磁阻效应

磁阻效应
磁阻效应

磁阻效应

一、磁阻效应的定义

磁阻效应(Magnetoresistance Effect,MR)是指材料之电阻随着外加磁场的变化而改变的效应。衡量磁阻(Magnetoresistance,缩写为MR)的物理量定义为外加磁场后的电阻变化率,即:在有无外加磁场下的电阻之差除以无外加磁场时的电阻。

磁阻效应明显的材料称为磁阻材料,最典型的磁阻材料是锑化铟(InSb)。

二、磁阻效应的原理

当半导体受到与电流方向垂直的磁场作用时,载流子会同时受到洛伦兹力与霍尔电场力,由于半导体中载流子的速度有所不同,假设速度为V0的载流子受到的洛伦兹力及霍尔电场力相互抵消,那么,这些载流子的运动方向不会偏转,而速度低于V0或高于V0的载流子的运动方向将发生偏转,导致沿电流方向的速度分量减小,电流变小,电阻增大。这种现象就是磁阻效应。

三、磁阻效应的发现

磁阻效应由威廉?汤姆逊(William Thomson)于1857年发现。由于在一般材料中,磁阻效应(电阻的变化)通常小于5%,这样的效应后来被称为“常磁阻”(ordinary magnetoresistance,OMR)。

四、磁阻效应的分类

1、常磁阻效应(ORDINARY MAGNETORESISTANCE Effect,OMR)

对所有非磁性金属而言,由于在磁场中受到洛伦兹力的影响,部分载流子在行进中发生偏转,使得路径变成沿曲线前进,如此将使载流子行进路径长度增加,使载流子碰撞机率增大,进而增加材料的电阻。

2、巨磁阻效应(GIANT MAGNETORESISTANCE Effect,GMR)

巨磁阻效应存在于铁磁性(如:Fe,Co,Ni)/非铁磁性(如:Cr,Cu,Ag,Au)的多层膜系统,由于非磁性层的磁交换作用会改变磁性层的传导电子行为,使得电子产生程度不同的磁散射而造成较大的电阻,其电阻变化较常磁阻大上许多,故被称为“巨磁阻”。

2007年诺贝尔物理学奖授予来自法国国家科学研究中心的物理学家艾尔伯?费尔和来自德国尤利希研究中心的物理学家皮特?克鲁伯格,以表彰他们发现巨磁阻效应的贡献。

3、超巨磁阻效应(COLOSSAL MAGNETORESISTANCE Effect,CMR)

超巨磁阻效应存在于具有钙钛矿(Perovskite)ABO3的陶瓷氧化物中。其磁阻变化随着外加磁场变化而有数个数量级的变化。其产生的机制与巨磁阻效应(GMR)不同,而且往往大上许多,所以被称为“超巨磁阻”。

4、异向性磁阻效应(ANISOTROPIC MAGNETORESISTANCE Effect,AMR)

有些材料中磁阻的变化,与磁场和电流间夹角有关,称为异向性磁阻效应。

5、穿隧磁阻效应(TUNNEL MAGNETORESISTANCE Effect,TMR)

穿隧磁阻效应是指在铁磁-绝缘体薄膜(约1纳米)-铁磁材料中,其穿隧电阻大小随两边铁磁材料相对方向变化的效应。穿隧磁阻效应首先于1975年由Michel Julliere在铁磁材料(Fe)与绝缘体材料(Ge)发现;室温穿隧磁阻效应则于1995年,由Terunobu Miyazaki与Moodera分别发现。穿隧磁阻效应是磁性随机存取内存(magnetic random access memory,MRAM)与硬盘中的磁性读写头(read sensors)的科学基础。

五、磁阻效应的应用

目前,磁阻效应广泛用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。

磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域得到广泛应用,如数字式罗盘、交通车辆检测、导航系统、伪钞检别、位置测量等。

巨磁阻效应自从被发现以来就被用于开发研制用于硬磁盘的数据读取探头(Read Head)。使得存储单字节数据所需的磁性材料尺寸大为减少,从而使得磁盘的存储能力得到大幅度的提高。第一个商业化生产的数据读取探头由IBM公司于1997年投放市场,到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3播放器的标准技术。

巨磁电阻效应及其应用 实验报告

巨磁电阻效应及其应用 【实验目的】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

磁阻效应实验

磁阻效应实验 [概述] 磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:交通车辆检测,导航系统、伪钞检测、位置测量等。其中最典型的锑化铟(InSb)传感器是一种灵敏度高的磁电阻,有着十分重要的应用价值。 [实验项目] 1、理解磁阻效应、霍尔效应等概念。 2、掌握测量锑化铟传感器的电阻与磁感应强度的关系的一种方法。 3、作出锑化铟传感器的电阻变化与磁感应强度的关系曲线,并对此关系 曲线的非线性区域和线性区域分别进行拟合。 [实验原理] 一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。如图2所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。若将图1中a端和b端短路,则磁阻效应更明显。通常以电阻率的相对改变量来表示磁电阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相 图1 磁阻效应

