调节器参数整定

合集下载

PID参数调节原理和整定方法

PID参数调节原理和整定方法

P比例调节
P比例调节特点 比例调节特点
比例调节反应速度快,输出与输入同步, 比例调节反应速度快,输出与输入同步,没有时间滞 其动态特性好。 后,其动态特性好。 比例调节的结果不能使被调参数完全回到给定值, 比例调节的结果不能使被调参数完全回到给定值,而 产生余差。 产生余差。
P的一般选取范围 的一般选取范围
比例带表;值越大,作用越小,范围0-1000 % 积分时间;值越大,作用越小,范围0.1-10000s 微分时间;值越大,作用越大,范围0-10000s
实时曲线观察窗口
CS3000系统PID参数整定方法
无扰动切换
勿扰动切换:控制回路手动(MAN)到自动 (AUT)状态切换时,保证设定值(SV)与测 量值(PV)保持一致或相当。 PID控制只有在控制回路处于AUT状态,也就 是负反馈回路时才有用。
压力调节: 压力调节: 流量调节: 流量调节: 液位调节: 液位调节: 温度调节: 温度调节: 30~70% 60~300% 40~100% 40~80%
I积分调节
I:积分调节
一般用于控制系统的准确性,消除余差。 一般用于控制系统的准确性,消除余差。 对于同一偏差信号,积分常数越大, 对于同一偏差信号,积分常数越大,表示积分 调节作用越强; 调节作用越强;积分常数就表示了积分作用的 大小。 大小。 积分常数的倒数叫积分时间, 表示。 积分常数的倒数叫积分时间,用TI表示。
数的工程整定法
动态特性参数法 稳定边界法 衰减曲线法 经验法
实际生产过程中,不可能让生产工艺产生较大波 动,以上方法不通用也不实际,顾本文主要对经 验法详细介绍
PID参数的工程整定法
经验法 即先确定一个调节器的参数值P和I, 通过改变给定值对控制系统施加一个扰动, 现场观察判断控制曲线形状。若曲线不够 理想,可改变P或I,根据控制过程曲线, 经反复凑试直到控制系统符合动态过程品 质要求为止,这时的P和I就是最佳值。

PID的调节原理及参数整定

PID的调节原理及参数整定
理想曲线两个波,前高后低4比1;一看二调多分析,调节质量不会低
积分时间常数Td一般不用设定,为0即可。若要设定,与确定 P和Ti的方法相同,取不振荡时的30%。
4)系统空载、带载联调,再对PID参数进行微调,直至满足要求。
3. PID控制器参数的工程整定,各种调节系统中PID参数经验数据
以下可参照:
PID控制器的参数整定
PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
1. 比例(P)控制
比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
2. 积分(I)控制
在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

调节器参数整定方法中动态特性参数法介绍

调节器参数整定方法中动态特性参数法介绍

调节器参数整定方法中动态特性参数法介绍
动态特性参数法是一种调节器参数整定方法,主要应用于单调制循环控制系统。

例如锅炉系统、电力系统、水利系统及机械设备的控制系统,等都可以使用此方法来进行控制参数的整定。

动态特性参数法具备易于操作、优势重要等特点,它可以从控制过程中的动态特性参数,如死区、静止时间常数等,直接计算出合理的控制参数,以满足控制要求。

动态特性参数法的基本思想是对控制系统进行参数整定时,通过测定控制系统的动态特性参数,并将其当作调节器参数的确定基础,来确定调节器参数,以满足控制效果的要求。

动态特性参数法的实施步骤如下:
1. 首先,测定或估算控制系统的动态特性参数,包括死区、时间常数、放大等;
2. 根据死区和时间常数计算调节器参数,经常使用某种类型的标准调节器,即用不同类型的标准调节器参数计算出体系所需的参数;
3. 调节器参数计算完成后,应该检查并验证,以确保调节器参数的正确性;
4. 将计算结果作为调节器参数的标定值,写入调节器设定板中;
5. 上电,在试验状态下下,操作调节器参数,检验控制系统的控制性能。

