮发电机运行中,由于管路、冷却系统等问题,导致低压缸温度控制不良,超过了设计要求,造成衬套过度膨胀,胀差增大。
解决方法是优化冷却系统,确保低压缸温度在可控范围内。
3.衬套密封不良:低压缸衬套与缸体之间的密封不良导致压力泄漏,增加了压力差,使得衬套产生较大胀差。
解决方法是检查并修复衬套密封问题,确保衬套与缸体之间的紧密连接。
4.衬材磨损问题:低压缸衬套长时间使用后,由于磨损、疲劳等原因,失去了原有的密封性能,导致胀差增大。
解决方法是定期检查衬套磨损情况,及时更换磨损严重的衬套,延长发电机使用寿命。
5.运行过程中的振动问题:汽轮发电机在运行过程中受到振动的影响,振动过大会导致低压缸衬套松动,增加了胀差。
解决方法是加强对汽轮发电机的振动监测和控制,有效减小振动对衬套的影响。
综上所述,汽轮发电机低压缸胀差大的原因可能是多方面的,包括材料、温度控制、密封、磨损和振动等问题。
针对这些原因,需要进行相应的处理方法,如更换衬套材料、优化温度控制系统、修复密封问题、定期更换磨损的衬套以及加强振动监测和控制。
通过这些措施,可以有效降低低压缸胀差,提高汽轮发电机的运行效率和使用寿命。
我公司汽轮机冷态启动时高压正胀差的控制

我公司汽轮机冷态启动时高压正胀差的控制摘要:初期,№1、2汽轮机在调试过程中,每次冷态启动均会发生高压胀差超过极限值的不安全现象,使机组无法一次性启动成功,不仅延长了机组启动时间,而且对汽轮机的安全十分不利。
为此,通过对机组每次启动过程的分析、总结,制定了针对性措施,确保一次性冲转成功。
关键词:汽轮机;正胀差;冷态启动1.概述我公司汽轮机高压缸的前部和后部用垂直法兰联接,高压缸前部水平中分面法兰高450mm,宽180—210mm,称为高窄法兰,高窄法兰在启动和运行时不会产生较大的热应力,受热膨胀较大,因此未设计汽缸法兰加热装置。
冷态启动时由于轴封温度控制不当,高压胀差会向正方向增大,严重威胁机组的安全。
2.正胀差的概念汽轮机在冷态启动时,转子、汽缸金属温度都比较低,因为转子质量轻,与蒸汽接触面积大,而汽缸质量大、体积也庞大,与蒸汽接触面积小,所以在汽轮机进汽冲动后,蒸汽对转子表面的放热系数比对汽缸表面的放热系数大,转子和汽缸的温升速率不一致,转子的受热膨胀(或者收缩)将会大大的超过汽缸的膨胀(或收缩),这样就会产生转子的膨胀(或收缩)大于汽缸的膨胀(或收缩)。
汽轮机胀差的理论概念是:转子相对于汽缸的膨胀差称为汽轮机的胀差;而转子的膨胀大于汽缸的膨胀称为正胀差。
3.正胀差增大的几个主要原因3.1 主蒸汽的温升速度:这是控制胀差最基本也是最有效的手段,因为胀差产生的原因是汽缸和转子之间存在着温差。
蒸汽温升(温降)速度小,那么汽缸和转子之间的温差也就小,胀差也就小,反之胀差也就增大。
3.2 汽轮机启动冲动转子前,主蒸汽参数的选择是否合理:汽轮机冷态启动时,汽缸金属温度一般都比较低(150℃以下),这时如果蒸汽参数选择不当(进入汽轮机的新蒸汽温度大于汽缸金属温度很多时)就会产生转子加热速度快于汽缸加热速度,汽缸的膨胀因缸体金属温度没有加热到位而发生膨胀迟缓,而转子加热速度很快,这时就会产生转子膨胀大于汽缸膨胀从而产生了正胀差增大现象。
汽轮机胀差产生机理及质量控制法

汽轮机胀差产生机理及“质”“量”控制法高明(新疆华电红雁池发电有限责任公司)摘要:结合北京重型电机厂生产的200MW三缸两排汽式汽轮机,阐述了汽轮机胀差产生的机理,分析了高、中、低压缸胀差之间的相互关系,并结合现场实际运行情况量化的分析了各种工况下胀差的变化趋势,并提出了“质”“量”控制法,提出了各种工况下胀差的控制方法,及在长期运行中总结出的注意事项,保证了机组安全可靠的运行。
关键词:胀差产生机理变化关系“质”“量”控制法1 概述汽轮机在启、停过程中,由于转子与汽缸的热交换条件不同,使得它们在膨胀或收缩时出现差别。
这些差别称为汽轮机转子与汽缸的相对膨胀差,简称胀差。
转子与汽缸的重量,表面积,结构等各有不同,故它们的质面比也不同。
所谓质面比,就是转子或汽缸质量与热交换面积之比,通常以G/F表示之.转子与汽缸比较,转子的质量小,参加热交换的面积大,即质面比小;而汽缸的质量大,参加热交换的面积小,质面比大.在加热和冷却过程中,转子温度的升高或降低比汽缸来得快,也就是说,在加热时转子的膨胀值大于汽缸,在冷却时转子的收缩值也大于汽缸。
监视胀差是机组启停过程中的一项重要任务。
为避免轴向间隙变化到危险程度使动静部分发生摩擦,不仅应对胀差进行严格的监视,而且应对各部分胀差对汽轮机正常运行的影响应有足够的认识,为此,本文内容重点介绍胀差的相互关系及其“质”“量”控制。
图1三缸两排汽汽轮机滑销系统与胀差测点2 胀差及滑销系统介绍为了便于对各胀差及其相互关系进行分析,就必须介绍一下汽缸与转子的膨胀情况和表计的安装位置,下面以北京重型电机厂生产的三缸两排汽200MW机组为例介绍,汽轮机滑销及测点安装详见图l.高、中压汽缸与基础的固定点设置在中压缸后轴承箱台板上,低压缸与基础的固定点设置在低压缸前部低压缸进汽中心线前2450mm处。