对变化率ΔR/R(0)正比于ΔR=R(B)-R(0),因此也对变FD-MR-II 型磁阻效应实验仪,图2为该仪器示意图 ρ/ρ(0),这里Δ可以用磁阻传感器电阻的相对改变量ΔR/R(0)来表示磁阻效应的大小。 实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相化率ΔR/R(0)正比于磁感应强度B 的平方,而在强磁场中ΔR/R(0)与磁感应强度B 呈线性关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 [实验仪器] 实验采用 图2 FD-MR-II 磁阻效应实验仪 FD-MR-II 型磁阻-2V 直流数字电压表、效应验仪包括直流双路恒流电源、 0电磁铁、数字式毫特仪(GaAs 作探测器) 、锑化铟(InSb)磁阻传感

裂变反应堆的工作原理

裂变反应堆的工作原理 为了深入讨论与核能有关的技术和发展趋势,我们必须对核电站所基于的原理--核反应堆中子物理、反应堆热工水力学、反应堆控制和反应堆安全等方面的基本知识,有一个初步的了解。 一、反应堆中子物理 (-)中子与原子核的相互作用 在反应堆的心脏____堆芯中,大量的中子在飞行,不断与各种原子核发生碰撞。碰撞的结果,或是中子被散射、改变了自己的速度和飞行方向;或中子被原子核吸收。如果中子是被铀-235这类核燃料吸收,就可能使其裂变。下面我们较详细地进行介绍。 1.散射反应 中子与原子核发生散射反应时,中子改变了飞行方向和飞行速度。能量比较高的中子经过与原子核的多次散射反应,其能量会逐步减少,这种过程称为中子的慢化。散射反应有两种不同的机制。一种称为弹性散射。在弹性散射前后,中子——原子核体系的能量和动量都是守恒的。任何能量的中子都可以与原子核发生弹性散射。另一种称为非弹性散射。中子与原子核发生非弹性散射,实际上包括两个过程。首先是中子被原子核吸收,形成一个复合核。但这个复合核不是处于稳定的基态,而是处于激发态。很快它就会又放出一个中子,并且放出γ射线,回到稳定的基态。非弹性散射的反应式如下: n X X n X A Z A Z A Z 10 **110)()(+→→++ γ+↓→X A Z 并非所有能量的中子都能与原子核发生非弹性散射。中子能量必须超过一个阈值,非弹性散射才能发生。对于铀-238原子核,中子能量要高于45千电子伏,才能与之发生非弹性散射。非弹性散射的结果也是使中子的能量降低。在热中子反应堆中,中子慢化主要依靠弹性散射。在快中子反应堆内,虽然没有慢化剂,但中子通过与铀-238的非弹性散射,能量也会有所降低。 2.俘获反应 亦称为(n ,γ)反应。它是最常见的核反应。中子被原子核吸收后,形成一种新核素(是原核素的同位素),并放出γ射线。它的一般反应式如下: γ+→→+++)()(1*110X X n X A Z A Z A Z 反应堆内重要的俘获反应有: 这就是在反应堆中将铀-238转化为核燃料钚-239的过程。类似的反应还有: 这就是将自然界中蕴藏量丰富的钍元素转化为核燃料铀-233的过程。 3.裂变反应 核裂变是堆内最重要的核反应。铀-233、铀-235、钚-239和钚-241等核素在各种能量的中子作用下均能发生裂变,并且在低能中子作用下发生裂变的概率更大,通常被称为易裂变核素。而钍-232、铀-238等只有在中子能量高于某一值时才能发生裂变,通常称之为可裂变同位素。目前热中子反应堆内主要采用铀-235作核燃料。铀裂变时一般产生1 0 1

压阻式压力传感器

压阻式压力传感器 利用单晶硅材料的压阻效应和集成电路技术制成的传感器。单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制(见加速度计)。 压阻效应当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器的结构这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。 发展状况1954年C.S.史密斯详细研究了硅的压阻效应,从此开始用硅制造压力传感器。早期的硅压力传感器是半导体应变计式的。后来在N型硅片上定域扩散P型杂质形成电阻条,并接成电桥,制成芯片。此芯片仍需粘贴在弹性元件上才能敏感压力的变化。采用这种芯片作为敏感元件的传感器称为扩散型压力传感器。这两种传感器都同样采用粘片结构,因而存在滞后和蠕变大、固有频率低、不适于动态测量以及难于小型化和集成化、精度不高等缺点。70年代以来制成了周边固定支撑的电阻和硅膜片的一体化硅杯式扩散型压力传感器。它不仅克服了粘片结构的固有缺陷,而且能将电阻条、补偿电路和信号调整电路集成在一块硅片上,甚至将微型处理器与传感器集成在一起,制成智能传感器(见单片微型计算机)。这种新型传感器的优点是:①频率响应高(例如有的产品固有频率达1.5兆赫以上),适于动态测量;②体积小(例如有的产品外径可达0.25毫米),适于微型化;③精度高,可