调节器参数整定通过动态特性参数法实施的主要优点有:
1.可以明确的计算出调节器参数,避免了参数经验值的积累;
2.可以有效地解决控制系统狭小死区的问题;
3.更精确地确定调节器参数,提高控制系统性能。

参数整定方法

参数整定方法

1。

临界比例度法先在纯比例作用下(把积分时间放到最大,微分时间放到零),在闭合的调节系统中,从大到小地逐渐地改变调节器的比例度,就会得到一个临界振荡过程。

这时的比例度叫临界比例度δk,周期为临界振荡周期Tk.记下δk和Tk,然后按经验公式来确定调节器的各参数值.2. 衰减曲线法临界比例度法是要系统等幅振荡,还要多次试凑,而用衰减曲线法较简单,一般又有两种方法。

1)4:1衰减曲线法使系统处于纯比例作用下,在达到稳定时,用改变给定值的办法加入阶跃干扰,观察记录曲线的衰减比,然后逐渐从大到小改变比例度,使出现4:1的衰减比为止.记下此时的比例度δs 和振荡周期Ts。

再按经验公式来确定PID数值。

2)10:1衰减曲线法有的过程,4:1衰减仍嫌振荡过强,可采用10:1衰减曲线法.方法同上,得到10:1衰减曲线,记下此时的比例度δ's和上升时间T's,再按经验公式来确定PID的数值。

(四)PID参数确定的方法在选择了调节规律及相应的调节器后,就要进行PID初始参数的确定。

常采用的方法有临界比例度法(又称稳定边界法)、反应曲线法、衰减曲线法、仪表参数自整定法。

1、临界比例度法:调节规律采用纯比例,不断增加K,使调节系统的被调参数作等幅振荡(即达到稳定边界)时,测量出比例放大系数Km或临界比例度Pm以及振荡周期Tm,然后,按经验数据求出初始参数。

临界比例度法的调节器经验数据表P(%)T I T DP2P mPI 2.2 P m0.85T mPID1。

7 P m0。

5T m0。

13 T m2、反应曲线法:反应曲线法:要确定调节器的参数应先测定对象的动态特性,即对象输入量作单位阶跃变化时被调量的反应曲线,即飞升曲线。

根据飞升曲线可得到等效滞后时间τ、等效时间常数T、广义对象的放大系数K。

再按下表经验数据求出初始参数。

反应曲线法的调节器经验数据表P(%)T I T DP Kτ/TPI1。

1 Kτ/T3。

3τPID0.85Kτ/T2τ0。

如何整定DCS控制系统中PID参数

如何整定DCS控制系统中PID参数

如何整定DCS控制系统中PID参数一、调节器正/反作用的确定方法调节系统投自动:往往在控制方案确定好且判断出调节器的正/反作用后,最关键的是P、I、D参数如何整定,根据多年的现场工作经验,谈谈如何整定调节系统的P、I、D参数,请大家在工程中参考。

在整定调节系统的P、I、D参数前,要保证一个闭环调节系统必须是负反馈,即Ko*Kv*Kc >0。

(看上面图片)Ø调节对象Ko:阀门、执行器开大,测量PV增加,则Ko>0;反之,则Ko<0;Ø调节阀门Kv:阀门正作用(气开、电开),则Kv>0;阀门反作用(气关、电关),则Kv<0;Ko、Kv的正负由工艺对象和生产安全决定,根据Ko、Kv的正负和Ko*Kv*Kc >0,我们可以确定Kc的正负,Ø调节器Kc:若Kc>0,则调节器为反作用;若Kc<0,则调节器为正作用;软件组态中要设置正确,在装置调试和开车及P、I、D参数整定前,调节器的正/反作用务必检查,且正确无误。

1、在整定调节系统的P、I、D参数前,要保证测量准确、阀门动作灵活;2、在整定调节系统的P、I、D参数时,打好招呼,要求用户工艺操作密切注意生产运行状况,确保安全生产;3、在整定调节系统的P、I、D参数时,先投自动后串级,先投副环后主环,副环粗,主环细。