转子与汽缸的相对固定点设置在高、中压缸之间的#2轴承箱处,汽轮机受热后汽轮机的高、中压缸带动转子向前移动,转子以相对死点为基础,高压转子向前膨胀,中压转子相后膨胀。
某厂汽轮机组启动过程中低缸胀差增大的原因分析及调整

某厂汽轮机组启动过程中低缸胀差增大的原因分析及调整摘要:汽轮机在启动过程中,转子与汽缸的热交换条件不同。
因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。
汽轮机转子与汽缸的相对膨胀通常也称为胀差。
胀差的大小表明了汽轮机轴向动静间隙的变化情况。
关键词:机组启动;胀差;动静间隙正文:汽轮机合理的启动方式就是在汽轮机各部件金属温度差、转子与汽缸的相对膨胀差在允许范围内、不发生异常振动、不引起动静摩擦和过大热应力的条件下,以尽可能短的时间完成汽轮机启动的方式。
这里面,避免动静摩擦和过大热应力是两个终极目标。
其中热应力可以通过平稳地调整机组进汽温度、流量和充分暖机来控制,然而,避免动静摩擦事故的发生却是一个比较复杂的控制过程。
众所周知,胀差超限是导致动静摩擦的主要原因之一,调整好动静两部分的膨胀差值,就能很大程度地减少动静间隙消失产生摩擦、造成转子弯曲、引起机组振动、甚至出现重大事故的可能性。
同时,鉴于某厂服役汽轮机组在启动过程中低压缸正胀差升至报警值的现象,故本文就胀差产生的原因、影响因素和调整手段做了说明和介绍。
一、胀差产生的原因汽轮机在启动过程中,转子与汽缸的热交换条件不同。
因此,造成它们在轴向的膨胀也不一致,即出现相对膨胀。
汽轮机转子与汽缸的相对膨胀通常也称为胀差。
胀差的大小表明了汽轮机轴向动静间隙的变化情况。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,反之为负胀差。
胀差数值是很重要的运行监视参数。
若胀差超限将会导致机组动静摩擦、振动加剧,出现保护拒动等异常情况时甚至导致机组的恶劣事故。
二、机组启动过程中易影响胀差变化的几个主要因素1.轴封供汽温度和供汽时间的影响在汽轮机冲转前向轴封供汽时,由于冷态启动时轴封供汽温度高于转子温度,转子局部受热而伸长,出现正胀差,可能出现轴封摩擦现象。
在热态启动时,为防止轴封供汽后出现负值,轴封供汽应选用高温汽源,并且一定要先向轴封供汽,后抽真空。
应尽量缩短冲车前轴封的供汽时间。
汽轮机差胀过大的原因分析及改进措施

汽轮机差胀过大的原因分析及改进措施摘要: 从相对膨胀产生的理论出发, 针对焦作韩电发电有限公司1 号机的实际情况, 分启动和运行 2 个过程, 对汽轮机相对膨胀值大的原因进行了分析, 并介绍了所采取的相应控制措施或注意事项, 以及在实际生产中起到的作用作出了举例证明。
关键词: 相对膨胀; 滑销; 温升率1前言我公司1 号汽轮机型号是C C50-8.83/4。
22/1。
57, 系哈尔宾汽轮机厂生产的双缸、单轴、双抽汽凝汽式汽轮机, 进汽温度535℃, 额定进汽量为224t, 中压额定抽汽量为30吨, 最大抽汽量为60吨。
低压抽汽量为50吨,最大抽汽量为50吨。
该机组投运后, 相对膨胀值及机组转动产生的噪声明显偏大, 特别是在启动过程中, 相对膨胀值超过规定值, 影响开机升速和升负荷时间, 是制约顺利开机的主要因素。
投运初期, 开机时间在10h以上, 开机时间明显偏长。
2控制相对膨胀的重要性金属物件在受热后, 向各个方向膨胀, 高温高压汽轮机从冷态启动到带额定负荷运行, 金属温度的变化很大400~500℃。
因此, 汽缸及汽轮机各部件的轴向、垂直、水平各个方向的尺寸都会因受热明显增大。
汽轮机各部件膨胀量不同, 使得各部件的相对位置发生变化, 其变化量超过汽轮机动静部分的允许间隙后, 动静部件将会发生磨擦, 导致汽轮机损坏, 甚至报废等严重后果。
为了控制汽轮机的动静部分不摩擦, 汽缸的轴向膨胀和汽缸与转子的相对膨胀就成为开机过程中重要的控制指标。
汽轮机在启动暖机过程, 转子以推力轴承机头,1号瓦处为死点向后膨胀, 汽缸以后轴承座中点2 号瓦处为死点向前膨胀, 二者的膨胀差值即为相对膨胀习惯称为胀差。
当转子膨胀值大于汽缸膨胀值时, 相对膨胀为正值, 该值过大时可造成动叶片出口处与下级喷嘴摩擦。
当转子膨胀值小于汽缸膨胀值时, 相对膨胀为负值, 该值过大时可造成动叶片进口处与喷嘴摩擦。
因此, 汽轮机的相对膨胀值的控制相当重要。
汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差

汽轮机在启停和运行工况下——胀差讲义周国强关键词:汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差、可谓汽轮机的泊桑效应。
汽轮机在启停和工况变化时,转子和汽缸分别以各自的死点为基准膨胀或收缩。
由于汽缸质量大,而接触蒸汽的面积小。
