河北科技大学大学物理答案第9章
习题第9章
第9章 质心运动定理 动量定理
习题
9-1 设质量为m 的质点M 在Oxy 平面内运动,其运动方程为cos x a kt =,sin y b kt =,式中a 、b 及k 都是常数,求作用于质点M 上的力。
答案:力F
的大小:F mk = 力F 的方向:tan y
x F y F x
β== 9-2 设质点M 以初速度0υ从O 点与水平Ox 成α角射出,不计空气阻力,求质
点M 在重力作用下的运动规律。
答案:质点的运动方程:020cos 1sin 2
x t y t gt υαυα=⎧⎪⎨=-⎪⎩ 9-3如图所示,均质杆OA ,长2l ,重为P ,绕O 轴在铅垂面内转动。
杆与水平线成ϕ角时,其角速度和角加速度分别为ω和α,求该瞬时轴O 的约束反力。
答案:
9-4 匀质杆AB 长为l ,质量为m ,匀质圆盘半径5
l r =,质量为2m ,在水平面作纯滚动,当30ϕ=时,杆上B 端沿铅垂方向向下滑的速度为B υ。
试求此瞬时
系统的总动量。
答案:122
x y B B p p m υυ=+=-p i j i j 9-5 物A 质量为5kg ,物B 质量为10kg ,A 、B 与水平面间的摩擦因数为0.25.现A 向右运动而撞击B 。
开始时,B 处于静止状态,撞击后,A 、B 一同向右运动,历时4s 停止。
求撞击前A 的速度,并求撞击时A 、B 相互作用的冲量。
答案:030/m s υ=,,100x e I N s =⋅
2(cos sin )Ox Pl F g ωφαφ=-+2(sin cos )Oy Pl F P g ωφαφ=+
-。
《大学物理》第二版-课后习题标准答案-第九章
《大学物理》第二版-课后习题答案-第九章————————————————————————————————作者:————————————————————————————————日期:习题精解9-1.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图9-1所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。
设弹簧的劲度系数为k 1和k 2. 解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 12()F k k x =-+ 根据牛顿第二定律有2122()d xF k k x ma m dt=-+==化简得21220k k d x x dt m++= 令212k k mω+=则2220d x x dt ω+=所以物体做简谐振动,其周期1222mT k k ππω==+9-2 如图9.2所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q 相距l ,且l 不变。
若有一外界扰动使这对电荷偏过一微小角度,扰动消息后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。
试证明这种摆动是近似的简谐振动,并求其振动周期。
设电荷的质量皆为m ,重力忽略不计。
解 取逆时针的力矩方向为正方向,当电偶极子在如图9.2所示位置时,电偶极子所受力矩为sin sin sin 22l lM qE qE qEl θθθ=--=- 电偶极子对中心O 点的转动惯量为2221222l l J m m ml ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭由转动定律知2221sin 2d M qEl J ml dtθθβ=-==•化简得222sin 0d qEdt mlθθ+= 当角度很小时有sin 0θ≈,若令22qEmlω=,则上式变为222sin 0d dtθωθ+= 所以电偶极子的微小摆动是简谐振动。
而且其周期为222mlT qEππω== 9-3 汽车的质量一般支承在固定与轴承的若干根弹簧上,成为一倒置的弹簧振子。
大学物理第九章习题答案
第九章 真空中的静电场9–1 如图9-1所示,电量为+q 的三个点电荷,分别放在边长为a 的等边三角形ABC 的三个顶点上,为使每个点电荷受力为零,可在三角形中心处放另一点电荷Q ,则Q 的电量为 。
解:由对称性可知,只要某个顶点上的电荷受力为零即可。
C 处电荷所受合力为零,需使中心处的点电荷Q 对它的引力F 与A ,B 两个顶点处电荷的对它的斥力F 1,F 2三力平衡,如图9-2所示,即)21(F F F +-=因此12cos30F F ︒=即2202cos304πq aε=︒解得q Q 33=9-2 真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+λ 和-λ,点P 1和P 2与两带电线共面,其位置如图9-3所示,取向右为坐标x 正向,则1P E = ,2P E = 。