[讲解]巨磁阻效应的原理及应用

[讲解]巨磁阻效应的原理及应用 巨磁阻效应的原理及应用 物质在一定磁场下电阻改变的现象,称为磁阻效应。磁性金属和合金材料一般都有这种现象。一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR)。 要说这种效应的原理,不得不说一下电子轨道及自旋。种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。表征其性质的量子数是主量子数n、角量子数1、自旋量子数s,l,2,和总角动量量子数j。主量子数5二1, 2, 3, 4…)会视电子与原子核间的距离(即半径座标"而定。平均距离会随着n增大,因此不同量子数的量子态会被说成属于不同的电子层。角量子数(1=0, 1…n-L)(乂称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。有些时候,不同角量子数的轨道有不同代号,1二0的轨道叫s轨道,1二1的叫p轨道,1二2的叫d 轨道,而1二3的则叫f轨道。磁量子数(ml= -1, -1+1 - 0…1-1, 1)代表特征值,。这是轨道角动量沿某指定轴的射影。从光谱学中所得的结果指出一个轨道最多可容纳两个电子。然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的笫四个量子数一自旋量子数。这假设以后能被相对论性量子力学所解释。 “我们对过渡金属的电导率有了如下认识:电流由s电子传递,其有效质量近乎于自由电子。然而电阻则取决于电子从s带跃迁到d带的散射过程,因为跃迁

磁阻效应及磁阻传感器实验

一、实验题目:磁阻效应及磁阻传感器的特性研究 二、实验目的:1、了解磁阻效应的基本原理及测量磁阻效应的方法; 2、测量锑化铟传感器的电阻与磁感应强度的关系; 3、画出锑化铟传感器电阻变化与磁感应强度的关系曲线,并进行相应的曲线 和直线拟合; 4、学习用磁阻传感器测量磁场的方法。 三、实验原理: 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。和霍尔效应一样,磁阻效应也是由于载流子在磁场中受到的洛仑兹力而产生的。若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。磁阻效应还与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,该效应称为几何磁阻效应。由于半导体的电阻率随磁场的增加而增加,有人又把该磁阻效应称为物理磁阻效应。目前,磁阻效应广泛应用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。 一定条件下,导电材料的电阻值R随磁感应强度B变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍尔电场。如果霍尔电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,则小于此速度的电子将沿霍尔电场作用的方向偏转,而大于此速度的电子则沿相反方向偏转,因而沿外加电场方向运动的载流子数量将减少,即沿电场方向的电流密度减小,电阻增大,也就是由于磁场的存在,增加了电阻,此现象称为磁阻效应。如果将图1中U H短路,磁阻效应更明显。因为在上述的情况里,磁场与外加电场垂直,所以该磁阻效应称为横向磁阻效应。 当磁感应强度平行于电流时,是纵向情况。若载流子的有效质量和弛豫时间与移动方向无关,纵向磁感应强度不引起载流子漂移运动的偏转,因而没有纵向霍尔效应的磁阻。而对于载流子的有效质量和弛豫时间与移动方向有关的情形,若作用力的方向不在载流子的有效质量和弛豫时间的主轴方向上,此时,载流子的加速度和漂移移动方向与作用力的方向不相同,也可引起载流子漂移运动的偏转现象,其结果总是导致样品的纵向电流减小电阻增加。在磁感应强度与电流方向平行情况下所引起的电阻增加的效应,被称为纵向磁阻效应。 通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻电阻值在磁感受应强度为B的磁场的电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/ R(0)正比于Δρ/ρ(0),这里ΔR=R (B)-R(0)。因此也可以用磁阻传感器电阻的相对改变量ΔR/ R(0)来表示磁阻效应的大小。 测量磁电阻电阻值R与磁感应强度B的关系实验装置及线路如图2所示。尽管不同的磁阻装置有不同的灵敏度,但其电阻的相对变化率ΔR/ R(0)与外磁场的关系都是相似的。实验证明,磁阻效应对外加磁场的极性不灵敏,就是正负磁场的相应相同。一般情况下外加磁场较弱时,电阻相对变化率ΔR/ R(0)正比于磁感应强度B的二次方;随磁场的加强,ΔR/ R (0)与磁感应强度B呈线性函数关系;当外加磁场超过特定值时,ΔR/ R(0)与磁感应强