转子的质量小而接触蒸汽的面积大,因而各自的受热面不一样,使得汽缸和转子之间热膨胀的数值各不一样,其二者之间的差值称为相对膨胀,即转子和汽缸的胀差。
一般来说,冷态开机过程中是胀差是正值,稳定状态下胀差接近于零,降负荷和停机惰走时胀差向负向发展,单缸机组尤其明显。
但是对于多缸机组,即中间再热机组,其胀差较单缸机组更为复杂。
汽轮机转子与汽缸的相对膨胀,称为胀差。
1 习惯上规定1.1 转子膨胀大于汽缸膨胀时的胀差值为正胀差;1.2 汽缸膨胀大于转子膨胀时的胀差值为负胀差;1.3 根据汽缸分类又可分为:高差、中差、低I差、低II差。
1.4 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。
1.5 汽缸是向后膨胀而转子是向前膨胀的。
释:单缸汽轮机的汽缸膨胀,它的死点是在低压缸排气口的中心线,即从低压缸向机头方向膨胀。
转子的膨胀是以机头推力瓦为死点,向发电机方向膨胀。
也就是说,汽缸的膨胀方向和转子的膨胀方向是反向的。
2 使胀差向正值增大的主要原因有2.1 启动时暖机时间太短,升速太快或升负荷太快;2.2 汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱;2.3 滑销系统或轴承台板的滑动性能差,易卡涩;2.4 轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长;2.5 机组启动时,进汽压力、温度、流量等参数过高;2.6 推力轴承磨损,轴向位移增大;2.7汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风;2.8 双层缸的夹层中流入冷汽(或冷水);2.9 胀差指示器零点不准或触点磨损,引起数字偏差;2.10 多转子机组,相邻转子胀差变化带来的互相影响;2.11 真空变化的影响;2.12 转速变化的影响;2.13 各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显;2.14 轴承油温太高;2.15 机组停机惰走过程中由于“泊桑效应”的影响。
汽轮机产生胀差的原因及控制

汽轮机产生胀差的原因及控制一、汽轮机胀差的定义当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生热膨胀或冷却收缩。
由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。
因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言,故称为相对膨胀差(即胀差)。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差。
例如当进入汽轮机的蒸汽温度明显升高或汽轮机暖机时,转子和汽缸同时受热膨胀,转子由于质量相对汽缸要小,受热后膨胀要快,在轴向上膨胀量要大于汽缸的膨胀量,表现为正胀差。
汽缸膨胀大于转子膨胀时的胀差值为负胀差。
当进入汽轮机的蒸汽温度明显降低或汽轮机滑参数停机时,转子和汽缸同时受冷收缩,转子由于质量相对汽缸要小,受冷后收缩要快,在轴向上收缩量要大于汽缸的收缩量,表现为负胀差。
二、差胀保护的意义:汽轮机启动、停机和异常工况下,常因转子加热(或冷却)比汽缸快,产生膨胀差值(简称差胀)。
无论是正差胀还是负差胀,达到某一数值,汽轮机轴向动静部分就要相碰发生摩擦。
为了避免因差胀过大引起动静摩擦,大机组一般都设有差胀保护,当正差胀或负差胀达到某一数值时,立即停机,防止汽轮机损坏。
三、胀差大的危害:当胀差超过规定值时,就会使汽轮机动静间的轴向间隙消失,发生动静摩擦,引起汽轮机组振动增大,甚至掉叶片、大轴弯曲等严重事故。
四、汽轮机在启动、停机及运行过程中,胀差的大小与下列因素有关:1.启动机组时,汽缸与法兰加热装置投用不当,加热汽量过大或过小。
2.暖机过程中,升速率太快或暖机时间过短。
3.正常停机或滑参数停机时,汽温下降太快。
4.增负荷速度太快。
5.甩负荷后,空负荷或低负荷运行时间过长。
6.汽轮机发生水冲击。
7.正常运行过程中,蒸汽参数变化速度过快。
8.轴位移变化。
使胀差向正值增大的主要原因如下:1)启动时暖机时间太短,升速太快或升负荷太快,主、再热蒸汽温度上升太快。
汽轮机冷态启动胀差超标原因分析与应对策略

汽轮机冷态启动胀差超标原因分析与应对策略摘要:汽轮机胀差是汽轮机启停及运行时的重要监视参数,它反映了汽轮机转子和汽缸热膨胀量的相对关系。
在机组冷态启动过程中常出现汽缸与转子胀差超限问题,针对该问题进行深入研究,准确分析出汽轮机胀差超标的原因并且提出应对措施,以达到缩短机组启动时间,保障汽轮机在启动过程中的安全。
关键词汽轮机;胀差超标;原因分析;应对策略汽轮机是火力发电厂的一种重要组成设备,它的正常使用直接关系到发电机组的工作效率和发电功率,很大程度上影响着发电厂的经济效益。
