触发器和时序逻辑电路设计

合集下载

第21章 触发器和时序逻辑电路

第21章 触发器和时序逻辑电路

第二十一章 触发器和时序逻辑电路
第二节 JK触发器
CC4027是国产CMOS型集成边沿JK触发器,CP输入端 没有小圆圈表示触发器改变状态的时刻是在CP的上升沿(正跳 变);异步输入端(直接置位、复位端)SD、RD为高电平有效。 特别注意:CMOS触发器的输入端不能悬空,必须通过电 阻接电源置为l。
第二十一章 触发器和时序逻辑电路
第三节 D触发器
• 例6-2 由一片双D触发器CC4013组成的移相电路如图所示, 可输出两个频率相同,相位差900的脉冲信号,已知CP波 形,试画出Q1和Q2端的波形,设F1和F2的初态为0。
0 1 0 1
Q1 Q2
0
1
第二十一章 触发器和时序逻辑电路
第四节 T触发器及各种触发器逻辑功能的相互转换 一、T触发器 T触发器是一种受控制的计数式触发器,也称为受控翻转触发器。
第二十一章 触发器和时序逻辑电路
本章提要 触发器是具有记忆功能、能存储数字信息的最常用的 一种基本单元电路。其特点:电路在某一时刻的输出 状态,不仅取决于当时输入信号的状态,而且与电路 的原始状态有关。当输入信号消失后,输入信号对电 路的影响将以新的输出状态保持在输出端。本章主要 讨论以下几个问题: 1. RS、JK、D、T、T′触发器的逻辑功能及各种触发器逻 辑功能的相互转换; 2. 寄存器、计数器的工作原理;
第一节 RS触发器
计数式触发器的空翻现象。
第二十一章 触发器和时序逻辑电路
第二节 JK触发器
结构及逻辑符号
第二十一章 触发器和时序逻辑电路
第二节 JK触发器
JK触发器的状态方程
Q n 1 JQ n KQ n
CP
真值表: J 0 0 1 K 0 1 0 Qn+1 Qn 0 1 Qn

实验四集成触发器和用SSI的设计同步时序电路-PPT文档资料

实验四集成触发器和用SSI的设计同步时序电路-PPT文档资料

74LS74
2片
74LS00
1片
微动开关 4只
1台
74LS112 2片 74LS04 1片
器件引脚图
74LS112 双下降沿JK 触发器
1CP 1 1K 2 1J 3 1SD 4 1Q 5 1Q 6 2Q 7 GND 8
16 VCC 15 1RD 14 2RD
74LS112 13 2CP
12 2K 11 2J 10 2SD 9 2Q
实验四 集成触发器和用SSI设计同步时序电路
一、实验目的
1.掌握触发器的原理、作用及调试方法; 2.学习简单时序逻辑电路的设计和调试方法。
二、预习要求
根据实验内容,设计出电路,并画出逻辑图,标出管脚。
三、实验原理
1.触发器
SD
S
J
1J
Q
CP
C1
K
1K
Q
RD
R
边沿JK触发器
Qn1JQnKQn
CP下降沿时刻有效
74LS74 双上升沿D 触发器
1RD 1 1D 2 1CP 3 1SD 4 1Q 5 1Q 6 GND 7
74LS74
14 VCC 13 2RD 12 2D 11 2CP 10 2SD 9 2Q 8 2Q
74LS04 六反相器
1A 1 1Y 2 2A 3 2Y 4 3A 5 3Y能测试。
按下表要求观察和记录Q与Q 的状态
表1
SD RD J K CP
Qn+1
Qn=0
Qn=1
1
1