半导体物理学[第十二章半导体磁和压阻效应]课程复习

第十二章半导体磁和压阻效应 12.1 理论概要与重点分析 (1)把通有电流的半导体放在磁场中,在垂直于电流和磁场的方向上会产生横向电场,这个现象称为霍尔效应。横向电场称为霍尔电场。霍尔效应的实质是带电粒子在磁场中运动受到洛仑兹力作用的结果。 实验测定表明:霍尔电场Ey与电流密度j x 和磁感应强度B z 成正比,即 E y -R H j x B z (12.1) 比例系数R H 称为霍尔系数。对于不同的材料,其弱场霍尔系数R H 如表12-1所示。 利用霍尔效应可以判断半导体材料的导电类型,测量半导体的载流子浓度和迁移率。低温下霍尔效应试验还是研究半导体材料补偿度和杂质电离的有效方法。利用霍尔效应可制成霍尔器件,且由于霍尔器件可在静止状态下感受磁场,多数载流子工作,响应频率宽、寿命长、可靠性高,因而得到广泛的应用。 (2)在磁场的作用下,半导体的电阻要增大,这种效应称为磁阻效应。它可分为两种,一种是半导体的电阻率随磁场增大而增大,这种效应称为物理磁阻效应。另一种磁阻效应与样品的形状有关,不同几何形状的样品,在同样大小的磁场作用下,其电阻不同,这种效应称为几何磁阻效应。 若磁场和外加电场相互垂直时,产生的磁阻效应称为横向磁阻效应。通常用电阻率的相对改变形容磁阻。

(4)光磁电效应:用能被半导体强烈吸收的光照射,在半导体表面薄层产生光生载流子,电子和空穴均向内部做扩散运动,再把样品置于与入射光垂直的磁场中,在垂直于磁场和载流子扩散方向产生横向电场,这种现象称为光磁电效应。产生电场的原因是磁场使向同一方向扩散的电子和空穴,分别向横向两端偏转形成的。光磁电效应,可用来测量短寿命半导体的非子寿命和制作红外探测器。 (5)压阻效应是指应变引起半导体的电阻率变化。其物理原因在于,应变使

磁阻效应实验

实验1: 磁阻效应实验 一、 实验目的 测量锑化铟传感器的电阻和磁感应强度的关系; 作出锑化铟传感器的电阻变化与磁感应强度的关系曲线; 对此关系曲线的非线性区域和线性区域进行曲线和直线拟合。 二、 实验内容 在锑化铟传感器的电流保持不变的条件下,测量锑化铟传感器的的电阻和磁感应强度的关系,作出/(0)R R ?与感应强度B 的关系曲线,并进行曲线拟合。 三、 实验原理 一定条件下,导电材料的电阻值R 随磁感应强度B 变化规律称为磁阻效应。当半导体处于磁场中时,半导体的载流子将受洛仑兹力的作用发生偏转,在两端产生积聚电荷并产生霍耳电场。如果霍耳电场作用和某一速度的载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减小,电阻增大,表现出横向磁阻效应。通常以电阻率的相对改变量来表示磁阻的大小,即用/(0)ρρ?表示。其中(0)ρ为零磁场时的电阻率。设磁电阻电阻值在磁感应强度为B 的磁场中电阻率为(B)ρ,则()(0)B ρρρ?=-。由于磁阻传感器电阻的相对变化率/(0)R R ?正比于/(0)ρρ?,这里R R()(0)B R ?-=因此也可以用磁阻传感器的电阻相对改变量/(0)R R ?来表示磁阻效应的大小。测量磁电阻值R 与磁感应强度的关系实验装置如图所示: 实验证明:当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率/(0)R R ?正比于磁感应强度B 的二次方,而在强磁场中/(0)R R ?与磁感应强度B 呈线性函数关系。 四、 实验组织运行要求 本实验采用集中与开放相结合方式运行。即导论课时以讨论和练习为主的集中模式进

核反应堆及其工作原理

核反应堆及其工作原理 日本地震引发的核泄漏危机使得人心惶惶,网上各种瞎扯的消息铺天盖地,与其在假消息中挣扎,倒不如来普及一下科学知识。核反应堆究竟是什么东西?它的工作原理是怎样的?今天我们就来图解福岛核电站故障。 核反应堆相关词汇表: core 核心 control rod s 控制棒 reactor vessel反应堆 suppression pool 抑压池 primary containment vessel 第一层安全壳(反应堆外壳) secondary containment building 第二层安全壳 turbine涡轮 condenser冷凝器 backup steam generator备用蒸汽发电机 Normal operation 正常状态 In operation since the early 1970s, Japan's Fukushima Daiichi nuclear plant uses six boiling water reactors, which rely on uranium nuclear fission to generate heat. Water surrounding the core boils into steam that drives turbines to generate electricity.