在使用过程中汽轮机有着比较明显的优势,但随之出现的汽轮机胀差超标问题也对发电厂生产有很大的影响,严重影响了发电厂内系统的运行安全,威胁着工作人员的生命。
本文主要对汽轮机胀差超标原因进行分析,并有针对性的做出合理的解决办法,减少此类问题的发生,降低汽轮机出现胀差超标的现象,为发电厂带来高效益。
一、汽轮机胀差的定义及控制胀差的重要性汽轮机在启动时,转子和汽缸分别以各自的死点为基准膨胀或收缩。
相对来说,汽缸的质量大而接触蒸汽面积小,转子质量小而接触蒸汽面积大,而且由于转子转动时,蒸汽对转子的放热系数比对汽缸的要大,因此转子随蒸汽温度的变化膨胀或收缩的速度要快。
因此在开始加热时,转子膨胀的数值大于汽缸,汽缸与转子间发生的热膨胀差值称为汽轮机相对胀差。
若转子轴向膨胀值大于汽缸,则称为正胀差;反之转子轴向膨胀值小于汽缸称为负胀差。
在稳定工况下汽缸和转子的温度趋于稳定值,相对胀差也趋于一个稳定值。
机组启动时,由于转子和汽缸温度变化的速度不同,就会产生较大的胀差,即汽轮机动静部分相对轴向间隙发生了较大变化。
如果相对胀差超过了规定值,就会使动静间的轴向间隙消失,发生动静磨擦,可能引起机组振动增大,甚至发生叶片损坏、大轴弯曲等严重事故,因此在汽轮机启、停及变工况的过程中必须严密监视并合理控制汽轮机胀差,从而确保汽轮机的安全运行。
二、汽轮机胀差超标的原因分析2.1启动阶段胀差值超标的原因分析汽轮机各阶段的胀差都会影响整体胀差,汽轮机在启动和停止过程中,汽轮机的汽缸、转子等材料、结构和受热条件的不同,都会在很大程度上影响蒸汽参数的变化,导致温度不断升高,当达到蒸汽阶段相对压力的饱和温度时,蒸汽就不会出现放热的现象,导致温差较大,从而出现胀差超标的现象。
高压胀差控制分析

高压胀差控制分析田雷监控胀差是机组启、停过程中的一个重要任务,避免因轴向间隙变化而使得动静部分发生碰撞摩擦。
大功率汽轮机由于长度增加,机组膨胀死点多,采用双层缸、分流缸等结构,增加了汽缸、转子相对膨胀的复杂性;特别是在机组启停和甩负荷等特殊工况下,若胀差监控不好,则往往是限制机组启动速度的主要因素,甚至造成威胁设备安全的动静部件的碰摩、机组强烈振动、大轴弯曲等严重事故。
因此,胀差在机组启停时是关键性控制指标。
一、汽轮机胀差知识1、基本概念汽轮机转子与汽缸的相对膨胀,称为差胀,也称胀差。
习惯上规定转子膨胀大于汽缸膨胀时的差值为正胀差,表明动叶出口与下一级静叶入口的间隙减小,通常这一间隙设计得较大。
汽缸膨胀大于转子膨胀时的差值为负胀差,表明静叶出口与动叶入口间隙减小。
汽轮机各级动叶片的出汽侧轴向间隙大于进汽侧轴向间隙,故允许正胀差大于负胀差。
汽轮机在冷态启动及加负荷时,胀差为正;在停机或减负荷时,胀差为负。
2、厂家设计值台电公司600MW机组厂家设计:冷态时,胀差为10mm。
高压正胀差报警值为15.7mm、保护值为16.5mm ;高压负胀差报警值6.3mm、保护值为5.5mm。
低压正胀差报警值为32.2mm、保护值为33mm ;负胀差报警值6.3mm、保护值为5.5mm。
保护值的含义,当胀差达到此值必须打闸停机,这样才能保证机组安全,国华公司同类型机组均按照此设计编写规程。
600MW机组高压胀差测点安装位置在机组前轴承箱内,1瓦与主油泵间的短轴对轮处,具体位置详见附图中红线部分。
3、胀差产生的原因:1)转子和汽缸的金属材料不同,热胀系数不同;2)汽缸质量大与蒸汽接触面积小,转子质量小与蒸汽接触面积大;转子质量轻、表面积大,则质面比小,而汽缸质量大、表面积小,则质面比大。
3)转子转动,故蒸汽对转子表面的放热系数比对汽缸表面的放热系数大,温升速率不一致。
4、影响胀差的主要因素:1)主、再热蒸汽的温升、温降速度及负荷变化速度; 2)进汽参数(主要是主蒸汽温度)当进汽参数突然发生变化时,转子的受热状态首先发生变化,而对汽缸的影响要滞后一段时间,胀差将发生变化。
汽轮机组启停过程中胀差的分析和控制

汽轮机组启停过程中胀差的分析和控制摘要:本文分析了汽轮机组在启停过程中胀差产生的主要原因,并提出了相对应的控制措施,提高了机组启停过程中的安全性,对于汽轮机组的启停具有一定的应用价值。
关键词:汽轮机启停胀差控制引言:汽轮机组在启停过程中由于胀差的变化会引起振动增大、动静部分碰磨、大轴弯曲等严重事故,因此监视胀差是机组启停过程中的一项重要任务。
为避免轴向间隙变化到危险程度使动静部分发生碰磨,不仅应对胀差进行严格的监视,而且应对胀差产生的原因有足够的认识和了解。
为此介绍了胀差产生的主要原因并提出了与之相对应的控制措施。
1 影响胀差的主要因素汽机胀差是指转子和汽缸沿轴向膨胀不相同所产生的相对膨胀值。
主要是由于转子和汽缸的质量不同,及热交换条件不同而产生。
在机组启动、停机及变工况过程中胀差变化较大,稳定工况时,胀差趋于一稳定值。