在操作站CRT上,打开调节器的整定调整画面窗口,改变给定值SP或输出值OP,给出一个工艺允许的阶跃信号,观察测量值PV变化和趋势图,不断修定PID参数,往往反复几次,直至平稳控制。

实际中,一般能达到工艺满意的一阶特性即可。

二、经验PID整定参数预置对介质为流体(气体、液体)情况,经验PID整定参数参考如下,(在出所前最好在软件组态中要设置好,到现场再细调或不动):1、对流量调节(F):Ø一般P=120~200%,I=50~100S,D=0S;Ø对防喘振系统:一般P=120~200%,I=20~40S,D=15~40S;2、对压力调节(P):Ø一般P=120~180%,I=50~100S,D=0S;Ø对放空系统:一般P=80~160%,I=20~60S,D=15~40S;3、对液位调节(L):Ø1]、大容器(直径4米、高2米以上塔罐):一般P=80~120%,I=200~900S,D=0S;Ø2]、中容器(直径2--4米、高1.5--2米塔罐):一般P=100~160%,I=80~400S,D=0S;Ø3]、小容器(直径2米、高1.5米以下塔罐):一般P=120~300%,I=60~200S,D=0S;4、对温度调节(T):一般P=120~260%,I=50~200S,D=20~60S;上述参数是经验性的东西,不是绝对的。

PID参数调节原理和整定方法(1)

PID参数调节原理和整定方法(1)
PID控制只有在控制回路处于AUT状态,也就 是负反馈回路时才有用。
PID参数调节原理和整定方法
CS3000系统PID参数整定方法
增大比例系数P一般将加快系统的响应,在有静 差的情况下有利于减小静差,但是过大的比例系 数会使系统有比较大的超调,并产生振荡,使稳 定性变坏。
增大积分时间I有利于减小超调,减小振荡,使 系统的稳定性增加,但是系统静差消除时间变长。
因此希望优秀的工艺人员与用心的仪表人 员共同努力,共同提高我们国际化的大石 化自控率,同时也为减轻大家的劳动强度。
PID参数调节原理和整定方法
CS3000 仪表面板
位号
位号注释
功能块模式 测量值
位号标志 报警状态
设定值
输出值
输出指针 测量值棒状图
工程单位
测量值上限 报警设置 设定值指针
测量值下限
PID参数调节原理和整定方法
CS3000 仪表面板
输出值指针 设定值指针 功能块模式 报警状态 位号 位号注释 位号标志 测量值棒状图 测量值上下限 工程单位
P比例调节
P:比例调节
在P调节中,调节器的输出信号u与偏差信号e成比例, 即 u = Kc e (kc称为比例增益)
但在实际控制中习惯用增益的倒数表示 δ =1 / kc (δ称为比例带)
不同的DCS使用不同的参数作为P的调节参数,以CS3000 为例,选用δ 比例带为调节参数,单位%。可以理解为:
P:比例带;值越大,作用越弱。单 位:%
I:积分时间;值越大,作用越弱, 单位:分钟(m)
D:微分时间;值越大,作用越强, 单位:分钟(m)
PID参数含义均与CS3000一致,但要 注意积分和微分时间,为分钟。
手动/自动 切换

PID控制器的参数整定(经验总结)

PID控制器的参数整定(经验总结)

PID控制器的参数整定(1)PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节作用:是使系统消除稳态误差,提高无差度。