The reactor vessel is surrounded by a thick steel-and-concrete primary containment vessel, equipped with a water reservoir designed to suppress overheating of the vessel. 反应堆由一个钢与混凝土构成的厚实外壳(第一层安全壳)保护着,另外还配有一个蓄水库,防止反应堆过热。The suppression pool is designed to protect the primary vessel if the core gets too hot. Valves release steam into the pool, where it condenses, relieving dangerous pressure. 当核心过热时,抑压池可以起到保护第一层安全壳的作用。这时阀门会打开,水蒸气就能进入抑压池内冷凝,减缓压力过大造成的危险。 Earthquake damage 地震时 The earthquake initiated a rapid shutdown of the reactors, but the disaster cut power to controls and pumps, and the tsunami disabled backup generators. New diesel generators were delivered after batteries used to control the operation of the reactor were exhausted. 周五的地震切断了各种控制系统和水泵的电力供应,而海啸又使备用发电机组无法工作。在控制反应堆运作的电池报废后,不得不启用第二套柴油发电机。 Since the quake hit, fuel rods in the cores of reactor 1, 2 and 3 have overheated because of a lack of cooling water. 自地震以来,由于冷却用水的缺少,1、2、3号反应堆核心中的燃料棒一直处于过热状态。 Control rods were inserted into the cores to stop fission, but cores need several days to cool down. 控制棒已经插入,但是核心需要好几天时间来冷却。

实验报告磁阻传感器和地磁场的测量

实验报告磁阻传感器和 地磁场的测量 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

磁阻传感器和地磁场的测量 一. 实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率 )(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。 HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图6-8-2所示,图中由于适当配置的四个磁电阻电流方向不相同,当存在外界磁场时,引起电 阻值变化有增有减。因而输出电压out U 可以用下式表示为b out V R R U ??? ? ???=

硅的压阻效应

硅的压阻效应 固体受到作用力后电阻率(或电阻)要发生变化,这种现象称为压阻效应。半导体材料的压阻效应通常有两种应用方式:一种是利用半导体材料的体电阻做成粘贴式应变片;另一种是在半导体材料的基片上,用集成电路工艺制成扩散型压敏电阻或离子注入型压敏电阻。在(100)晶面的硅片中,对于P 型掺杂电阻,取向在[110]和[110]晶向时,电阻的压阻系数最大;取向在[100]和[010]晶向时,电阻的压阻系数最小。电阻R 的变化量R ?与应力的关系如式(1)所示: l l n n R R πσπσ?=+ (1) 式中:l π、n π为沿电阻纵向压阻系数和横向压阻系数(1Pa -),l σ、n σ为沿电阻纵向应力和横向应力(P a )。 工作原理 在硅敏感弹性梁上,用微机械加工的离子注入技术在一定晶向上制作4个压敏电阻,将各个电阻连接可以分别构成检测3个垂直方向加速度的惠斯通,如图1所示。当传感器受到外界加速度a 作用时,质量块m 会把加速度转化为惯性力 F m a =,使得悬臂梁上的4个桥臂电阻发生变化。由于半导体的压阻效应具有 各向异性的特性,通过适当的设计,使得1R 、3R 受到拉应变,电阻增大,2R 、 4 R 受到压应变,电阻减小,即111R R R ?+?,222R R R ?-?,333R R R ?+?, 444R R R ?-?,电桥失去平衡,产生电压输出。 11332244011223344()()()()()() S R R R R R R R R V V R R R R R R R R +?+?--?-?= +?+-?+?+-? (2) 若1234R R R R R ====,且1234R R R R R ?=?=?=?=,则式(1)可简化为: 0S R V V R ?= (3) 把式(1)代入式(3)得: 0()l l n n s V V πσπσ=+ (4)