1100 1101 21 1 1 0
31 1 1 1
2. 3人智力抢答电路
QA Q A
QB QB

总结使用触发器、移位寄存器设计时序逻辑电路和方法。

总结使用触发器、移位寄存器设计时序逻辑电路和方法。

总结使用触发器、移位寄存器设计时序逻辑电路和方法。

在数字电路设计中,时序逻辑电路是指需要考虑时间因素的电路,其输出取决于当前和之前的输入信号。

触发器和移位寄存器是时序逻辑电路中常用的组件,它们可以被用来存储信息和同步信号,从而帮助我们构建更加复杂的电路。

触发器是一种时序逻辑电路,它可以存储一个比特位,并且只能被时钟信号触发来改变存储状态。

触发器的最常见类型是D触发器,它有一个数据输入(D)和时钟输入(C),当C的上升沿到来时,D触发器会将D的数据存入内部寄存器中。

移位寄存器是一种特殊的触发器组合,其可以在多个触发器之间进行移位操作。

移位寄存器通常用于存储多个比特位,并且可以用于串行通信和数字信号处理等应用中。

当时钟信号触发时,移位寄存器会将每个触发器的输出传递给下一个触发器,从而实现数据的移位操作。

时序逻辑电路的设计需要考虑各种电路的延迟和时序关系,以确保电路的正确功能。

此外,还需要注意电路中的时钟频率,以确保电路能够快速响应输入信号并进行适当的处理。

在实际的电路设计中,我们可以使用Verilog或VHDL等硬件描述语
言来描述时序逻辑电路和组件,从而可以通过模拟和仿真来验证电路
的正确性。

同时,我们还可以使用EDA工具来帮助我们自动化设计流程,从而提高设计效率和准确性。

总之,触发器和移位寄存器是时序逻辑电路中非常重要的组件,它们可以帮助我们存储和处理数字信号,并构建更加复杂的数字电路。

在电路设计过程中,我们需要注意各种时序关系和延迟,并使用适当的硬件描述语言和EDA工具来实现设计目标。

第4章 时序逻辑电路设计

第4章 时序逻辑电路设计
时序逻辑电路是具有记忆功能的逻辑电路,记忆元件 一般采用触发器。因此,时序逻辑电路由组合电路和 触发器组成,其等效模型如图4.5所示。
1模型
时序电路按其状态的改变方式不同,可分为同 步时序逻辑电路和异步时序逻辑电路两种,在 图4.5中,当CLK1与CLK2为相同信号时,该 电路为同步电路;当CLK1与CLK2为不同信号 时,该电路为异步电路。
output q;
reg
q;
always@(posedge clk or posedge rst)
begin
if(rst==1’b1)
q<=1’b0;
else if(en==1’b1)
q<=data;
else ;
end
endmodule
带同步复位、上升沿触发的触发器
module dff_synrst(data,rst,clk,q); input data,rst,clk; output q; reg q; always@(posedge clk) begin if(rst==1’b1) q<=1’b0; else q<=data; end
本设计要求用仿真和测试两种手段来验证 计数器的功能。实验时,可以通过修改十进 制计数器的设计得到六进制、100进制计数器。
三、设计要求
(1) 完成各模块的Verilog HDL设计编码; (2) 进行功能仿真; (3) 下载并验证计数器功能; (4) 如果60进制计数器要求用6进制和10进制
计数器搭建电路,请画出设计连接图,并 完成设计编码和验证。
else q<=data; end endmodule
带异步复位和置位、上升沿触发的触发器
module dff_asynrst(data,rst,set,clk,q);

时序逻辑电路的设计与实现

时序逻辑电路的设计与实现

时序逻辑电路的设计与实现时序逻辑电路是数字电路中的一种重要类型,它可以根据输入信号的变化和先后顺序,产生相应的输出信号。

本文将介绍时序逻辑电路的设计与实现,并探讨其中的关键步骤和技术。

一、概述时序逻辑电路是根据时钟信号的变化产生输出信号的电路,它可以存储信息并根据特定的时序条件进行信号转换。

常见的时序逻辑电路包括触发器、计数器、移位寄存器等。

二、时序逻辑电路的设计步骤1. 确定需求:首先需要明确所要设计的时序逻辑电路的功能和性能需求,例如输入信号的种类和范围、输出信号的逻辑关系等。

2. 逻辑设计:根据需求,进行逻辑设计,确定逻辑门电路的组合方式、逻辑关系等。

可以使用真值表、状态转换图、状态表等方法进行设计。

3. 时序设计:根据逻辑设计的结果,设计时序电路,确定触发器的类型和触发方式,确定时钟信号的频率和相位,以及信号的启动和停止条件等。

4. 电路设计:将逻辑电路和时序电路整合,并进行布线设计。

通过选择合适的器件和元器件,设计稳定可靠的电路。

5. 功能验证:对设计的时序逻辑电路进行仿真验证,确保电路的功能和性能符合设计要求。

三、时序逻辑电路的实现技术1. 触发器:触发器是时序逻辑电路的基本组成部分,常见的触发器有RS触发器、D触发器、T触发器等。

通过组合和串联不同类型的触发器,可以实现不同的功能。

2. 计数器:计数器是一种特殊的时序逻辑电路,用于计数和记录输入脉冲信号的次数。

常见的计数器有二进制计数器、十进制计数器等。

3. 移位寄存器:移位寄存器是一种能够将数据向左或向右移位的时序逻辑电路。

它可以在输入端输入一个位串,随着时钟信号的变化,将位串逐位地向左或向右移位,并将移出的位存储起来。

四、时序逻辑电路的应用领域时序逻辑电路广泛应用于数字系统中,例如计算机中的控制单元、存储器等。

它们在数据处理、信息传输、控制信号处理等方面发挥着重要作用。

总结:时序逻辑电路的设计与实现是一项复杂而重要的任务。

在设计过程中,需明确需求、进行逻辑设计和时序设计,并通过合适的触发器、计数器和移位寄存器等元件来实现功能。

触发器和时序逻辑电路

触发器和时序逻辑电路
(1) 第一位触发器 FF0 ,每来一种时钟脉冲就翻转一次,故 J0 = K0 = 1 ;
(2) 第二位触发器 FF1 ,在 Q0 = 1 时再来一种时钟脉冲才翻转,故 J1 = K1 = Q0 ;
大家网:
(3) 第三位触发器 FF2 ,在 Q1= Q0 = 1 时再来一种时钟脉冲才翻转,故 J2 = K2 = Q1Q0 ;
大家网:
只有当初钟脉冲来到后,即 CP = 1 时,触发器才按 R 、S 端旳输入状态 来决 定其输出状态。
触发器置R和D0 或置是S1直D,接一置般0用和于直置接初置态1。端在,工就作是过不程经中过它时们钟处脉于冲1 旳态控。制能够对基本
可控 RS 触发器旳逻辑式
Q S CP Q ,
可分四种情况分析CP = 1 时触 发器旳状态转换和逻辑功能,如右 表所示。
转一次,即
,具有计数功能。
SD
S
Q
D
1D
CP
C1
Q
RD
R
Q Q n1
n
上升沿 D 触发 器图形符号
1D
Q
CP
C1
Q
D 触发器转换 为 T 触发器
大家网:
返回
14.2 寄存器
寄存器用来临时存储参加运算旳数据和运算成果。
14.2.1 数码寄存器
下图是由 D 触发器(上升沿触发)构成旳四位数码寄存器,这是并行输入/并行 输出旳寄存器。工作之初要先清零。
时序逻辑电路旳特点:它旳输出状态不但决定于当初旳输入状态,而且还与电 路旳原来状态有关,也就是时序逻辑电路具有记忆功能。
触发器是时序逻辑电路旳基本单元。
大家网:
14.1 双稳态触发器
14.1.1 RS 触发器