因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。

积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。

反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。

积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。

因此,可以改善系统的动态性能。

在微分时间选择合适情况下,可以减少超调,减少调节时间。

微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。

此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。

微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。

(2) PID具体调节方法①方法一确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。

在选择数字PID参数之前,首先应该确定控制器结构。

对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。

对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。

一般来说,PI、PID和P控制器应用较多。

对于有滞后的对象,往往都加入微分控制。

选择参数控制器结构确定后,即可开始选择参数。

参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。

工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。

调节器参数整定方法中动态特性参数法介绍

调节器参数整定方法中动态特性参数法介绍

调节器参数整定方法中动态特性参数法介绍随着调节技术的发展,调节器的参数整定方法也在不断的更新和发展。

其中,动态特性参数法是一款非常有效的整定方法。

本文旨在介绍动态特性参数法的方法原理及其优缺点。

一、动态特性参数法的方法原理
动态特性参数法是一款可以有效提高调节精度的整定方法,它利用对被调节流体特性数据的分析,并采用室内模拟实验的方法来调节参数,从而实现调节器的参数整定和改善其在调节过程中的控制精度。

参数整定的步骤主要有:1.针对被调节流体的特性,设计调节器的传感器,以获取被调节物体的参数;2.对参数进行实验测量,对参数结果进行计算,以推导出动态特性参数;3.根据动态特性参数的变化,推导出调节器所需的参数;4.调节器参数根据所获得的参数进行调整,以满足特定的调节需求。

二、动态特性参数法的优缺点
1.态特性参数法比传统的调节器参数整定方法更加精确和可靠,能够有效调节和控制调节器的参数,从而提高调节精度和控制质量。

2.该法能够分析被调节流体的特性参数,从而更全面的满足产品的控制需求。

3.动态特性参数法的操作简单,不需要技术人员具有专业的知识和技能,普通操作者都可以轻松掌握该整定方法。

3.缺点是实验成本高。

为了获得精确的参数,需要对参数进行精确测量,需要花费大量的时间和财力,从而降低整定效率。

综上所述,动态特性参数法是一款可以有效提高调节精度的整定方法,尤其在调节复杂流体物料时,其优势特别突出。

但是,它也有一定的缺点,需要考虑到成本和实验时间的因素,才能够更加有效的应用该整定方法。

调节器参数整定

调节器参数整定
调节器参数整定
contents
目录
• 调节器参数整定的基本概念 • 调节器参数整定的方法 • 调节器参数整定在控制系统中的应用 • 调节器参数整定的实验研究 • 调节器参数整定的实际应用案例
01
调节器参数整定的基本 概念
调节器参数整定的定义
调节器参数整定是指在自动控制系统 设计中,根据系统性能要求和工艺要 求,调整调节器的参数,以实现系统 的最佳控制效果。
优化系统的抗干扰性能
调节器参数整定可以增强系统的抗干扰能力 ,减小外界干扰对系统的影响,提高系统的 可靠性。
调节器参数整定的基本原理
01
根据系统性能要求和工艺要求,确定调节器参数整 定的目标。
02
通过理论分析和实验验证,选择合适的调节器类型 和参数整定方法。
03
利用系统测试和仿真,对调节器参数进行调整和优 化,以达到最佳的控制效果。
03
调节器参数整定在控制 系统中的应用
温度控制系统
总结词
在温度控制系统中,调节器参数整定 是确保系统稳定、准确和快速响应的 关键。
详细描述
通过合理整定调节器参数,如比例带、 积分时间和微分时间,可以控制加热 或冷却设备的输出,使温度达到设定 值并维持稳定。
压力控制系统
总结词
在压力控制系统中,调节器参数整定 对于确保压力稳定和防止超压或欠压 至关重要。
实验结果与分析
实验结果
通过模拟实验和实际系统实验,验证了调节器参数整定的有效性,被控对象性能得到显 著改善。
结果分析
通过对比不同参数下的调节器性能,分析参数对调节器性能的影响,找出最优参数组合。
实验结论与建议
实验结论
调节器参数整定是提高被控对象性能的关键,合理的参数选择可以有效改善系统的动态特性和稳态精 度。