影响胀差的主要因素有:(1)主、再热蒸汽的温升、温降率;(2)轴封供汽温度的高低、以及供汽时间的长短;(3)加热装置的投入时间以及所用汽源;(4)暖机时间的长短;(5)凝汽器真空的变化;(6)负荷变化的影响。
1.1 汽轮机胀差正向增大的主要原因(1) 机组启动时暖机时间太短,升速太快或升负荷太快;(2) 汽缸夹层、法兰加热装置的加热蒸汽温度太低或者流量较低,引起的加热作用较弱;(3) 汽轮机滑销系统或者轴承台板的滑动性能比较差,容易发生卡涩现象;(4 ) 轴封供汽温度过高或供汽流量过大,引起轴颈过份伸长;(5) 机组在启动时,进汽压力、温度、流量等参数过高;(6) 汽缸保温层的保温效果不佳或者有保温层脱落现象。
在严寒季节里,汽机房室温太低或有穿堂冷风;(7)胀差指示器的零点不准或者触点磨损,引起数字偏差;(8)多转子机组,相邻转子之间胀差变化带来的互相影响;(9)真空和转速变化的影响;1.2 汽轮机胀差负向增大的主要原因(1)机组负荷迅速下降或突然甩负荷;(2)主汽温度骤减或启动时的进汽温度低于金属温度;(3)汽缸夹层、法兰加热装置加热过度;(4)轴封供汽温度太低;(5)轴向位移变化;(6)真空急剧下降,排汽缸温度上升;(7)机组在启动时转速突然飞升,由于转子在离心力的作用下轴向尺寸缩小,引起低压缸胀差的变化尤其明显;(8)汽缸夹层中流入高温蒸汽,可能来自汽加热装置,也可能来自进汽套管的漏汽或者轴封漏汽;2 胀差的变化及控制方法掌握胀差变化规律,采取有效调整手段,才能合理控制胀差,防止汽轮机的动静摩擦。
汽轮机差胀变化原因分析及处理

汽轮机差胀变化原因分析及处理摘要:针对某电厂两台汽轮机启机,冲转升速过程中,差胀值负向增长过大,严重时导致汽轮机保护动作停机问题,对其进行分析,并提出了抑制或解决差胀值负向增长的有效措施,从而保证汽轮机的安全稳定运行。
关键词:差胀;高压内缸100%金属温度;转速;泊松效应某电厂汽轮机型号为LZC38.3-6.9/[0.6]/1.35/565/[265],单缸、单轴、双压非再热、反动式、单抽凝汽式。
高压反流、中低压顺流布置、双层缸设计、轴向排汽。
整个汽轮机转子为无中心孔的焊接转子。
高压内缸100%金属温度(冷态<220℃、温态220℃—400℃)。
差胀(报警值6.57mm,-2.391mm;跳机值7.332mm,-3.153mm)。
一、事情经过#1汽轮机从7月7日首次冲转,#2汽轮机从7月2日首次冲转。
两台汽轮机冷态启动,冲转升速过程中,汽轮机厂商要求冷态启动必须低速(900r/min)暖机40min,差胀变化均在报警值范围内。
升速至空载满速(3000r/min)后,差胀变化也均在报警值范围内。
但两台汽轮机连续每日温态的启动过程,虽然转子冲转前差胀均在报警值范围内,但启机冲转前的差胀值,随着每日机组启动热态调试后,两台汽轮机停机盘车至启机冲转前,差胀开始逐渐负向增大(#1汽轮机7月7日—7月10日启机冲转前差胀变化:0.39mm,-1.15mm,-2.82mm,-3.35mm;#2汽轮机7月2日—7月6日启机冲转前差胀变化:0.9mm,0.13mm,-1.54mm,-2.08mm,-2.28mm)。
两台汽轮机开始启机冲转升速后,差胀值进一步负向增大,并超过报警值甚至跳机值。
二、差胀负向增大的原因分析1.“泊松效应”的影响查看汽轮机启停过程历史曲线图(见图1)可以发现,汽轮机在低速暖机后900rpm至3000rpm时,差胀在曲线图中体现出来,会有一个向下的突降,负向差胀增大的一个过程,其中#1汽轮机约下降1.0mm,,#2汽轮机约下降1.2mm。
汽轮机轴向位移和胀差危害、分析与控制技术措施

汽轮机轴向位移和胀差危害、分析与控制技术措施一、轴向位移和胀差的危害:1、泊桑效应影响机组低压胀差约10%,所以开机冲转前,低压胀差应保证10%以上。
在停机过程中尽量减少低压胀差(最好控制在90%以下),当低压胀差超过110%,必须紧急停机,这时随着转速下降,低压胀差会超过120%,在低转速区可能会有动静摩擦。
2、在冬季低压胀差过高时,要注意轴封气母管压力,若压力过高可适当调低,也可用降低真空方法来减少低压胀差。
冬季减少开窗的地方,这是冬季减少低压胀差有效措施。
3、极热态启动时,轴封供气尽量选择高温气源,辅气作为气源时,必须保证其温度控制在270℃左右,若温度太低,将造成高压轴封段大轴急剧冷却收缩,有可能导致前几级动静摩擦。
4、冷态启动时,轴封气源高于大轴金属温度,大轴将局部受热伸长,出现较大的正胀差。
因此要选择与轴封金属温度相匹配的气源,不拖延启动时间。
低压胀差过大,可采用降低真空来调节,尽量提前冲转升速。
机组启动阶段低压正胀差超过限值时,可破坏真空停轴封气,待胀差正常后重新启动。
5、机组倒缸前,主蒸汽气温至少比高压缸金属温度高50℃以上,倒缸前应考虑轴向位移对高压胀差影响。
机组启停阶段胀差变化幅度大,影响因素多,调整难度大,因此要严格按规程操作,根据汽缸金属温度选择适当的冲转参数,适当的升温升压曲线,确定合适升温速度,控制升速和暖机时间,带负荷后根据具体情况,及时分析和采取有效方法,才能有效控制胀差。