解:(1)P 1点场强为无限长均匀带电直线λ,-λ在该点产生的场强的矢量和,即λλ-+=E E E 1P其大小为i i i E dd d P 000ππ2π21ελελελ=+=方向沿x 轴正方向。
(2)同理可得i i i E dd d P 000π3π2)3(π22ελελελ-=-=方向沿x 轴负方向。
图9–2图9-3C B图9–19-3 一个点电荷+q 位于一边长为L 的立方体的中心,如图9-4所示,则通过立方体一面的电通量为 。
如果该电荷移到立方体的一个顶角上,那么通过立方体每一面的电通量是 。
解:(1)点电荷+q 位于立方体的中心,则通过立方体的每一面的电通量相等,所以通过每一面的通量为总通量的1/6,根据高斯定理1d in Sq ε⋅=∑⎰⎰E S ,其中S 为立方体的各面所形成的闭合高斯面,所以,通过任一面的电通量为0d 6Sqε⋅=⎰⎰E S 。
(2)当电荷+q 移至立方体的一个顶角上,与+q 相连的三个侧面ABCD 、ABFE 、BCHF 上各点的E 均平行于各自的平面,故通过这三个平面的电通量为零,为了求另三个面上的电通量,可以以+q 为中心,补作另外7个大小相同的立方体,形成边长为2L 且与原边平行的大立方体,如图9–5所示,这个大立方体的每一个面的电通电都相等,且均等于6εq ,对原立方体而言,每个面的面积为大立方体一个面的面积的1/4,则每个面的电通量也为大立方体一个面的电通量的1/4,即此时通过立方体每一面的电通量为0111d 4624Sqε⋅⋅=⎰⎰E S 。
大学物理第九章静止电荷与静电场答案
第九章 静止电荷与静电场9.1 电荷 库仑定律 9.2 电场强度一.选择题和填空题1-2 CB3、-3σ / (2ε0) -σ / (2ε0) 3σ / (2ε0)4、()30220824Rqdd R R qd εεπ≈-ππ 从O 点指向缺口中心点.二.计算题1、解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为=q / L ,在x 处取一电荷元d q = d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε2分总场强为 ⎰+π=Lx d L x L q E 020)(d 4-ε()d L d q+π=04ε 3分 方向沿x 轴,即杆的延长线方向.2、解:先计算细绳上的电荷在O 点产生的场强.选细绳顶端作坐标原点O ,x 轴向下为正.在x 处取一电荷元 d q = d x = Q d x /(3R ) 它在环心处的场强为 ()20144d d x R qE -π=ε ()20412d x R R xQ -π=ε 2分 整个细绳上的电荷在环心处的场强()203020116412RQx R dx R Q E R εεπ=-π=⎰ 2分 圆环上的电荷分布对环心对称,它在环心处的场强E 2=0 2分由此,合场强 i RQi E E20116επ== 2分 R3x x方向竖直向下.三.理论推导与证明题证:选环心作原点,x 轴沿圆环轴线方向,y 、z 轴如图所示.在环上任取一电荷元d q =(Q d θ) /(2π),设P 点位于x 处,从电荷元d q 到P 点的矢径为r ,它在P 点产生的场强为rr Q r r q E ˆ8d ˆ4d d 20220εθεπ=π= r ˆ为矢径r 方向上的单位矢量.d E 沿x 轴的分量为d E x =d E cos φ (φ为矢径r与x 轴正向夹角) 由对称性容易证明 E y =0 E z =0因而有 E =E x 20202024cos d 8cos r Q r Q εφθεθππ=π=⎰()2/32204xR Qx+π=ε 当x >>R 时,可得 E ≈Q / (4πε0x 2)这相当于一个位于原点O 的带电量为Q 的点电荷在P 点产生的场强.9.3 电通量 真空中的高斯定理一、选择题和填空题 1-4、 D D C B 5、 q / (6ε0)6、 0 r rR302εσ 7、204r q επ 0二. 计算题1、解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有 0422/4εAR r E π=π⋅ 得到 ()20424/r AR E ε=, (r >R ) 方向沿径向,A >0时向外,A <0时向里.2解:由高斯定理 ⎪⎩⎪⎨⎧<<><=21021,2,,0R R R R R R R R E πελ3解:挖去电荷体密度为ρ 的小球,以形成球腔时的求电场问题,可在不挖时求出电场1E,而另在挖去处放上电荷体密度为-ρ的同样大小的球体,求出电场2E,并令任意点的场强为此二者的叠加,即可得210E E E+= 在图(a)中,以O 点为球心,d 为半径作球面为高斯面S ,则可求出O '与P 处场强的大小.