pi参数整定方法

pi参数整定方法

pi参数整定方法
PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和微分时间Td。

以下介绍常用的经验法。

经验法,又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。

若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。

由于该法采用实测过渡过程的方法来整定参数,因此消除了理论计算法中许多无法考虑的影响因素,而且整定参数时只需在被控对象的受控段上做少量调整,操作方便。

不过,这种方法在理论上不够严密,特别是整定参数用的过渡过程曲线是在该参数下取得的最差过渡过程的曲线,所以所得的参数一般偏保守。

此外,它需要一定的经验,否则可能得到不合理的参数。

以上内容仅供参考,如需更多信息,建议查阅PID控制相关的书籍或咨询自动化专业人士。

PID整定方法与口诀

PID整定方法与口诀

3.PID参数整定⑴采样周期T符合工程准则。

(2)K p/K i/K d调试:试凑法(先比例,后积分,再微分);扩充临界比例度法;扩充响应曲线法一个调节系统,在阶跃干扰作用下,出现既不发散也不衰减的等幅震荡过程,此过程成为等幅振荡过程,如下图所示。

此时PID调节器的比例度为临界比例度6 k,被调参数的工作周期为为临界周期Tk。

O —■■值O -Utsu临界比例度法整定PID参数具体操作如下:1、被控系统稳定后,把PID调节器的积分时间放到最大,微分时间放到零(相当于切除了积分和微分作用,只使用比例作用)。

2、通过外界干扰或使PID调节器设定值作一阶跃变化,观察由此而引起的测量值振荡。

3、从大到小逐步把PID调节器的比例度减小,看测量值振荡的变化是发散的还是衰减的,如是衰减的则应把比例度继续减小;如是发散的则应把比例度放大。

4、连续重复2和3步骤,直至测量值按恒定幅度和周期发生振荡,即持续4-5 次等幅振荡为止。

此时的比例度示值就是临界比例度6 k。

5、从振荡波形图来看,来回振荡1次的时间就是临界周期Tk,即从振荡波的第一个波的顶点到第二个波的顶点的时间。

如果有条件用记录仪,就比较好观察了,即可看振荡波幅值,还可看测量值输出曲线的峰-峰距离,把该测量值除以记录纸的走纸速度,就可计算出临界周期Tk如果是DCS控制或使用无纸记录仪,在趋势记录曲线中可直接得出Tk。

临界比例度法PID参数整定经验公式调节规律调节器参数6、将计算所得的调节器参数输入调节器后再次运行调节系统,观察过程变化情况。

多数情况下系统均能稳定运行状态,如果还未达到理想控制状态,进需要对参数微调即可。

衰减曲线法整定调节器参数通常会按照4:1和10:1两种衰减方式进行,两种方法操作步骤相同,但分别适用于不同工况的调节器参数整定。

纯比例度作用下的自动调节系统,在比例度逐渐减小时,出现4:1衰减振荡过程,此时比例度为4:1衰减比例度6s,两个相邻同向波峰之间的距离为4:1衰减操作周期TS,如下图所示4:1衰减曲线法整定PID参数具体操作如下:1、在闭合的控制系统中,将PID调节器变为纯比例作用,比例度放在较大的数值上。

PID调节器的调节过程及其参数的整定方法

PID调节器的调节过程及其参数的整定方法

摘要锅炉汽包水位是锅炉运行中的一个重要的监控参数,它间接反映了锅炉蒸汽负荷与给水流量之间的平衡关系。

汽包锅炉给水自动控制的任务是使锅炉的给水量适应锅炉的蒸发量,以维持汽包水位在规定的范围内。

由于给水系统的复杂性,现有的火电厂全程给水控制采用传统的PID控制,其精确数学模型难以建立,并且系统具有大滞后、时变性等一系列特点,往往难以满足火电机组复杂工况要求,所以许多大型火电厂对现有的全程给水控制提出了优化方案。

本文首先对控制系统进行时域分析,然后介绍PID调节器的调节过程及其参数的整定方法。

重点分析了锅炉的给水控制系统,针对汽包水位控制对象的动态特性表现为有惯性、无自平衡能力的特点,采用先进的智能控制算法之一的模糊控制对其进行控制,并利用MATLAB分别对常规PID控制和模糊PID 串级控制进行仿真,结果表明采用模糊PID串级控制方法比常规PID控制方法迟延小、超调量小,使得汽包的动态特性得到优化。