《FPGA系统设计》实验报告》时序逻辑电路的设计

《FPGA系统设计》实验报告》时序逻辑电路的设计

《FPGA系统设计》实验报告》时序逻辑电路的设计
一、设计任务
分别设计并实现锁存器、触发器的VHDL模型。

二、设计过程
1、同步锁存器:
同步锁存器是指复位和加载功能全部与时钟同步,复位端的优先级较高。

下图为同步锁存器的VHDL程序及模型:
2、异步锁存器:
异步锁存器,是指复位与时钟不同步的锁存器。

下图为同步锁存器的VHDL程序及模型:
3、D触发器:
D触发器是最常用的触发器。

下图为简单D触发器的VHDL 模型:
4、T触发器:
T触发器的特点是在时钟沿处输出信号发生翻转。


照有无复位、置位信号以及使能信号等,T触发器也有多种类型。

下图为带异步复位T触发器的VHDL模型:
5、JK触发器:
JK触发器中,J、K信号分别扮演置位、复位信号的角色。

为了更清晰的表示出JK触发器的工作过程,以下给出JK触发器的真值表(如表1所示)。

表1 JK触发器真值表
按照有无复位、置位信号,常见的JK触发器也有多种类型,下图带异步复位(clr)、置位(prn)的JK触发器的VHDL模型:
三.总结
本次实验中较为顺利,在第一次课的时间内我就已经完成了必做实验与选作实验。

在实验的过程中,在防抖电路处有了较大的困难。

由于仿真中不存在此问题,在实际操作中参数选择时遇到了一定的困难。

在反复比对效果之后,我
确定了电路的参数,实现了防抖功能。

通过这次实验,我对时钟脉冲、计数器等有了更加深入的认识与理解。

总结使用触发器、移位寄存器设计时序逻辑电路和方法

总结使用触发器、移位寄存器设计时序逻辑电路和方法

总结使用触发器、移位寄存器设计时序逻辑电路和方法1. 什么是触发器和移位寄存器触发器是数字电路中最为重要的元件之一,它是一种能够切换输出状态的器件,能够将输入信号锁存起来并产生输出信号。

移位寄存器则是由多个触发器组成的一种结构,它具有一定的存储能力和移位功能。

2. 设计时序逻辑电路的基本原则在设计时序逻辑电路时需要遵循以下原则:(1)时序逻辑电路与组合逻辑电路结合使用。

(2)采用合适的触发器和移位寄存器元件。

(3)确保所有输入信号的稳定性。

(4)避免出现冒险信号。

(5)通过模拟仿真来验证设计的正确性。

3. 触发器的分类触发器可以根据触发方式分为同步触发器和异步触发器。

同步触发器输出信号的变化只会在时钟信号出现时才会进行;异步触发器则不依赖时钟信号,而是由一个或多个输入信号控制。

4. 移位寄存器的功能移位寄存器通过改变输入信号的先后顺序,实现数据的移位和存储,并且可以实现串行数据与并行数据的转换。

在实际应用中,移位寄存器通常用于数字通信系统中的调制解调、数据压缩和信息传输等方面。

5. 移位寄存器的分类按照移位寄存器的结构特点,可以将其分为串行移位寄存器和并行移位寄存器两大类。

串行移位寄存器中,数据位是按照位顺序依次经过各个触发器,实现每个数据位的单独存储和移位;并行移位寄存器中,所有数据位是同时存储和移位的,具有较高的处理效率。

6. 触发器的应用触发器广泛应用于数字信号处理领域,包括计算机、通信、控制、计量等领域。

在计算机内部,触发器用于构筑存储器单元、寄存器、计数器等数字电路;在通信系统中,触发器则主要用于解调和解码等信号处理功能。

7. 移位寄存器的应用移位寄存器主要应用于信息传输和数字信号处理中,如通信调制、数据压缩、图像处理等。

在通信调制中,移位寄存器通过改变数字信号的顺序,实现不同调制方式的转换;在数据压缩中,移位寄存器可以通过存储和移位数据位,实现信息的压缩;在图像处理中,移位寄存器可以通过对像素点的存储和移位,实现图像的旋转和平移等操作。

时序逻辑电路设计实验心得

时序逻辑电路设计实验心得

时序逻辑电路设计实验心得一、实验简介时序逻辑电路设计实验是数字电路课程中的一个重要实验,旨在让学生掌握时序逻辑电路设计的基本原理和方法,培养学生的实践能力和创新思维。