ρε302113414d d d E S E S π⋅=π⋅=⋅⎰ 有 E 1O’=E 1P =d E 013ερ=方向分别如图所示.在图(b)中,以O '点为小球体的球心,可知在O '点E 2=0. 又以O ' 为心,2d 为半径作球面为高斯面S ' 可求得P 点场强E 2P()032223/)(4)(24d ερ-π=π⋅='⋅⎰'r d E S E S203212d r E Pερ-=(1) 求O '点的场强'O E. 由图(a)、(b)可得E O ’ = E 1O’ =3ερd, 方向如图(c)所示. (2)求P 点的场强P E.由图(a)、(b)可得⎪⎪⎭⎫ ⎝⎛-=+=2302143d r d E E E P P P ερ 方向如(d)图所示.图(c)2O’=0图(b)9.4 真空中的环路定理 电势一.选择题和填空题1-5、CDBAC D 7、0 λ / (2ε0) 8、q / (6πε0R )9、⎪⎭⎫⎝⎛π∆-π20414R S R Q ε 二.计算题1、解:设坐标原点位于杆中心O 点,x 轴沿杆的方向,如图所示.细杆的电荷线密度λ=q / (2l ),在x 处取电荷元d q = λd x =q d x / (2l ),它在P 点产生的电势为()()x a l l xq x a l q U P -+π=-+π=008d 4d d εε 整个杆上电荷在P 点产生的电势 ()⎰--+π=ll P x a l x lq U d 80ε()l lx a l l q --+π-=ln 80ε⎪⎭⎫⎝⎛+π=a l l q 21ln 80ε 2、解:(1)由高斯定理求得电场的分布:21220212011,,44,0R r R R r rQ Q r Q R r E <<⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>+<=πεπε 各区域电势的分布为:(r<R 1)202101202121012021201114144)11(444221R Q R Q R Q Q R R Q dr r Q Q dr r Q U R R R πεπεπεπεπεπε+=++-=++=⎰⎰∞21202012,44R r R R Q r Q l d E U r <<+=⋅=⎰∞πεπε)(,420213R r r Q Q U >+=πε(2))11(42101R R Q U -=∆πε 作图略9.5 静电场中的导体一.选择题和填空题1.C 2.D 3.D 4.C 5、 不变 减小二.计算题1解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点 产生的电势的代数和 q Q q q O U U U U +-++= r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+2、解 由静电平衡的条件 知0=+=+感E E E q o00q 4E E r dq πε-=-=+感0r为水平向右的单位矢量。
大学物理_第九章_课后答案
∫L B
�
外
� ⋅ dl = µ 0 ∑ I = 0 ,与
∫L
� � � B外 ⋅ dl = ∫ 0 ⋅ dl = 0 是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实 �
际上以上假设并不真实存在,所以使得穿过 L 的电流为 I ,因此实际螺线管若是无限长时, 只是 B外 的轴向分量为零,而垂直于轴的圆周方向分量 B⊥ = 的距离.
b ),(3)导体圆筒内( b < r < c )以及(4)电缆外( r > c )各点处磁感应强度的大小 � � 解: ∫ B ⋅ dl = µ 0 ∑ I
L
(1) r < a
Ir 2 B 2πr = µ 0 2 R B= µ 0 Ir 2πR 2
(2) a < r < b
B 2πr = µ 0 I B= µ0 I 2πr
(3) b < r < c
B 2πr = − µ 0 I
r 2 − b2 + µ0 I c2 − b2 µ 0 I (c 2 − r 2 ) B= 2πr (c 2 − b 2 )
(4) r > c
B 2πr = 0 B=0
题 9-16 图
题 9-17 图
9-17 在半径为 R 的长直圆柱形导体内部,与轴线平行地挖成一半径为 r 的长直圆柱形空 腔,两轴间距离为 a ,且 a > r ,横截面如题9-17图所示.现在电流I沿导体管流动,电流均 匀分布在管的横截面上,而电流方向与管的轴线平行.求: (1)圆柱轴线上的磁感应强度的大小; (2)空心部分轴线上的磁感应强度的大小. 解:空间各点磁场可看作半径为 R ,电流 I 1 均匀分布在横截面上的圆柱导体和半径为 r 电 流 − I 2 均匀分布在横截面上的圆柱导体磁场之和. (1)圆柱轴线上的 O 点 B 的大小: 电流 I 1 产生的 B1 = 0 ,电流 − I 2 产生的磁场