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用 物质在一定磁场下电阻改变的现象,称为磁阻效应。磁性金属和合金材料一般都有这种现象。一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR )。 要说这种效应的原理,不得不说一下电子轨道及自旋。种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。表征其性质的量子数是主量子数n 、角量子数l 、自旋量子数s =1/2,和总角动量量子数j 。主量子数(n=1,2,3,4 …)会视电子与原子核间的距离(即半径座标r )而定。平均距离会随着n 增大,因此不同量子数的量子态会被说成属于不同的电子层。 角量子数(l=0,1 … n-1)(又称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。有些时候,不同角量子数的轨道有不同代号,l=0的轨道叫s 轨道,l=1的叫p 轨道,l=2的叫d 轨道,而l=3的则叫f 轨道。磁量子数(ml= -l ,-l+1 … 0 … l-1,l )代表特征值,。这是轨道角动量沿某指定轴的射影。 从光谱学中所得的结果指出一个轨道最多可容纳两个电子。然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的第四个量子数—自旋量子数。这假设以后能被相对论性量子力学所解释。 “我们对过渡金属的电导率有了如下认识:电流由s 电子传递,其有效质量近乎于自由电子。然而电阻则取决于电子从 s 带跃迁到 d 带的散射过程,因为跃迁几率与终态的态密度成正比,而局域性的 d 带在费米面上的态密度是很大的。 这就是过渡金属电阻率高的原因。这种 s-d 散射率取决于 s 电子与 d 电子自旋的相对取向。 巨磁电阻(GMR )效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。GMR 是一个量子力学效应,它是在层状的磁性薄膜结构中观察到的。这种结构由铁磁材料和非磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。关于这种效应可以用两自选电流模型来解释: 普通磁电阻 (正, 极小, 各向异性) 巨磁电阻 (负, 巨大 , 各向同性) [])(/)0()(H R R H R MR -=[][] ) ()()0() 0()()0(21S S S H R H R R MR R H R R MR -=-=

巨磁阻效应实验报告

巨磁阻效应实验报告 篇一:磁阻效应实验报告 近代物理实验报告 专业2011级应用物理学班级(2) 指导教师彭云雄姓名同组人 实验时间 2013 年 12 月23 日实验地点 K7-108 实验名称磁阻效应实验 一、实验目的 1、 2、 3、 4、测量电磁铁的磁感应强度与励磁电流的关系和电磁铁磁场分布。测量锑化铟传感器的电阻与磁感应强度的关系。作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。对此关系曲线的非线性区域和线性区域分别进行拟合。 二、实验原理 图1磁阻效应原理 1 一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。 如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。若将图1中a端和b端短路,则磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则

Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于 Δρ/ρ(0),这里ΔR=R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量 ΔR/R(0)来表示磁阻效应的大小。 图2 图2所示实验装置,用于测量磁电阻的电阻值R与磁感应强度B之间的关系。实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 2 如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R(0)正比于B,则磁阻传感器的电阻值R将随角频率2ω作周期性变化。即在弱正弦波交流磁场中,磁阻传感器具有交流电倍频性能。若外界交流磁场的磁感应强度B为 B=B0COSωt (1) (1)式中,B0为磁感应强度的振幅,ω为角频率,t为时间。 2设在弱磁场中ΔR/R(0)=KB(2) (2)式中,K为常量。由(1)式和(2)式可得 R(B)=R(0)+ΔR=R(0)+R(0)×[ΔR/R(0)] 22=R(0)+R(0)KB0COSωt 2 1212R(0)KB0+R(0)KB0COS2ωt (3) 22 1122(3)式中,R(0)+R(0)KB0为不随时间变化的电阻值,而R(0)KB0cos2ωt为以角频22=R(0)+ 率2ω作余弦变化的电阻值。因此,磁阻传感器的电阻值在弱正弦波交流磁场中,将产生倍频交流电阻阻值变化。

MR-1 磁阻效应实验仪 - 南京信息工程大学

实验64 磁阻效应 磁阻器件由于其灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:数字式罗盘、交通车辆检测、导航系统、伪钞检别、位置测量等探测器。磁阻器件品种较多,可分为正常磁电阻,各向异性磁电阻,特大磁电阻,巨磁电阻和隧道磁电阻等。其中正常磁电阻的应用十分普遍。锑化铟(InSb)传感器是一种价格低廉、灵敏度高的正常磁电阻,有着十分重要的应用价值。它可用于制造在磁场微小变化时测量多种物理量的传感器。本实验使用两种材料的传感器:砷化镓(GaAs)测量磁感应强度和研究锑化铟(InSb)在磁感应强度变化时的电阻,融合霍尔效应和磁阻效应两种物理现象。 【实验目的】 1.了解磁阻现象与霍尔效应的关系与区别; 2.测量锑化铟传感器的电阻与磁感应强度的关系; 3.作出锑化铟传感器的电阻变化与磁感应强度的关系曲线; 【实验仪器】 磁阻效应实验仪 【实验原理】 在一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。 如图1所示,当材料处于磁场中时,导体或半导体内的载流子将受洛仑兹力的作用发生偏转,在两端产生积聚电荷并产生霍尔电场。如霍尔电场作 用和某一速度的载流子的洛仑兹力作用刚好抵消, 那么小于或大于该速度的载流子将发生偏转, 因而沿外加电场方向运动的载流子数目将减少, 电阻增大,表现出横向磁阻效应。如果将图1 中 a、b端短接,霍尔电场将不存在,所有电子将向 a端偏转,磁阻效应更明显。 通常以电阻率的相对改变量来表示磁阻的大 小,即用△ρ/ρ(0)表示,其中ρ(0)为零磁场时的电 阻率,设磁电阻阻值在磁感应强度为B的磁场中 电阻率为ρ(B),则△ρ=ρ(B)-ρ(0), 由于磁阻传感器电阻的相对变化率△R/R(0)正比于△ρ/ρ(0), 这里△R =R(B) -R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。 实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性函数关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R (0)正比于B2,那么磁阻传感器的电阻R将随角频率2ω作周期性变化。即在弱正弦波交流磁场中磁阻 图1 磁阻效应