二、实验内容本次实验主要涉及到以下内容:1. 时序逻辑电路的基本概念和原理;2. 时序逻辑电路的设计方法和步骤;3. 时序逻辑电路的仿真与验证。

三、实验步骤1. 确定设计需求:根据所给条件,确定需要设计的时序逻辑电路的功能和性能指标。

2. 设计状态图:根据设计需求,画出状态转移图,并确定每个状态对应的输出。

3. 设计状态表:将状态转移图转化为状态表,并标注每个状态对应的输出。

4. 设计触发器电路:根据状态表,选择合适的触发器类型,并设计出相应的触发器电路。

5. 设计组合逻辑电路:根据状态表和触发器电路,设计出组合逻辑电路,并将其与触发器电路相连。

6. 仿真验证:使用仿真软件进行仿真验证,检查时序逻辑电路是否符合设计要求。

四、实验心得1. 对于时序逻辑电路的设计,需要先确定设计需求,再进行具体设计。

在确定设计需求时,需要充分考虑实际应用场景和性能要求。

2. 在状态图和状态表的设计过程中,需要注意状态之间的转移条件和输出值的确定。

尽量将状态转移图简化,减少状态数目,提高电路的可靠性。

3. 在选择触发器类型时,需要考虑电路的时序要求和实际应用场景。

常见的触发器类型有D触发器、JK触发器、T触发器等。

4. 在组合逻辑电路的设计过程中,需要充分利用逻辑门和多路选择器等基本元件进行组合,并注意信号延迟和冲突等问题。

5. 在仿真验证过程中,需要认真分析仿真结果,并对不符合要求的地方进行修改和优化。

五、实验总结通过本次时序逻辑电路设计实验,我深入了解了时序逻辑电路的基本原理和方法,并掌握了一定的实践能力。

在今后的学习和工作中,我将继续加强对数字电路知识的学习,并不断提高自己的技能水平。

触发器-时序逻辑电路实验报告

触发器-时序逻辑电路实验报告

1实验报告课程名称:数字电子技术基础实验 指导老师:樊伟敏实验名称:触发器应用实验实验类型:设计类 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤五、实验数据记录和处理 六、实验结果与分析(必填)七、讨论、心得一、实验目的1. 加深理解各触发器的逻辑功能,掌握各类触发器功能的转换方法。

2. 熟悉触发器的两种触发方式(电平触发和边沿触发)及其触发特点。

3. 掌握集成J-K 触发器和D 触发器逻辑功能的测试方法。

4. 学习用J-K 触发器和D 触发器构成简单的时序电路的方法。

5. 进一步掌握用双踪示波器测量多个波形的方法。

二、主要仪器与设备实验选用集成电路芯片:74LS00(与非门)、74LS11(与门)、74LS55(与或非门)、74LS74(双D 触发器)、74LS107(双J —K 触发器),GOS-6051 型示波器,导线,SDZ-2 实验箱。

三、实验内容和原理 1、D →J-K 的转换实验①设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:nn Q Q J =D K +。

②仿真与实验电路图:仿真电路图如图1所示。

操作时时钟接秒信号,便于观察。

图1实验名称:触发器应用实验 姓名: 学号: 2③实验结果:2、D 触发器转换为T ’触发器实验①设计过程:D 触发器和T ’触发器的次态方程如下:D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。

②仿真与实验电路图:仿真电路图如图2 所示。

操作时时钟接秒信号。

③实验结果:发光二极管按时钟频率闪动,状态来回翻转。

3、J-K →D 的转换实验。

使用触发器设计时序逻辑电路的流程

使用触发器设计时序逻辑电路的流程

使用触发器设计时序逻辑电路的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!使用触发器设计时序逻辑电路的流程详解在数字电路设计中,时序逻辑电路是一种重要的类型,它依赖于内部状态来决定其输出。

电路设计中的触发器电路设计触发器电路设计的原理和应用

电路设计中的触发器电路设计触发器电路设计的原理和应用

电路设计中的触发器电路设计触发器电路设计的原理和应用电路设计中的触发器电路设计电路设计是电子工程中非常重要的一项任务,而触发器电路则是电路设计中的重要组成部分之一。

本文将介绍触发器电路设计的原理和应用。

一、触发器电路的原理触发器电路是一种存储器件,它可以在特定的输入条件下,通过触发信号改变输出状态。

触发器电路主要由逻辑门电路组成,常见的触发器有RS触发器、JK触发器、D触发器和T触发器等。

下面将逐一介绍这几种触发器的原理和应用。

1. RS触发器RS触发器是一种简单的触发器,它有两个输入端R和S,以及两个输出端Q和Q'。

当输入R为0、输入S为1时,输出Q为0;当输入R为1、输入S为0时,输出Q为1;当输入R和输入S均为1时,输出Q的状态将取决于触发器的具体类型(RS触发器可分为同步和异步两种类型)。