大学物理第9章习题解答
第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。
考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±= (2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r rm G r q f f G e ππε氧 其净力是引力。
9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。
解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。
点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。
C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。
大学物理答案第九章
振幅A与初相位 三、振幅 与初相位φ 的确定
ψ = Acos(ωt +φ)
dψ = − Asin ω +φ) ω ( t dt
简谐振动的振幅和初相位由振动的初始状态决定。 简谐振动的振幅和初相位由振动的初始状态决定。 初始状态决定
已知t=0时,振动量Ψ的振动状态为 ψ0, dψ
ψ0 = Acosφ
− 1
dΨ dt 0 2 A= Ψ0 + ω
2
dΨ dt φ = tan−1 0 ω 0 Ψ
说明: (1) 一般来说φ 的取值在 - π和π(或0和2π)之间; (2) 在应用上面的式子求φ 时,一般来说有两个值, 还要由初始条件来判断应该取哪个值; (3)常用方法:先求A,然后由 Ψ0=Acosφ 、 (dΨ /dt)0=-Aωsinφ 两者的共同部分求φ 。
1 2 Ekmax = kA 2
Ekmin = 0
势 能
Ep = 1 kx2 2
1 2 2 = kA cos (ω +φ0) t 2
1 2 Epmax = kA 2
Epmin = 0
机械能
1 2 E = Ek + Ep = kA 2
简谐振动系统机械能守恒
E
E (1/2)kA2
Ep
o
Ek
Ep = Ek
t
T
x t
由起始能量求振幅
1 2 E = kA 2
2E0 2E A= = k k
LC振荡电路中,电容器上的电 量q和电路中的电流I分别为:
q =Q cos(ωt +φ) 0 I = −ωQ sin ωt +φ) ( 0
河北科技大学大学物理答案第9章
第9章思考题9-1理想气体物态方程就是根据哪些实验定律导出得,其适用条件就是什么?9-2内能与热量得概念有何不同?下面两种说法就是否正确?(1)物体得温度愈高,则热量愈多;(2)物体得温度愈高,则内能愈大?9-3 在p—V图上用一条曲线表示得过程就是否一定就是准静态过程?理想气体经过自由膨胀由状态(p1,V1,T1)改变到状态(p2,V2,T1),这一过程能否用一条等温线表示.9-4有可能对物体传热而不使物体得温度升高吗?有可能不作任何热交换,而系统得温度发生变化吗?9-5在一个房间里,有一台电冰箱在运转着,如果打开冰箱得门,它能不能冷却这个房间?空调为什么会使房间变凉?9-6根据热力学第二定律判别下列两种说法就是否正确?(1)功可以全部转化为热,但热不能全部转化为功;(2)热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体。
9—7 一条等温线与一条绝热线就是否能有两个交点?为什么?9—8 为什么热力学第二定律可以有许多不同得表述?9—9 瓶子里装一些水,然后密闭起来。
忽然表面得一些水温度升高而蒸发成汽,余下得水温变低,这件事可能吗?它违反热力学第一定律吗?它违反热力学第二定律吗?9—10有一个可逆得卡诺机,以它做热机使用时,若工作得两热源温差愈大,则对做功越有利;当作制冷机使用时,如果工作得两热源温差愈大时,对于制冷机就是否也愈有利?(从效率上谈谈)9-11可逆过程就是否一定就是准静态过程?准静态过程就是否一定就是可逆过程?有人说“凡就是有热接触得物体,它们之间进行热交换得过程都就是不可逆过程。
”这种说法对吗?9-12如果功变热得不可逆性消失了,则理想气体自由膨胀得不可逆性也随之消失,就是这样吗?9—13热力学第二定律得统计意义就是什么?如何从微观角度理解自然界自发过程得单方向性?9—14西风吹过南北纵贯得山脉:空气由山脉西边得谷底越过,流动到山顶到达东边,在向下流动。
空气在上升时膨胀,下降时压缩。
大学物理第九章课后习题答案
题库
第九章 静电场的基本规律