二、机组启动时胀差变化的分析与控制:汽轮机在启停过程中,转子与汽缸的热交换条件不同。
因此,造成他们在轴向的膨胀也不一致,即出现相对膨胀。
相对膨胀通常也称为胀差。
胀差的大小表明了汽轮机轴向动静间隙的变化情况。
监视胀差是机组启停过程中的一项重要任务。
为避免轴向间隙变化而使动静部分发生摩擦,不仅应对胀差进行严格的监视,而且胀差对汽轮机运行的影响应该有足够的认识。
受热后汽缸是从“死点”向机头方向膨胀的,所以,胀差的信号发生器一般安装在汽缸相对基础的“死点”位置。
汽轮机冷态启动过程中胀差偏大的原因分析及优化措施

汽轮机冷态启动过程中胀差偏大的原因分析及优化措施作者:李涛来源:《科技视界》2016年第17期【摘要】本文简要介绍了胀差的概念及胀差过大的危害,从我厂汽轮机冷态启动过程中出现胀差正值偏大的实际现象进行分析,提出控制胀差正值偏大的相应措施。
【关键词】汽轮机;冷态启动;胀差0 概述我厂汽轮机型号为CC360/251.6-24.2/1.3/0.45/566/566,为东方汽轮机有限公司制造的超临界、一次中间再热、单抽、三缸两排汽、双抽可调供热、凝汽式汽轮机。
主再热蒸汽温度均为566℃,高中压转子、低压转子均是由整体合金钢锻件加工的无中心孔转子,高中压转子为双流结构,反向布置;低压转子为双流对称结构。
高压汽缸为双层缸,中压汽缸为双层缸,低压汽缸为三层缸。
机组投运后的多次启动过程中,高压和中压胀差偏大,常接近报警值,影响启机并网及升负荷速度。
1 胀差概述1.1 胀差的定义当汽轮机启停及负荷变化时,转子和汽缸均会膨胀或者收缩。
由于转子的质量比汽缸小,且转子受热表面积比汽缸要大,因此蒸汽对转子表面的放热系数较大。
在相同的条件下,转子温度变化比汽缸快,转子和汽缸的膨胀存在着差值,定义为相对膨胀差(胀差)。
当转子膨胀量大于汽缸膨胀量时为正胀差,当转子膨胀量小于汽缸膨胀量时为负胀差。
1.2 胀差大的危害启动过程中,胀差偏大不仅延缓启机速度,当胀差超过规定值时,就会使汽轮机动静间的轴向间隙消失,发生动静摩擦,引起汽轮机组振动增大,甚至掉叶片、大轴弯曲等严重事故。
无论是正差胀还是负差胀,达到某一数值,汽轮机轴向动静部分就要相碰发生摩擦。
2 冷态启动过程中胀差正值偏大的原因2.1 汽轮机进汽温度高,冲转参数与厂家推荐的冲转参数有偏差合适的启动参数能够减少转子和汽缸的膨胀差,冲转参数较高,转子和汽缸的温差也大,引起胀差也大。
2.2 轴封供汽温度高本厂有两台同型号机组,启机过程中用辅助蒸汽供轴封,而辅助蒸汽汽源来自邻机四抽,邻机正常运行时,四抽温度380℃,高于厂家说明书推荐值208~260℃。
汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制摘要:汽轮机为发电厂当中的常用机械之一,其运转情况的好坏直接影响到了电量制造的效率。
本次研究当中将针对某发电厂的汽轮机在运转过程当中产生的胀差现象进行研究,对其产生的原因进行分析,对有可能由此引发的危害提出解决措施与建议。
关键词:发电厂汽轮机胀差控制汽轮机在启动与停机的转换过程当中,或是在平常的运行当中产生节奏改变时,气缸以及转子会相应产生热涨冷缩的现象。
在这种现象当中,转子的受热面积明显大于气缸,同时由于转子的质量与气缸相比较小,以及转子表面受到的蒸汽放热系数与气缸相比较大,因此转子在温度变化方面与气缸相比尤为明显,这就有可能导致转子与气缸之间产生胀差现象[1]。
这种差值的产生指的是转子与气缸之间的差异而言,因此两者之间由热作用而产生的膨胀差即为胀差,又称相对膨胀差。
两者在轴向膨胀的条件下进行对照比较时,若转子大于气缸,则称为正膨胀;若转子小于气缸,则称为负膨胀。
1 胀差的形成原因转子与气缸之间产生胀差的主要原因是由于两者的组织结构以及工作条件存在明显的差异[2]。
在单缸汽轮机当中,排气口中心附近存在着明显的气缸死点,而转子与气缸之间也存在着一个明显的死点,位置在推力轴的承推面。
在汽轮机正常的运转当中,转子与气缸之间必然存在着明显的温度差异,受热程度差较为显著,转子质量虽然与气缸相比较小,但是受到蒸汽热作用的面积较大,因此将在短时间内提升至很高的温度,气缸与转子相比质量较大,因此其受热与膨胀的速度较慢。
两者同样在受热后发生了膨胀的现象,但是在膨胀稳定之前,两者之间必然存在着明显的胀差。
在冷却当中同样如此,转子质量较小,因此冷却收缩的时间与气缸相比较短,胀差情况也会更加明显。
汽轮机在正常的运行当中,逐渐从冷形态向热形态进行转变,气缸受热后逐渐产生热膨胀的现象,但是其膨胀方向却受到了滑销系统死点位置的限制,只能向高压或低压侧膨胀。
转子也随着汽轮机的运行会发生膨胀现象,而膨胀方向也随着推力轴承的约束只能向低压侧膨胀。
汽轮机胀差产生的原因分析与控制

膨胀或冷却收缩 。转子 的受热表面积 比汽缸大