实验报告磁阻传感器和地磁场的测量

磁阻传感器和地磁场的测量 一.实验目的 掌握磁阻传感器的特性。 掌握地磁场的测量方法。 二.实验原理 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。 HMC1021Z 型磁阻传感器由长而薄的坡莫合金(铁镍合金)制成一维磁阻微电路集成芯片(二维和三维磁阻传感器可以测量二维或三维磁场)。它利用通常的半导体工艺,将铁镍合金薄膜附着在硅片上,如图6-8-1所示。薄膜的电阻率)(θρ依赖于磁化强度M 和电流I 方向间的夹角θ,具有以下关系式 θρρρθρ2cos )()(⊥⊥-+=∥ 其中∥ρ、⊥ρ分别是电流I 平行于M 和垂直于M 时的电阻率。当沿着铁镍合金带的长度方向通以一定的直流电流,而垂直于电流方向施加一个外界磁场时,合金带自身的阻值会生较大的变化,利用合金带阻值这一变化,可以测量磁场大小和方向。同时制作时还在硅片上设计了两条铝制电流带,一条是置位与复位带,该传感器遇到强磁场感应时,将产生磁畴饱和现象,也可以用来置位或复位极性;另一条是偏置磁场带,用于产生一个偏置磁场,补偿环境磁场中的弱磁场部分(当外加磁场较弱时,磁阻相对变化值与磁感应强度成平方关系),使磁阻传感器输出显示线性关系。

HMC1021Z 磁阻传感器是一种单边封装的磁场传感器,它能测量与管脚平行方向的磁场。传感器由四条铁镍合金磁电阻组成一个非平衡电桥,非平衡电桥输出部分接集成运算放大器,将信号放大输出。传感器内部结构如图6-8-2而输出电压out U 可以用下式表示为b out V R R U ??? ? ???= 磁阻传感器的构造示意图 磁阻传感器内的惠斯通电桥 对于一定的工作电压,如V V b 00.6=,HMC1021Z 磁阻传感器输出电压out U 与外界磁场的磁感应强度成正比关系,KB U U out +=0 上式中,K 为传感器的灵敏度,B 为待测磁感应强度。0U 为外加磁场为零时传感器的输出量。 由于亥姆霍兹线圈的特点是能在其轴线中心点附近产生较宽范围的均匀磁场区,所以常用作弱磁场的标准磁场。亥姆霍兹线圈公共轴线中心点位置的磁感应强度为:I R NI B 42 /301096.445 8 -?== μ 上式中N 为线圈匝数(500匝);亥姆霍兹线圈的平均半径cm R 10=;真空磁导率270/104A N -?=πμ。

磁阻效应法测量磁场

实验64 磁阻效应及磁阻效应法测量磁场 磁阻器件由于其灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域应用十分广泛,如:数字式罗盘、交通车辆检测、导航系统、伪钞检别、位置测量等探测器。磁阻器件品种较多,可分为正常磁电阻,各向异性磁电阻,特大磁电阻,巨磁电阻和隧道磁电阻等。其中正常磁电阻的应用十分普遍。锑化铟(InSb)传感器是一种价格低廉、灵敏度高的正常磁电阻,有着十分重要的应用价值。它可用于制造在磁场微小变化时测量多种物理量的传感器。本实验使用两种材料的传感器:砷化镓(GaAs)测量磁感应强度和研究锑化铟(InSb)在磁感应强度变化时的电阻,融合霍尔效应和磁阻效应两种物理现象。 【实验目的】 1.了解磁阻现象与霍尔效应的关系与区别; 2.测量锑化铟传感器的电阻与磁感应强度的关系; 3.作出锑化铟传感器的电阻变化与磁感应强度的关系曲线; 【实验仪器】 磁阻效应实验仪 【实验原理】 在一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。 如图1所示,当材料处于磁场中时,导体或半导体内的载流子将受洛仑兹力的作用发生偏转,在两端产生积聚电荷并产生霍尔电场。如霍尔电场作 用和某一速度的载流子的洛仑兹力作用刚好抵消, 那么小于或大于该速度的载流子将发生偏转, 因而沿外加电场方向运动的载流子数目将减少, 电阻增大,表现出横向磁阻效应。如果将图1 中 a、b端短接,霍尔电场将不存在,所有电子将向 a端偏转,磁阻效应更明显。 通常以电阻率的相对改变量来表示磁阻的大 小,即用△ρ/ρ(0)表示,其中ρ(0)为零磁场时的电 阻率,设磁电阻阻值在磁感应强度为B的磁场中 电阻率为ρ(B),则△ρ=ρ(B)-ρ(0), 由于磁阻传感器电阻的相对变化率△R/R(0)正比于△ρ/ρ(0), 这里△R =R(B) -R(0),因此也可以用磁阻传感器电阻的相对改变量△R/R(0)来表示磁阻效应的大小。 实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性函数关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R (0)正比于B2,那么磁阻传感器的电阻R将随角频率2ω作周期性变化。即在弱正弦波交流磁场中磁阻传感器具有交流电倍频性能。 图1 磁阻效应