一、 填空 1. 电荷分为 和 ,一般把用 摩擦过的玻璃棒上所带的电 荷称为 , 把用毛皮摩擦过的 上所带的电荷称为 。 2. 物体所带电荷的多寡程度的物理量称为 。 3. 物体所带的电荷量不是以连续值出现,而是以不连续的量值出现的,这称 为 。 4. 试探电荷满足的两个条件是 , 。 5. 穿过电场中某曲面的电场线条数称为电场对该曲面的 。 6. 静电场的电场线起始于, ,终止于 , 是 (填 “闭合” 或 “不闭合” ) 的曲线, 在没有电荷的空间里, 电场线既不会 , 也不会 。 7. 高斯定理的表达式是 。 8. 电场中电势相等的点所构成的曲面称为 。 点电荷的等势面是以点电 荷为球心的一系列 。 9. 沿等势面移动电荷,电场力做功为 ,等势面和电场线处处 。 10. 沿电场线方向,电势 (填“升高”或“降低” ) 。 二、 简答 1. 2. 3. 4. 5. 简述真空中点电荷满足的库仑定律的内容及矢量表达式。 简述研究电场性质时,试探电荷需满足的两个条件。 简述电场线怎样描述电场的性质,以及静电场的电场线的特点。 简述高斯定理。 简述等势面具有的性质。
s
q内
0
。
8. 等势面,同心球面。 9. 零,正交。 10. 降低。 二、 简答 1. 答:内容:真空中两个点电荷之间的相互作用力沿其连线方向,同号相斥, 异号相吸;作用力的大小与两电荷的电荷量的乘积成正比,与两电荷之间的距离 的平方成反比。 矢量表达式: F =
q1 q 2 r0 。 4πε 0 r 2
� q j 2π 2 ε 0 R 2
联立①②, 可得 Q = 3 q 3
① ②
∴在三角形的中心应放置一电量为 − 的合力为零. 5.
2020年河北科技大学大学物理答案第9章
作者:旧在几作品编号:2254487796631145587263GF24000022时间:2020.12.13第9章思考题9-1 理想气体物态方程是根据哪些实验定律导出的,其适用条件是什么?9-2内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度愈高,则热量愈多;(2) 物体的温度愈高,则内能愈大?9-3 在p-V图上用一条曲线表示的过程是否一定是准静态过程?理想气体经过自由膨胀由状态(p1,V1,T1)改变到状态(p2,V2,T1),这一过程能否用一条等温线表示。
9-4有可能对物体传热而不使物体的温度升高吗?有可能不作任何热交换,而系统的温度发生变化吗?9-5在一个房间里,有一台电冰箱在运转着,如果打开冰箱的门,它能不能冷却这个房间?空调为什么会使房间变凉?9-6根据热力学第二定律判别下列两种说法是否正确?(1) 功可以全部转化为热,但热不能全部转化为功;(2) 热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体。
9-7 一条等温线和一条绝热线是否能有两个交点?为什么?9-8 为什么热力学第二定律可以有许多不同的表述?9-9 瓶子里装一些水,然后密闭起来。
忽然表面的一些水温度升高而蒸发成汽,余下的水温变低,这件事可能吗?它违反热力学第一定律吗?它违反热力学第二定律吗?9-10有一个可逆的卡诺机,以它做热机使用时,若工作的两热源温差愈大,则对做功越有利;当作制冷机使用时,如果工作的两热源温差愈大时,对于制冷机是否也愈有利?(从效率上谈谈)9-11可逆过程是否一定是准静态过程?准静态过程是否一定是可逆过程?有人说“凡是有热接触的物体,它们之间进行热交换的过程都是不可逆过程。
”这种说法对吗?9-12如果功变热的不可逆性消失了,则理想气体自由膨胀的不可逆性也随之消失,是这样吗?9-13热力学第二定律的统计意义是什么?如何从微观角度理解自然界自发过程的单方向性?9-14西风吹过南北纵贯的山脉:空气由山脉西边的谷底越过,流动到山顶到达东边,在向下流动。
大学物理第九章振动学基础习题答案
第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。
解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。
设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。
(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。
解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。
(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。
现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。
(1)证明此质点的运动是谐振动;(2)计算其振动周期。
解:以球心为原点建立坐标轴Ox 。
质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。