RS触发器常用于存储单个比特的数据,广泛应用于计算机存储器、时序电路等。

2. JK触发器JK触发器是一种改进型的RS触发器,它在RS触发器的基础上增加了一个反馈输入端J和K。

当输入J为0、输入K为1时,输出Q为0;当输入J为1、输入K为0时,输出Q为1;当输入J和输入K均为1时,输出Q的状态将取决于触发器的具体类型。

JK触发器常用于存储单个比特的数据以及实现状态转换等功能,在数字电路、计算机存储器等领域得到广泛应用。

3. D触发器D触发器是一种特殊的触发器,它只有一个输入端D,并且在时钟信号上升沿或下降沿产生输出。

当时钟信号为上升沿时,输入D的值将传递到输出Q上;当时钟信号为下降沿时,输入D的值将传递到输出Q上。

D触发器常用于存储单个比特的数据以及实现时序电路的功能,在数字电路、时序控制等领域得到广泛应用。

4. T触发器T触发器是一种特殊的JK触发器,它的输入端J和K被连接在一起,形成一个输入端T。

当输入T为0时,触发器保持原状态;当输入T为1时,触发器的状态翻转。

T触发器常用于计数器、频率除法器等电路中,广泛应用于数字系统中。

基于触发器设计同步时序电路的方法和步骤

基于触发器设计同步时序电路的方法和步骤

触发器是数字电路中重要的元件,它能够存储和传输数字信号,被广泛用于时序电路的设计中。

在设计同步时序电路时,合理选用触发器并进行相应的设计是十分关键的。

下面将介绍基于触发器设计同步时序电路的方法和步骤。

一、了解触发器的种类和特性在设计同步时序电路之前,首先需要对常见的触发器种类及其特性有所了解。

常见的触发器包括RS触发器、D触发器、JK触发器和T触发器。

它们具有不同的特性,如时序反馈、时钟边沿触发等,设计时需要根据具体的应用场景选择合适的触发器类型。

二、确定同步时序电路的功能需求在设计同步时序电路之前,需要明确电路的功能需求,包括输入信号的类型和频率、输出的预期行为等。

通过仔细分析功能需求,可以确定所需触发器的类型和数量,为后续设计提供指导。

三、进行触发器的选型和布局根据功能需求,选用合适的触发器类型,并进行布局设计。

在布局过程中,需要考虑触发器之间的相互影响、时钟信号的分布等因素,确保电路的稳定性和可靠性。

四、进行逻辑设计和时序分析在确定触发器的选型和布局后,进行逻辑设计和时序分析。

通过逻辑设计,确定各个触发器之间的逻辑关系和信号传输路径;通过时序分析,评估电路的时序性能,包括时钟周期、延迟时间等参数。

五、进行仿真和验证完成逻辑设计和时序分析后,进行仿真和验证。

利用仿真工具对电路进行验证,检查电路的功能是否符合设计要求,以及时序性能是否满足预期。

六、进行布线和布局设计在仿真和验证通过后,进行布线和布局设计。

根据实际的电路板布局要求,对电路进行合理的布线和布局设计,考虑信号传输的稳定性和抗干扰能力。

七、进行电路实现和调试完成布线和布局设计后,进行电路的实现和调试。

按照设计要求进行电路的焊接和连接,通过实际测试和调试,确保电路的稳定性和可靠性。

八、进行性能评估和优化进行电路性能的评估和优化。

通过实际测试和数据分析,评估电路的性能指标,对电路进行优化,以满足实际应用的需求。

总结:基于触发器设计同步时序电路的方法和步骤,需要从了解触发器的种类和特性开始,逐步确定功能需求,进行选型和布局设计,进行逻辑设计和时序分析,进行仿真和验证,进行布线和布局设计,进行电路实现和调试,最后进行性能评估和优化。

时序逻辑电路的设计步骤

时序逻辑电路的设计步骤

时序逻辑电路的设计步骤时序逻辑电路的设计步骤时序逻辑电路是一种能够处理时间序列信号的电路,它可以根据输入信号的变化情况,按照一定的规则输出相应的信号。

时序逻辑电路在数字电子技术中有着广泛的应用,如计数器、触发器、时钟等。

本文将介绍时序逻辑电路设计的步骤。

第一步:确定所需功能在进行时序逻辑电路设计之前,需要先明确所需实现的功能。

例如:计数、存储、比较等。

只有确定了所需功能,才能够开始进行后续的设计工作。

第二步:建立状态转移图状态转移图是描述系统状态和状态之间转移关系的图形表示方法。

通过建立状态转移图,可以清晰地描述系统中各个状态之间的转移条件和输出条件。

在建立状态转移图时,需要考虑以下几个方面:1. 确定系统中所有可能出现的状态;2. 确定各个状态之间可能存在的转移条件;3. 确定各个状态对应输出信号。

第三步:编写状态转移表根据建立好的状态转移图,可以编写出相应的状态转移表。

在编写状态转移表时,需要考虑以下几个方面:1. 确定状态转移表的行和列;2. 将状态转移图中的各个状态按照一定的顺序排列,并为每个状态分配一个唯一的编号;3. 将各个状态之间可能存在的转移条件和输出条件填入到状态转移表中。

第四步:选择适当的时序逻辑电路根据所需实现的功能和建立好的状态转移表,可以选择适当的时序逻辑电路。

常见的时序逻辑电路包括触发器、计数器、移位寄存器等。

在选择时序逻辑电路时,需要考虑以下几个方面:1. 选择与所需实现功能相符合的时序逻辑电路;2. 确定所选时序逻辑电路支持的输入和输出信号,并与状态转移表中相应信号进行对比;3. 确定所选时序逻辑电路支持的工作频率,并与系统要求进行对比。

第五步:设计电路原理图在确定了所需实现功能、建立了状态转移图并编写了相应的状态转移表、选择了合适的时序逻辑电路之后,可以开始进行电路原理图设计。

在设计原理图时,需要考虑以下几个方面:1. 根据所选时序逻辑电路提供的输入和输出信号,在原理图中添加相应的输入和输出端口;2. 根据状态转移表中的状态转移条件,将时序逻辑电路进行连接,并添加必要的控制元件;3. 为电路添加必要的时钟信号,并确定时钟信号的工作频率。