收稿 日期 :2 1 —0 0 1 5—1 修订 日期 :2 1 0 0 9 0 1— 6— 7 作者简介 :周辉 , 工程师 , 0 年于华北电力大学 获热能 女, 2 6 0 工程硕 士学位 , 现从事核电项 目常规 岛主辅设备 专业采购 。
化规律 、 形成一套合理有效 的控制 办法和防范措 施对于运行人员来说是非常重要的。
1 胀 差 的产 生
汽轮机 在启 动 的加 热 过程 、 机 的冷却 过 程 停 中, 在运行 中工 况变化 时 , 缸和转 子会产 生热 或 汽
值大于汽缸的轴向膨胀值时, 称为正胀差 ; 反之若
转子轴向膨胀值小于汽缸的轴向膨胀值时, 称为
t e r tr x a s n d r g t e t r i e u i s r n ,s p a d c a g o k n o d t n ,f d t e h oo g e p n i u n b n n t t t g t n h n e i w r i g c n i o s i h o i h u a i o n i n
的放热 系数大 于蒸汽 对汽缸 的放热 系数 。因此在
置相对变化值 , 它对于汽轮机组启动加热、 停机冷 却过程 中, 或在汽轮机变工况过程, 都是很重要的 运行参数 , 胀差值过大或过小都会使机组轴向间 隙消 失 , 导致 动 静部 分 发 生摩擦 , 备 严 重损 坏 , 设 因此机 组运转 时应严 格监 视差胀 变化 。为 了更好
Ab t a t:Th spa e y t maia l n lz s t h r ce si s a d t e c u e ft e c l e n sr c i p r s se tc ly a a y e he c a a tr tc n h a s s o y i r a d i h nd
汽轮机胀差产生的原因分析与控制

Internal Combustion Engine &Parts0引言化工汽轮机之所以产生胀差主要是因为转子与气缸之间存在着温差,因此当转子的膨胀比气缸要更大时,则会产生正胀差,而当其小于气缸时则会产生负胀差。
但是,当涡轮机相对静止时,膨胀差主要反映了静态轴向间隙的变化。
不管膨胀差太大还是太小,机组的轴向间隙都会逐渐消失,从而产生动态和静态的摩擦,从而损坏机组。
所以在机组的具体操作过程中需要对胀差进行严格控制,禁止其超过允许的极限值。
在汽轮机运行期间,保持转子和气缸之间的轴向热膨胀率非常重要。
在机组的启动,停止和特定运行过程中,由于涡轮转子和汽缸的质量和热膨胀系数不同,转子的温度上升速度快于轴承的温度上升速度。
一旦两者之间的热增长差异超过了涡轮机允许的间隙公差,就会在动态和静态组件之间引起摩擦,从而损坏设备。
因此在实际运行过程当中操作人员应对胀差进行严格控制,从而确保机组的正常运行[1]。
1胀差种类及产生的原因、危害胀差的主要产生原因在于汽轮机的气缸和转子在受热和受冷时,其传热系数存在着一定的差异,进而导致在受热和受冷过程当中气缸受热或受冷膨胀与转子不同所产生的胀差。
而胀差具体可分为正胀差和负胀差,首先当转子膨胀大于气缸膨胀的过程中所产生的胀差为正胀差,反之则为负胀差。
而在汽轮机的实际运行中,无论是正胀差还是负胀差都会对机组的使用与运行产生影响,因此需要严格的进行控制。
胀差在汽轮机运行过程中不仅仅是一项重要参数,而且胀差不能出现过大的偏差,只有在起机、停机以及负荷突然大幅度出现变动的时候,由于对参数的人为控制出现错误,进而导致相关的胀差形成,而一旦其超过汽轮机所允许的极限值,则会使汽轮机动静摩擦,导致震动增大,最后损坏设备,而严重情况下可能会将叶片打断,从而使设备遭到严重的损坏,无法再继续使用[2]。
1.1产生正胀差的主要因素汽轮机之所以出现正胀差主要因为在机组启动时暖机的时间太短,进而导致升速太快或负荷的提升速度太快,从而产生了正胀差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参 数过 高 ; ( )汽 缸 保温 层 的保温 效 果 不佳 或 者 有保 温 层 6 脱 落 现象 。在 严 寒季 节 里 ,汽 机 房 室温 太 低或 有 穿
堂 冷风 ;
8
汽 轮机 组 启停 过 程 中胀 差 的分 析和 控 制 ( )胀 差 指示 器 的零 点 不准 或 者 触 点 磨 损 , 引 7 ( )滑 参 数 启动 或 停 机 过程 中 ,根 据 缸 温 选 择 2
比较 差 ,容 易发 生 卡涩现 象 ;
( )轴 封 供汽 温 度 过 高或 供汽 流 量 过 大 ,引 起 4
轴 颈过 份伸 长 ;
( )机 组 在 启动 时 ,进 汽 压 力 、温 度 、流 量 等 5
对 轴 向间 隙发 生 较 大变 化 。如 果两 者 间 的热增 长 差 值 超 过 汽轮 机 所 允 许 的 间 隙公 差 ,就 会 发 生 动静 部 分 碰 磨 ,可 能 引起机 组 振动 增 大 ,甚 至 发生 掉 叶片 、 大 轴 弯 曲等严 重 事 故 。为 了 防止 这类 故障 的发 生 ,