(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。
当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。
求以上各种情况的振动方程。
解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。
大学物理习题答案第九章
[习题解答]9-3 两个相同的小球质量都是m ,并带有等量同号电荷q ,各用长为l 的丝线悬挂于同一点。
由于电荷的斥力作用,使小球处于图9-9所示的位置。
如果θ角很小,试证明两个小球的间距x 可近似地表示为.解 小球在三个力的共同作用下达到平衡,这三个力分别是重力m g 、绳子的张力T 和库仑力f 。
于是可以列出下面的方程式,(1),(2)(3)因为θ角很小,所以,.利用这个近似关系可以得到,(4). (5)将式(5)代入式(4),得图9-9,由上式可以解得.得证。
9-4在上题中,如果l = 120 cm,m = 0.010 kg,x = 5.0 cm,问每个小球所带的电量q为多大?解在上题的结果中,将q解出,再将已知数据代入,可得.9-5氢原子由一个质子和一个电子组成。
根据经典模型,在正常状态下,电子绕核作圆周运动,轨道半径是r0 = 5.29⨯10-11m。
质子的质量M = 1.67⨯10-27kg,电子的质量m = 9.11⨯10-31kg,它们的电量为±e =1.60⨯10-19C。
(1)求电子所受的库仑力;(2)电子所受库仑力是质子对它的万有引力的多少倍?(3)求电子绕核运动的速率。
解(1)电子与质子之间的库仑力为.(2)电子与质子之间的万有引力为.所以.(3)质子对电子的高斯引力提供了电子作圆周运动的向心力,所以,从上式解出电子绕核运动的速率,为.9-6 边长为a的立方体,每一个顶角上放一个电荷q。
(1)证明任一顶角上的电荷所受合力的大小为.(2) F的方向如何?解立方体每个顶角上放一个电荷q,由于对称性,每个电荷的受力情况均相同。
对于任一顶角上的电荷,例如B角上的q B,它所受到的力、和大小也是相等的,即.首先让我们来计算的大小。
图9-10由图9-10可见,、和对的作用力不产生x方向的分量;对的作用力f1的大小为,f1的方向与x轴的夹角为45︒。
对的作用力f2的大小为,f2的方向与x轴的夹角为0︒。
大学物理第9章习题答案
⼤学物理第9章习题答案第4篇电磁学第9章静电场9.1 基本要求1掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌握电势与电场强度的积分关系。
能计算⼀些简单问题中的电场强度和电势。
了解电场强度与电势的微分关系。
2理解静电场的规律:⾼斯定理和环路定理。
理解⽤⾼斯定理计算电场强度的条件和⽅法。
3了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质中D和E之间的关系。
了解介质中的⾼斯定理。
4了解电容和电能密度的概念。
9.2基本概念1电场强度E :试验电荷0q 所受到的电场⼒F 与0q 之⽐,即0q =F E 2电位移D :电位移⽮量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正⽐,即ε=D E 3电场强度通量e Φ:e Sd Φ=E S电位移通量:D Sd Φ=D S4电势能pa E :0pa aE q d ∞=?E l (设0p E ∞=)5电势a V :0pa a aE V d q ∞==? E l (设0V ∞=)电势差ab U :ab a b U V V =- 6场强与电势的关系(1)积分关系 a aV d ∞=7电容C:描述导体或导体组(电容器)容纳电荷能⼒的物理量。
孤⽴导体的电容:Q C V =;电容器的电容:Q C U= 8静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3基本规律1库仑定律:12204rq q rπε=F e 2叠加原理(1)电场强度叠加原理:在点电荷系产⽣的电场中任⼀点的场强等于每个点电荷单独存在时在该点产⽣的场强的⽮量和。
(2)电势叠加原理:在点电荷系产⽣的电场中,某点的电势等于每个点电荷单独存在时在该点产⽣的电势的代数和。
3⾼斯定理:真空中静电场内,通过任意闭合曲⾯的电场强度通量等于该曲⾯所包围的电量的代数和的1/ε 0倍。
大学物理第9章静电场习题参考答案