应变式、压阻式、压电式传感器特性比较

应变式、压阻式、压电式传感器特性比较 1.应变式传感器 应变式传感器是把力的变化转换成电阻值的变化来进行测量的,应变片是由金属导体或半导体制成的电阻体,其阻值随力所产生的应变而变化。应变效应是导体受机械变形时,其电阻值发生变化的现象。 2.压阻式传感器 压阻式传感器的灵敏度比金属丝式应变片的灵敏度高,其精度好,而且响应频率好,工作可靠。缺点是受温度影响较大,应进行温度补偿压阻效应是物质受外力作用发生变形时,其电阻率发生变化的现象。 3.压电式传感器 压电式传感器的原理是基于某些晶体材料的压电效应,目前广泛使用的压电材料有石英和钛酸钡等,当这些晶体受压力作用发生机械变形时,在其相对的两个侧面上产生异性电荷,这种现象称为“压电效应”。 压电式压力传感器不能用作静态测量,一般用于测量脉动压力,不能测量静压力; 压电传感器产生的信号很弱而输出阻抗很高,必须根据压电传感器的输出要求,将微弱的信号经过电压放大或电荷放大(一般是电荷放大),同时把高输出阻抗变换成低输出阻抗,此信号才能被示波器或其他二次仪表接受。 压电式传感器与压阻式传感器的区别及其优缺点 前边的那个受电场的干扰,后边那个受温度的干扰,看你用在那个场合。 前者的原理是压电效应,后者原理是受力后的应变。 前者的缺点是电荷泄露,优点是结构简单,灵敏度和信噪比高。 后者的缺点是信噪比不高,而且结构比前者复杂,优点是便宜,耐用,频率响应好。 压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。 用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。 压电式传感器:基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量,如压力、加速度等(见压电式压力传感器、加速度计)。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。配套仪表和低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。它广泛应用于工程力学、生物医学、电声学等技术领域。

巨磁电阻效应及应用

实验十四巨磁电阻效应及应用 【实验目的】 1.了解GMR效应的原理 2.测量GMR模拟传感器的磁电转换特性曲线 3.测量GMR的磁阻特性曲线 4.测量GMR开关(数字)传感器的磁电转换特性曲线 5.用GMR传感器测量电流 6.用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理 7.通过实验了解磁记录与读出的原理 【实验仪器】 巨磁电阻效应及应用实验仪 【实验原理】 2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G 乃至上千G。” 凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。 GMR作为自旋电子学的开端具有深远的科学意义。传统的电子学是以电子的电荷移动为基础的,电子自旋往往被忽略了。巨磁电阻效应表明,电子自旋对于电流的影响非常强烈,电子的电荷与自旋两者都可能载运信息。自旋电子学的研究和发展,引发了电子技术与信息技术的一场新的革命。目前电脑,音乐播放器等各类数码电子产品中所装备的硬盘磁头,基本上都应用了巨磁电阻效应。利用巨磁电阻效应制成的多种传感器,已广泛应用于各种测量和控制领域。除利用铁磁膜-金属膜-铁磁膜的GMR效应外,由两层铁磁膜夹一极薄的绝缘膜或半导体膜构成的隧穿磁阻(TMR)效应,已显示出比GMR效应更高的灵敏度。除在多层膜结构中发现GMR效应,并已实现产业化外,在单晶,多晶等多种形态的钙钛矿结构的稀土锰酸盐中,以及一些磁性半导体中,都发现了巨磁电阻效应。 本实验介绍多层膜GMR效应的原理,并通过实验让学生了解几种GMR传感器的结构、特性及应用领域。 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规则散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自 221

相关文档
最新文档