常用的时序逻辑电路

常用的时序逻辑电路

常用的时序逻辑电路时序逻辑电路是数字电路中一类重要的电路,它根据输入信号的顺序和时序关系,产生对应的输出信号。

时序逻辑电路主要应用于计时、控制、存储等领域。

本文将介绍几种常用的时序逻辑电路。

一、触发器触发器是一种常见的时序逻辑电路,它具有两个稳态,即SET和RESET。

触发器接受输入信号,并根据输入信号的变化产生对应的输出。

触发器有很多种类型,常见的有SR触发器、D触发器、JK 触发器等。

触发器在存储、计数、控制等方面有广泛的应用。

二、时序计数器时序计数器是一种能按照一定顺序计数的电路,它根据时钟信号和控制信号进行计数。

时序计数器的输出通常是一个二进制数,用于驱动其他电路的工作。

时序计数器有很多种类型,包括二进制计数器、BCD计数器、进位计数器等。

时序计数器在计时、频率分频、序列生成等方面有广泛的应用。

三、时序比较器时序比较器是一种能够比较两个信号的大小关系的电路。

它接受两个输入信号,并根据输入信号的大小关系产生对应的输出信号。

时序比较器通常用于判断两个信号的相等性、大小关系等。

常见的时序比较器有两位比较器、四位比较器等。

四、时序多路选择器时序多路选择器是一种能够根据控制信号选择不同输入信号的电路。

它接受多个输入信号和一个控制信号,并根据控制信号的不同选择对应的输入信号作为输出。

时序多路选择器常用于多路数据选择、时序控制等方面。

五、时序移位寄存器时序移位寄存器是一种能够将数据按照一定规律进行移位的电路。

它接受输入信号和时钟信号,并根据时钟信号的变化将输入信号进行移位。

时序移位寄存器常用于数据存储、数据传输等方面。

常见的时序移位寄存器有移位寄存器、移位计数器等。

六、状态机状态机是一种能够根据输入信号和当前状态产生下一个状态的电路。

它由状态寄存器和状态转移逻辑电路组成,能够实现复杂的状态转移和控制。

状态机常用于序列识别、控制逻辑等方面。

以上是几种常用的时序逻辑电路,它们在数字电路设计中起着重要的作用。

时序逻辑电路实验报告

时序逻辑电路实验报告

一、实验目的1. 理解时序逻辑电路的工作原理和基本结构;2. 掌握触发器、计数器等时序逻辑电路的设计方法;3. 熟悉Multisim软件在时序逻辑电路设计与仿真中的应用;4. 培养实际操作能力和分析问题、解决问题的能力。

二、实验原理时序逻辑电路是一种在时钟信号控制下,输出不仅与当前输入有关,还与电路历史状态有关的数字电路。

其基本结构包括触发器、计数器等。

触发器是时序逻辑电路的基本单元,用于存储一位二进制信息。

计数器是时序逻辑电路的一种应用,用于对输入脉冲进行计数。

三、实验内容1. 触发器实验(1)实验目的:熟悉触发器的工作原理和功能,掌握触发器的使用方法。

(2)实验内容:设计一个JK触发器,实现时钟信号控制下的同步置1、同步置0、计数等功能。

(3)实验步骤:① 使用Multisim软件,搭建JK触发器电路;② 搭建计数器电路,实现时钟信号控制下的计数功能;③ 设置输入信号,观察触发器和计数器的输出波形,验证功能。

2. 计数器实验(1)实验目的:掌握计数器的设计方法,熟悉不同计数器电路的功能。

(2)实验内容:设计一个模为24的二进制计数器和模为60的十进制计数器。

(3)实验步骤:① 使用Multisim软件,搭建二进制计数器电路;② 设置输入信号,观察计数器的输出波形,验证功能;③ 使用Multisim软件,搭建十进制计数器电路;④ 设置输入信号,观察计数器的输出波形,验证功能。