关键词:模糊控制;给水控制;PID控制AbstractThe steam drum water level of boil is important monitoring parameter in a boiler movement, it had reflected indirectly the balance relations between the boiler steam load and the discharge of water. In the steam drum boiler for the water automatic control duty to adapt the boiler transpiration rate for the water volume, maintains the steam drum water level in the stipulation scope. As a result of for the water system complexity, the existing thermoelectric power station entire journey for the water control adopt the traditional PID control, its precise mathematical model establishes with difficulty, when the system has the big lag, denatured and so on a series of characteristics, often with difficulty satisfies the thermal power unit complex operating mode request, therefore many large-scale thermoelectric power stations proposed the optimization plan to the existing entire journey for the water control.First this article has analyzed the time domain of control system, then introduces the PID regulator’s adjustment process and the parameter installation method. And has analyzed great emphasis on the boil for the water control system, the steam drum water control object show the inertia, the non-self regulation ability, uses of a fuzzy control to control it, and separately carries on the simulation using MATLAB to the tradition PID control and the fuzzy PID cascade control, With comparing using the fuzzy PID cascade control method obtain result that is delay slightly, over small, enables the steam drum the dynamic characteristic to obtain the optimization.Keywords: Fuzzy control; For the water control; PID control目录引言 (1)第一章控制系统的时域性能分析 (2)1.1 一阶系统的时域响应分析 (2)1.2 二阶系统的时域响应分析 (3)1.3 高阶系统的时域响应分析 (6)第二章PID控制及其调节过程 (9)2.1 比例调节(P调节) (9)2.2 积分调节(I调节) (10)2.3 比例积分调节(PI调节) (11)2.4 比例积分微分调节(PID调节) (13)第三章PID的整定方法 (18)3.1 齐格勒-尼柯尔斯法则 (18)3.2 广义频率法 (20)3.3 工程整定法 (26)第四章锅炉给水控制系统分析 (33)4.1 给水控制的任务 (33)4.2 给水控制对象的动态特性 (33)4.2.1 给水流量扰动下水位的动态特性 (34)4.2.2 蒸汽流量扰动下的水位的动态特性 (35)4.2.3 炉膛热负荷扰动下水位控制对象的动态特性 (36)4.3 给水自动控制系统 (36)4.3.1 单级三冲量给水控制系统 (37)4.3.2 串级三冲量给水控制系统 (41)4.4 给水全程控制系统 (45)4.4.1 全程控制的概念 (45)4.4.2 对给水全程控制系统的要求 (45)4.4.3 单元制锅炉给水全程控制方案 (46)4.5 300MW单元机组给水全程控制系统实例 (48)4.5.1 给水热力系统简介 (48)4.5.2 给水全程控制系统原理 (48)第五章模糊控制理论及系统 (53)5.1 模糊控制理论的发展 (53)5.2 模糊控制系统的原理 (53)5.3 模糊控制器的分类 (55)5.4 模糊控制器的设计 (56)5.4.1 模糊控制器的输入输出变量 (57)5.4.2 模糊控制规则的设计 (57)5.4.3 确立模糊化和非模糊化方法 (58)5.4.4 采样时间的选择 (59)第六章系统仿真 (60)6.1 PID系统仿真 (60)6.2 模糊自适应PID控制系统仿真 (61)6.3 两种控制方法的比较 (64)结论 (65)参考文献 (66)附录 (67)谢辞 (74)引言火电站的热工控制技术水平随着火电机组单机容量的增加和控制仪表的进步而达到崭新的水平。

PID参数整定调节方法

PID参数整定调节方法

PID参数如何设定调节内容:PID参数如何设定调节PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。

PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。

控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。

不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

PID调节原理与PID参数整定方法

PID调节原理与PID参数整定方法

PID调节原理与PID参数整定方法PID调节原理与参数整定方法是自动控制系统中常用的调节算法和方法之一、PID调节器是一种反馈调节控制器,利用当前的偏差值、偏差累积值和偏差变化率来产生控制输出,进而改变被控对象的状态,使其尽可能地满足设定值。