升 负荷太 快 ;
缩 的速度 要快 。在 开始 加 热 时 ,转 子 的膨 胀数 值 大
于 汽 缸 ,汽 缸 与 转 子之 间 发 生 的 热膨 胀 差 值称 为 汽 轮 机 相对 胀 差 。若 转 子轴 向膨 胀值 大 于 汽 缸 ,则 称
( )汽 缸 夹层 、法 兰加 热 装 置 的加 热蒸 汽 温 度 2
太 低或 者流 量较 低 ,引起 的加 热 作用 较弱 ; ( )汽 轮 机滑 销 系 统 或者 轴承 台板 的滑 动 性 能 3
为 正 胀 差 :反 之 称 为 负胀 差 。在稳 定 的工 况 下汽 缸
和 转 子 的温 度 趋 于 稳 定值 ,相 对胀 差 也 趋 于一 个 定 值 。机 组启 停 时 , 由于转 子 和汽 缸 温 度 变 化 的速 度 不 同 ,就会 产 生 较 大 的胀 差 ,即汽 轮 机 动 静 部分 相
( )真 空和 转速 变 化 的影 响 ; 9
(0 1 )各 级 抽汽 量 变化 的 影 响 ; ( 若一 级抽 汽 停 用 ,则对 高压 缸胀 差 的影 响 非常 明显 。 ) (1 1 )机 组在 停 机 惰 走 过程 中 “ 桑效 应 ” 的 泊 影响; ( 转子在 旋转时受离心力的影响 ,发生了径 向和 轴 向变形导致 的结果 。 因为离心力和转速的平 方成正 比, 转速升高时 ,叶片和 叶轮产 生巨大 的离心力作用在大轴 上 ,使大轴产生径 向拉力,直径变粗 、长度减小 ,即表 现为胀 差减 小,也就是说大轴 的径 向变形 比值增加了。 )
高 了机组 启停 过程 中的安 全性 ,对 于汽轮机 组 的启停 具有一 定的应 用价值 。 【 关键 词 】 汽 轮 机 启 停 胀 差 控 制
O 引 言
汽 轮 机 组 在 启 停过 程 中 由于胀 差 的变 化会 引起 振 动 增 大 、动 静 部 分 碰 磨 、大 轴 弯 曲等严 重 事 故 , 因此 监 视胀 差 是机 组 启停 过 程 中的 一 项重 要 任 务 。 为 避 免 轴 向间 隙变 化 到危 险程 度 使动 静 部 分 发 生碰 磨 ,不 仅应 对 胀 差 进 行严 格 的监 视 ,而 且 应 对胀 差
甘
肃
电
力
技
术
7
汽 轮 机 组 启 停 过 程 中胀 差 的分 析 和 控 制
王乃斌 田 原 杨德生
( 兰州陇能电力科技有限公 司 甘肃省 兰州市 7 07 30 0 皋 兰县 供 电公 司 甘 肃省 兰 州市 70 0 ) 2 0 3 【 摘 要 】 分析 了汽轮 机组 在启停 过程 中胀 差产生 的主要 原 因,并提 出了相对应 的控 制措 施 ,提
产 生 的主 要 原 因并提 出 了与之 相 对应 的控 制措 施 。
1 汽轮机 在启停过程 中控 制胀差的相对意义
汽 轮 机 组 在 启动 时 ,转 子和 汽 缸 分 别 以各 自的
死 点为 基准 膨 胀 或 收缩 。相 对 来 说 ,汽 缸 的质 量 大 而 接 触 蒸汽 面 积 小 , 子 质量 小而 接 触 蒸汽 面 积 大 , 转 而 且 由于 转子 转 动 时 ,蒸 汽 对 转 子 的放 热 系 数 比对 汽 缸 的 要大 , 因此 转 子 随蒸 汽温 度 的变 化 膨胀 或 收
ቤተ መጻሕፍቲ ባይዱ
起 数 字偏 差 ; ( )多 转 子机 组 ,相 邻 转 子之 间胀 差 变 化 带 来 8
的互 相 影 响 ;
并及 时 投入 汽 缸法 兰加 热 装置 ,控制 好汽 缸 的膨胀 ,
使 汽 缸 与转 子 的 膨 胀相 应 。启 动 时 , 当汽 缸 温 度 达 到 3 0 以上 ,汽 缸 内外 缸 温差 、法 兰 内外壁 温 差 、 5℃ 胀 差 等 在 允许 范 围 内并 且趋 于 稳 定 时 方 可停 用 加 热 投 入 汽 缸 法 兰加 热 装 置 ,打 闸前 停 用 。投 入 汽缸 法
冷 却速 度 比汽缸 要快 ,所 以胀 差一般 向负方 向发展 , 在 滑 参数 停 机 时 尤其 严 重 。下 面将 汽 轮 机胀 差 增 大 的主要 原 因作 一简述 :
2 1 汽 轮 机 胀 差 正 向增 大 的 主 要 原 因 .
( )机 组 启 动 时 暖 机 时 间 太 短 ,升 速 太 快 或 1
产 生 的原 因有 足 够 的认识 和 了解 。为此 介 绍 了胀 差
我 们 必 须要 安 装 胀差 监 测探 头 ,严密 监 视 并合 理 控 制 汽轮 机胀 差 , 以确 保 机组 设备 的安 全运 行 。
2 汽轮机胀 差增 大的主要 原因
机 组 在 启 动过 程 中 ,一 般 用蒸 汽 加 热装 置 来控 制 汽 缸 的膨 胀 量 ,而 转 子 则主 要 依靠 汽 轮机 的进 汽 温 度 和 流量 以及 轴封 供 汽 的汽 温 和流 量 来控 制 其 膨 胀 量 ,所 以在 启 动过 程 中胀 差 一般 向正 方 向发 展 。 机 组 在停 用 过 程 中 ,随着 负荷 、转速 的降低 ,转 子