四、实验结果与分析1. 触发器实验实验结果显示,设计的JK触发器能够实现同步置1、同步置0、计数等功能。

在计数过程中,触发器的输出波形符合预期,验证了JK触发器的功能。

2. 计数器实验实验结果显示,设计的模为24的二进制计数器和模为60的十进制计数器均能实现预期的计数功能。

在计数过程中,计数器的输出波形符合预期,验证了计数器电路的功能。

五、实验总结本次实验通过设计、搭建和仿真时序逻辑电路,掌握了触发器、计数器等时序逻辑电路的设计方法,熟悉了Multisim软件在时序逻辑电路设计与仿真中的应用。

三个jk触发器组成的时序逻辑电路

三个jk触发器组成的时序逻辑电路

【引言】时序逻辑电路是数字电路中的重要组成部分,它可以根据特定的时钟脉冲信号来控制电路的运行。

而jk触发器是实现时序逻辑电路的重要元件之一。

本文将介绍由三个jk触发器组成的时序逻辑电路的原理、结构和工作原理。

【正文】1. 时序逻辑电路的基本原理时序逻辑电路是指在数字电路中,电路的输出不仅依赖于当前的输入,还依赖于过去的输入及输出状态。

它是通过时钟信号来控制电路的运行,电路的状态在时钟信号的作用下发生变化。

2. jk触发器的基本结构和工作原理jk触发器是一种常用的时序逻辑电路触发器,它由两个输入端(j、k)、一个时钟脉冲输入端(clk)和一个输出端(q)组成。

当时钟输入端接收到一个上升沿的脉冲信号时,根据输入端j、k的逻辑电平来决定输出端q的状态。

当j=k=0时,q保持不变;当j=k=1时,q变为反相;当j=1、k=0时,q变为1;当j=0、k=1时,q变为0。

3. 由三个jk触发器组成的时序逻辑电路结构将三个jk触发器按照特定的方式连接在一起,可以构成一个时序逻辑电路。

在这个电路中,每个触发器的输出端都连接到下一个触发器的时钟输入端,形成一个反馈的环路。

这样一来,电路的状态将依赖于前一时刻的状态,并且在时钟信号的作用下不断变化。

4. 时序逻辑电路的工作原理当时序逻辑电路接收到一个上升沿的时钟信号时,每个jk触发器将根据其输入端的逻辑状态来改变输出端的状态。

由于触发器之间存在反馈环路,因此它们的状态会相互影响,最终形成一个稳定的循环状态。

这样,时序逻辑电路就可以实现特定的逻辑功能,如计数、状态机等。

5. 三个jk触发器组成的时序逻辑电路在数字系统中的应用三个jk触发器组成的时序逻辑电路在数字系统中有着广泛的应用。

它可以用于实现各种复杂的逻辑功能,如多位计数器、状态机、序列检测器等。

在数字电子技术领域,时序逻辑电路扮演着至关重要的角色,它为我们设计和实现各种数字系统提供了强大的工具和支持。

【总结】时序逻辑电路是数字电路中的重要组成部分,它以时钟信号为控制信号,实现了电路状态的变化和逻辑功能的实现。

触发器与时序逻辑电路

触发器与时序逻辑电路

哈尔滨工业大学电工学教研室第22章触发器与时序逻辑电路目录22.1双稳态触发器22.2寄存器22.3计数器22.4单稳态触发器22.5多谐振荡器概述触发器是时序逻辑电路的基本单元组合逻辑电路的输出状态完全由当时的输入变量的组合状态决定,与电路的原状态无关。

时序逻辑电路的输出状态不仅决定于当时的输入状态,而且与电路原来的状态有关,具有记忆功能。

22.1 双稳态触发器稳态触发器、无稳态触发器(多谐振荡器)。

双稳态触发器中又包含RS触发器、JK触发器、D触发器和T触发器等。

1 R S 触发器1.基本RS 触发器&G1&G2由两个与非门交叉连接而成Q QD R DSD S D R 0 11 01 10 01不变不定Q &G1&G2Q QD R DSD D 1Q 0Q ==10101011输出变为:0Q 1Q ==&G1&G2Q Q D R D SD D 00110101输出保持:0Q 1Q ==&G1&G2Q Q D R D S=D,1=R时,触发器原状态若为“0”,D S则新状态为“1”。

若原状态为“1”,则新状态仍为“1”。

即无论原状态如何,基本RS触发器都输出“1”,所谓“置位”状态。

0,1==D D R S 时考虑到电路的对称性,触发器的输出状态应为“0”,即所谓“复位”状态。

D R D S 直接复位端(RESET )直接置位端(SET )低电平有效D D 1011101输出保持原状态:0Q 1Q ==0Q 1Q ==&G1&G2Q QDR DSD D 1Q 0Q ==01110110输出保持原状态:1Q 0Q ==&G1&G2Q QDR DS结论时,触发器原状态若为“0”,则新状态为“0”。

若原状态为“1”,则新状态仍为“1”。

即无论原状态如何,基本RS 触发器输出都保持原状态不变。

1,1==D D S R输入R D =0, S D =0时011输出全是1与逻辑功能相矛盾且当同时变为1时,速度快的门输出先变为0,另一个不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在数字电路中,凡根据输入信号R、S情况的 不同,具有置0、置1和保持功能的电路,都 称为RS触发器。
集成基本RS触发器
2S
VCC 4S 4R 16 15 14 4Q 3SA 3SB 3R 3Q 10 9 VDD 4S 4R 16 15 14 1Q 2R 2S 13 12 11 CC4044 6 7 8 1 2 3 4 5 6 7 8 3Q 2Q 10 9
培训内容
重点掌握各种典型电子电路的功能、 工作原理、性能指标和分析方法。 1、掌握典型组合逻辑电路的分析和 设计方法 2、掌握典型时序逻辑电路的分析与 设计方法 3、集成555定时器应用与电路设计
第3章 时序逻辑电路的分析与设计
第一节 触发器
第二节 时序逻辑电路的分析与设计方法 第三节 计数器 第四节 寄存器 退出
Sቤተ መጻሕፍቲ ባይዱ
G3 & S
R
& G4
CP R (a) 逻辑电路
S (b)
CP R 曾用符号
S (c)
CP R 国标符号
CP=0时,R=S=1,触发器保持原来状态不变。
CP=1时,工作情况与基本RS触发器相同。
CP 0 1
R × 0 0 0 0 1 1 1 1
n 1
S × 0 0 1 1 0 0 1 1
Qn × 0 1 0 1 0 1 0 1
特性表(真值表)
态现 ,态 也: 就触 是发 触器 发接 器收 原输 来入 的信 稳号 定之 状前 态的 。状
R S
0 0 0
Qn
0 0 1 0 1 0 1 0 1
Q n 1
不用 不用 0 0 1 1 0 1
功能 不允许
0 1 0 1 1 0 1 0 1 1 1 1
Q n 1 0
Q n 1 1
&
&
1
1
0
1
S
1
1
R
③R=1、S=1时:根据与非门的逻辑功能不难推知,触发器保 持原有状态不变,即原来的状态被触发器存储起来,这体现了 触发器具有记忆能力。
Q
1