PID调节器由三个部分组成:比例(P)调节器、积分(I)调节器和微分(D)调节器。

P调节器根据偏差值来产生控制信号;I调节器根据偏差累积值来产生控制信号;D调节器根据偏差变化率来产生控制信号。

这三个调节器的输出都与偏差成比例,然后将它们相加得到最终的控制输出。

PID控制器的数学表达式为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)是控制输出,Kp、Ki和Kd是调节器的增益参数,e(t)是偏差,t是时间。

参数整定是指选择合适的PID控制参数以实现系统良好性能。

对于PID参数整定,常用的方法有以下几种:1.经验法:根据经验和实际应用中相似系统的参数进行估计和调整。

这种方法简单易行,但对于不同系统的参数整定效果不一致。

2. Ziegler-Nichols方法:此方法通过实验获取系统的临界增益(Kcr)和临界周期(Pcr),然后根据不同的整定规则选择PID参数。

常用的整定规则有:P控制器(Kp = 0.5 * Kcr)、PI控制器(Kp = 0.45* Kcr,Ki = 1.2 / Pcr)和PID控制器(Kp = 0.6 * Kcr,Ki = 2 / Pcr,Kd = 8 / Pcr)。

3.最小二乘法:通过最小化系统的输出与设定值之间的误差,来确定合适的PID参数。

这种方法需要进行大量的计算,适用于精确调节和要求高性能的系统。

4.频响法:通过系统的频率响应曲线来进行参数整定。

此方法需要对系统进行频率扫描,可以获得系统的幅频特性和相频特性,然后根据相应的调节规则选择PID参数。

总结来说,PID调节原理是利用当前的偏差值、偏差累积值和偏差变化率来产生控制输出;而PID参数整定方法可以通过经验法、Ziegler-Nichols方法、最小二乘法和频响法等多种方法来选择合适的参数,以实现系统的稳定性和性能要求。

PID参数调节原理和整定方法

PID参数调节原理和整定方法

实时曲线观察窗口
CS3000系统PID参数整定方法

无扰动切换பைடு நூலகம்


勿扰动切换:控制回路手动(MAN)到自动 (AUT)状态切换时,保证设定值(SV)与测 量值(PV)保持一致或相当。 PID控制只有在控制回路处于AUT状态,也就 是负反馈回路时才有用。
CS3000系统PID参数整定方法



改变模式
手动
自动
串级
CS3000 调整窗口
进行PID参数调节时,建议按下保留按钮 ,以方便在切换画面后观察保留的趋势 ,PID参数调整完后必须取消。 要进行PID参数调节,首先必须要有权限 。显示“=”表示可以进行参数修改,显 示“:”表示不能对参数进行修改。默 认值班长有权限修改。
比例带表;值越大,作用越小,范围0-1000 % 积分时间;值越大,作用越小,范围0.1-10000s 微分时间;值越大,作用越大,范围0-10000s
CS3000系统常用PID参数
P (%) 20~60 30~70 20~80 40~100 I D (s) (s) 180~600 3~180 24~180 60~300 6~60
温度 压力 液位 流量
IA 系统PID参数整定
要进行PID参数调节,首先必须要有权限 ,默认情况下值班长有权限修改。
CS3000系统PID参数整定方法

串级回路PID参数调整

因为串级调节系统一般应用于容量滞后较大的 场合,必须加微分,所以主调一般取PID,而 副调一般取P就可以了。但是副参数是流量, 压力时,可加一定的I作用,这里也不是为了 消除余差,只是流量,压力付对象时间常数太 小,导致副调节器的P不能太小,调节作用弱, 加上积分是为了使副参数偏离给定值太远。

