巨磁阻抗效应

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选课件
15
非晶态合金的种类
Fe基非晶 Fe-Ni基非晶 Co基非晶 Fe基纳米晶
精选课件
16
GMI的应用
目前文献中,针对GMI磁传感器的研究主要 有2类:基于非晶丝(薄带)的GMI磁传感器和基 于多层膜的GMI磁传感器。
对GMI传感器的开发主要集中在与磁场相关 的传感器和碰记录头方面,例如无接触型磁编码 器、便携式地磁场传感器、汽车交通检测系统、 被动无线传感器、汽车传感器、磁性导航系统、 肿癌传感器、GMI生物传感器、GMI方向、旋转 角传感器等等。
精选课件
17
电路中无需放大电路,因 而具有高稳定和抗干扰特 性,制成几种汽车用的传 感器,如汽车里程表计数 传感器(a)。电喷发动机测 速传感器(b);当材料处于 某种磁结构时,可以发现 外磁场与磁阻抗效应呈现 良好的线性关系。利用此 原理,设计了量程从025mm的线性传感器(c)
主要可用于汽车油量的控制;利用巨磁阻抗探头与齿轮凹 凸面距离变化所产生的脉冲信号进行转速测量和控制,可 用为汽车防抱死系统(ABS)的速度传感器(d)。
精选课件
18
GMI生物传感器
巨磁阻抗生物传感器的测量原理是:在一定 的高频交流电和低频外加磁场下,巨磁阻抗材料 具有一定的阻抗变化比率,当结合有一定数目生 物分子的(微米或纳米级大小)磁性小球靠近时, 外加磁场的大小受到影响,从而导致原阻抗变化 比率的改变,然后通过阻抗变化比率的改变值来 对生物分子进行定量分析。
精选课件
6
GMI效应的物理本质还不是非常清楚,但是 较为普遍接受的观点认为GMI效应的出现是在足 够高频率下趋肤效应的结果。
趋肤效应:交变电流通过导体时,由于感应 作用引起导体截面上电流分布不均匀,愈近导体 表面电流密度越大的现象。趋肤效应使导体的有 效电阻增加。频率越高,趋肤效应越显著。当频 率很高的电流通过导线时,可以认为电流只在导 线表面上很薄的一层中流过,这等效于导线的截 面减小,电阻增大。
金属在熔化后,内部原子处于活跃状态。一 但金属开始冷却,原子就会随着温度的下降,而 慢慢地按照一定的晶态规律有序地排列起来,形 成晶体。如果冷却过程很快,原子还来不及重新 排列就被凝固住了,由此就产生了非晶态合金。 可见,产生非晶态合金的技术关键之一,就是如 何快速冷却的问题。
精选课件
12
形成非晶态合金的过程是:液态金属一过冷液态 金属一非晶态合金
精选课件
9
(a)晶态 (c)位置无序
(b)成分无序
(d)拓扑无序
精选课件
10
和普通晶态金属与合金相比,非晶态金属与 合金具有较高的强度、良好的磁学性能和抗腐蚀 性能等,通常又称之为金属玻璃或玻璃态合金。 可部分替代硅钢、玻莫合金和铁氧体等软磁材料, 且综合性能高于这些材料。
精选课件
11
非晶态的产生
巨磁阻抗效应
Giant magneto-impedance
精选课件
1
巨磁阻抗效应,简称GMI(Giant magnetoimpedance),是指某些材料在通以一定频率的 交变电流时,其交流阻抗随外加轴向磁场迅速变 化的现象,常见的这种材料为Co基非晶丝等。它 来源于磁感应(Magneto-inductive),最早可追 溯到20世纪30年代,但由于当时材料和应用领域 的限制,GMI的应用前景并不明朗,在当时和以 后的几十年里未引起人们注意。
精选课件
7
当交流电流源自文库过导体时由于趋肤效应,趋肤 深度
式中
为丝的环向磁导率,
为电流角频
率, 为电导率。
外磁场可以影响材料内部的等效场,使材料
的有效磁导率发生变化,从而导致材料的趋肤深
度发生变化,而趋肤深度变化意味着驱动电流流
过样品的有效面积发生了变化,从而引起样品的
有效阻抗发生变化,最后导致巨磁阻抗效应的产
精选课件
3
ΔZ/Z0一般定义为(ZH-Z0)/Z0,其中Z0、 ZH分别表示无外磁场和外加磁场下软磁材料的 交流阻抗,其比值的大小表示材料对磁场变化 的敏感程度。
精选课件
4
GMI效应的特点
灵敏度高、响应快、温度稳定、无磁滞等
精选课件
5
在低场范围(<1Oe左右),阻抗随磁场增加 而增大,其灵敏度约为20%/Oe-100%/Oe, 而在高场>1Oe左右)范围,阻抗随磁场增加而急 剧减小,最后趋于饱和,饱和场约10Oe,磁阻 抗最大变化率为100%以上。
生。
精选课件
8
非晶态合金(金属玻璃)
一种没有原子三维周期性排列的金属或合金 固体。它在超过几个原子间距范围以外,不具有 长程有序的晶体点阵排列。原子在三维空间呈拓 扑无序状排列,不存在长程周期性,但在几个原 子间距的范围内,原子的排列仍然有着一定的规 律,因此可以认为非晶态合金的原子结构为“长 程无序,短程有序”。通常定义非晶态合金的短 程有序区小于1.5nm,即不超过4-5个原子间 距。
精选课件
2
GMI的发现
1992年,日本名古屋大学的K.Mohri(毛 利佳年雄)等在CoFeSiB软磁非晶丝中发现了 GMI效应,即非晶丝在交变电流激发下,其阻 抗值随沿丝轴方向施加的外磁场的变化而发生 显著变化,阻抗变化率ΔZ/Z0在几奥斯特(Oe) 磁场作用下可达50%,比金属多层膜Fe/Cu或 Co/Ag在低温、高磁场强度下观察到的巨磁电 阻效应(GMR)高一个数量级,自此这一现象引 起了广泛关注。
精选课件
13
非晶态合金是由熔融的液态金属经快速冷却 而形成,晶态合金是由熔融的液态金属以较慢的 速度冷却,形成核并长大而得到。因此,非晶态 材料与晶态材料相比有两个最基本的特点:
1、原子排列不具有周期性 2、宏观上处于非热平衡的亚稳态。
非晶态合金在宏观上处于非热平衡的亚稳态。 亚稳是指在同样外界条件下,非晶态合金比相应 晶态的能量高。温度高于或等于熔点的液态金属, 其内部处于平衡态。从自由能观点来看,当温度 低于熔点时,在没有结晶的情况下过冷,此时体 系的自由能将高于相应的晶态金属,故呈亚稳态。
精选课件
14
非晶态固体的物理性质同晶体有很大差别, 这同它们的原子结构、电子态以及各种微观过程 有密切联系。
非晶合金由于其独特的无序结构,并兼有一 般金属和玻璃的特性,使得它在物理、化学及机 械性能上表现出一系列优异的特性——很高的耐 腐蚀性、抗磨性、较好的强度和韧性、理想的磁 学性能,如Fe基非晶合金是非晶软磁合金中饱和 磁感最高的;Co基非晶合金的饱和磁致伸缩系数 接近于0,因而具有极高的初始磁导率和最大磁 导率,很低的矫顽力和高频损耗。
相关文档
最新文档