1
Q
R 1
S 0
Q 0 1 不变 不定
&
&
0
1
1
1 0
S
0
0
R
0
④R=0、S=0时:Q=Q=1,不符合触发器的逻辑关系。并且由 于与非门延迟时间不可能完全相等,在两输入端的0同时撤除 后,将不能确定触发器是处于1状态还是0状态。所以触发器不 允许出现这种情况,这就是基本RS触发器的约束条件。
波形图
反映触发器输入信号取值和状态之间对应关系的图形称为 波形图 R
S
Q
Q
置1 保持 置1 置0 置1 不允许 置1
基本RS触发器的特点
(1)触发器的次态不仅与输入信号状态有关,而且与触 发器的现态有关。 (2)电路具有两个稳定状态,在无外来触发信号作用时, 电路将保持原状态不变。 (3)在外加触发信号有效时,电路可以触发翻转,实现 置0或置1。 (4)在稳定状态下两个输出端的状态和必须是互补关系, 即有约束条件。
置0
Q n 1 Q n
保持
置1
的次 新态 的: 稳触 定发 状器 态接 。收 输 入 信 号 之 后 所 处
次态Qn+1的卡诺图
n RS
Q 0 1 00 × × 01 0 0 11 0 1 10 1 1
特性方程
n 1 n n Q ( S ) R Q S R Q 约束条件 R S 1
一、基本RS触发器 信号输出端,Q=0、Q=1的状态称0 状态,Q=1、Q=0的状态称1状态,
Q Q Q Q
电 路 组 成 和 逻 辑 符 号
&
&
S
R
S (a) 逻辑图
R
R (b) 逻辑符号
S
信号输入端,低电平有效。
工作原理
Q
0
1
Q
R
S
Q 0
0
& &
1
S
1
0
R
①R=0、S=1时:由于R=0,不论原来Q为0还是1,都有Q=1; 再由S=1、Q=1可得Q=0。即不论触发器原来处于什么状态都 将变成0状态,这种情况称将触发器置0或复位。R端称为触发 器的置0端或复位端。
(1)时钟电平控制。在CP=1期间接收输入信号, CP=0时状态保持不变,与基本RS触发器相比,对触 发器状态的转变增加了时间控制。 (2) R、 S之间有约束。不能允许出现 R和 S同时为1 的情况,否则会使触发器处于不确定的状态。
触发器的特性方程就是触发器次态Qn+1 与输入及现态Qn之间的逻辑关系式
状态图
描述触发器的状态转换关系及转换条件的图形称为状态图 10/ ×1/ 0 1 1×/
01/
①当触发器处在0状态,即Qn=0时,若输入信号 RS=01或 11,触发器仍为0状态;
若 RS=10,触发器就会翻转成为1状态。
②当触发器处在1状态,即Qn=1时,若输入信号 RS=10或 11,触发器仍为1状态; 若 RS=01,触发器就会翻转成为0状态。
n
Qn+1 Q
n
功能
Q n 1 Q n 保持
0 1 1 1 0 0 不用 不用
特 性 表
Q n 1 Q n 保持 Q n 1 1 置 1 Q n 1 0 置 0
不允许
1 1 1 1 1 1 1
特性 方程
Q S R Q RS 0
CP=1期间有效
主 要 特 点
第一节
触发器
基本RS触发器 一、同步触发器 二、主从触发器 三、边沿触发器 四、不同类型触发器间的转换 退出
触发器是构成时序逻辑电路的基本逻辑部件。 它有两个稳定的状态:0状态和1状态; 在不同的输入情况下,它可以被置成0状 态或1状态; 当输入信号消失后,所置成的状态能够保 持不变。 所以,触发器可以记忆1位二值信号。根据逻 辑功能的不同,触发器可以分为RS触发器、 D触发器、JK触发器、T和T´触发器;按照结 构形式的不同,又可分为基本RS触发器、同 步触发器、主从触发器和边沿触发器。
Q
1
0
Q
R 0
S 1
Q 0 1
&
&
1
0
S
0
1
R
②R=1、S=0时:由于S=0,不论原来Q为0还是1,都有Q=1; 再由R=1、Q=1可得Q=0。即不论触发器原来处于什么状态都 将变成1状态,这种情况称将触发器置1或置位。S端称为触发 器的置1端或置位端。
Q
1 0
0 1
Q
R 0
S 1
Q 0 1 不变
13 12 11 74LS279
1
2
3
4
5
1R
1 SA 1S B 1Q 2 R 2 S 2Q GND (a) 74LS279 的引脚图
4Q
NC 1 S 1 R EN 1 R 1S VSS (b) CC4044 的引脚图
1S
EN=1时工作 EN=0时禁止
二、同步触发器
1、同步RS触发器
Q G1 & Q & G2 Q Q S CP Q Q R 1S C1 1R Q Q
相关文档
最新文档