调节器参数整定方法中动态特性参数法介绍

调节器参数整定方法中动态特性参数法介绍

调节器参数整定方法中动态特性参数法介绍以《调节器参数整定方法中动态特性参数法介绍》为标题,本文将介绍动态特性参数法,它是一种用于调节器参数整定方法的特殊算法。

首先,我们来了解一下调节器,它是一种用于稳定控制系统的重要组件。

调节器的作用是调整输入信号的大小,使输出信号保持在预定的水平,以实现系统的稳定控制。

参数整定,是指确定参数值,使调节器能够实现系统稳定控制、精确控制、有效控制、安全控制等目标。

而动态特性参数法,是一种用于调节器整定参数的重要方法。

它主要是通过模拟不同系统的动态特性,来确定调节器参数。

该方法主要有以下步骤:1.首先,要仔细研究可能发生的不同系统的动态特性,以便在设计调节器时正确理解系统的动态特性。

2.其次,根据研究结果,设定不同参数模型,以便能够提高调节器参数整定的准确性。

3.然后,建立不同动态特性的模型,从而确定不同参数值以实现调节器参数整定的目标。

4.最后,实际操作时,根据参数值构建调节器,并调整参数使其能够实现调节器参数整定的目标。

以上就是动态特性参数法的主要流程。

该方法的优势在于,它能够根据不同系统的动态特性,设定不同的参数值,从而提高调节器参数整定的准确性。

此外,它还能够更好地实现系统的稳定控制、精确控制、有效控制、安全控制等目标,从而使系统能够更有效地工作。

在调节器参数整定方法中,动态特性参数法起着重要作用。

综上所述,动态特性参数法也是一种重要的算法,它能够根据不同系统的动态特性,设定不同的参数值,从而提高调节器参数整定的准确性,同时也能够更好地实现系统的目标。

动态特性参数法的设计有助于更好地实现系统的稳定控制、精确控制、有效控制、安全控制等目标,从而使系统能够更有效地工作,从而为社会带来巨大的好处。

本文综述了调节器参数整定方法中动态特性参数法的概念、特点和应用前景,为调节器参数整定方法提供了参考。

希望通过本文的介绍,能更好地提高系统的控制性能,实现稳定控制、精确控制、有效控制、安全控制等各项目标,使系统能够更有效地工作,为社会带来积极影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巴格德雷合同区域A区块地面工程天然气处理厂
控制系统调节器参数设定
1,经验调节器参数整定
先是比例度后积分,比例度从大到小,积分时间由大往小设,最后才把微分加。

曲线振荡很频繁,比例度要加大。

曲线漂浮绕大弯,比例度要减小。

曲线偏离回复慢,积分时间往下降。

曲线波动周期长,积分时间再加大。

理想的曲线是二个波。

经验参数值如下:
注:比例增益为Kp=1/δ%
2、串级调节器参数整定
先副回路后主回路,先比例后积分。

了解对象的特性,采用下表中的合适值作为比例度置于副调节器上。

然后采用现有整定简单调节器的方法,去直接整定主调节器。

有经验表明,副回路的积分对控制系统的调节质量不会有显著的改善。

建议副回路不加积分。

3、液位流量均匀串级调节回路参数整定
均匀串级调节的目的在于二个被调参数统筹兼顾。

不希望液位是一个固定值,也不希望流量在一个定值,而只要求液位在容许的上下限之间波动,流量则应尽可能缓慢地均匀地变化。

1)先把副调节器的比例度放在一个适当的初试值,由小到大地改变,使副回路调节出现缓慢的非周期衰减过程。

2)把主调节器的比例度放在一个适当的初始值,再逐步由小到大地改变,使液位再最大干扰的影响下正好达到上限或者下限为好。

若要增加积分,可将积分时间从最大
逐步减小,达到开始显著地影响流量变化速度为止。

3、硫磺回收比值调节器参数整定
比值调节应该以“快“为指标,要求的是一个没有振荡或者有微弱振荡的调节过程。

把积分时间放到最大,微分时间放到零,然后把比例度从大到小改变。

使调节过程没有偏差而跟得最快。

如果需要增加积分,可把比例度先增大20%,然后把积分时间慢慢地减小。

出现半个波后稳定为最好。

CPE-西南分公司仪表现场服务组
2009.10.20。

相关文档
最新文档