第9章 静电场9-1 两小球处于如题9-1图所示的平衡位置时,每小球受到张力T ,重力mg 以及库仑力F 的作用,则有mg T =θcos 和F T =θsin ,∴θmgtg F =,由于θ很小,故lxmgmg mg x q F 2sin tg 41220=≈==θθπε ∴3/1022⎪⎪⎭⎫⎝⎛mg l q πε9-2 设q 1,q 2在C 点的场强分别为1E 和2E,则有210141AC r q E πε=14299m V 108.103.0108.1109--⋅⨯=⨯⨯⨯=方向沿AC 方向 220241BC r q E πε=14299m V 107.204.0108.1109--⋅⨯=⨯⨯⨯= 方向沿CB 方向∴ C 点的合场强E的大小为:24242221)107.2()108.1(⨯+⨯=+=E E E 14m V 1024.3-⋅⨯=设E 的方向与CB 的夹角为α,则有︒===--7.337.28.11211tg E E tg α 9-3 坐标如题9-3图所示,带电圆弧上取一电荷元l q d d λ=,它在圆心O 处的场强为201d 41d RlE λπε=,方向如题9-3图所示,由于对称性,上、下两带电圆弧中对应电荷元在圆心O 处产生的d E 1和d E 2在x 方向分量相互抵消。
习题9-1图习题9-3图习题9-2图0=∴x E ,圆心O 处场强E 的y 分量为⎪⎪⎭⎫⎝⎛-===⎰⎰2312sin d 412sin d 412026260R R R R lE y πελθθλπεθλπεππ方向沿y 轴正向。
9-4 (1)如题9-4图(a),取与棒端相距d 1的P 点为坐标原点,x 轴向右为正。
设带电细棒电荷元x q d d λ=至P 点的距离x ,它在P 点的场强大小为 20d 41d x xE P λπε=方向沿x 轴正向各电荷元在P 点产生的场强方向相同,于是 ⎰⎰-+-==11)(20d 41d d L d P P xxE E πε 132289110m V 1041.2102811081103109114----⋅⨯=⎪⎭⎫⎝⎛⨯-⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+-=L d d πελ方向沿x 轴方向。
大学物理第9章题库答案
大学物理第9章题库答案.第九章电磁场填空题(简单)1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势,当线圈平行导线向上运动时,线圈中的感应电动势。
(填>0,<0,=0)(设顺时针方向的感应电动势为正)(<0, =0)2、磁场的高斯定律表明磁场是,因为磁场发生变化而引起电磁感应,是不同于回路变化时产生的。
相同之处是。
(无源场,动生电动势,磁通量发生改变)3、只要有运动电荷,其周围就有产生;而法拉弟电磁感应定律表明,只要发生变化,就有产生。
(磁场,磁通量,感应电动势)4、一磁铁自上向下运动,穿过一闭合导体回路,(如图7),当磁铁运动到a 处和b处时,回路中感应电流的方向分别是和。
(逆时针,顺时针)5、电磁感应就是由生的现象,其主要定律为,其中它的方向是由定律来决定,即。
(磁,电,电磁感应定律,楞次,见p320)6、当穿过某回路中的磁通量发生变化时,电路中(填一定或不一定)产生感应电流;电路中(填一定或不一定)产生感应电动势。
(不一定, 一定)7、在电磁感应中,感应电动势的大小与闭合回路的磁通量成正比。
(对时间的变化率)8、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈平行导线向下运动时,线圈中的感应电动势,当线圈以垂直于导线的速度靠近导线时,线圈中的感应电动势。
(填>0,<0,=0)(设顺时针方向的感应电动势为正)(=0,>0)9、将条形磁铁插入与冲击电流计串连的金属环中,有-5q=2.010c ?的电荷通过电流计,若连接电流计的电路总电阻25R =Ω,则穿过环的磁通量的变化=?ΦWb 。
(4510q R --?=-?)10、电磁波是变化的和变化的在空间以一定的速度传播而形成的。
(电场,磁场) 11、如图所示,金属杆AOC 以恒定速度υ在均匀磁场B 中垂直于磁场方向运动,已知AO OC L ==,则杆中的动生电动势的大小为。
大学物理答案第9~12
第九章 恒定电流9-1 长度l =1.0m 的圆柱形电容器,内外两极板的半径分别R 1=5.0×10-2m ,R 2=1.0×10-1m ,,其间充有电阻率ρ=1.0×109Ω.m 的非理想电介质,设二极板间所加电压1000V ,求(1)该介质的漏电电阻值;(2)介质内各点的漏电流电流密度及场强。
解:(1)柱面间任一薄层的漏电电阻为:rldrdR πρ=2 整个圆柱形电容器介质的漏电电阻值为:12ln 2221R R l rl dr dR R R R πρ=πρ==⎰⎰ 代入数据得Ω⨯=⨯⨯⨯⨯⨯=--82191010.1100.5100.1ln 114.32100.1R (2)A R V I 68101.91010.11000-⨯=⨯==rl S I j π⨯==-2101.96r ⨯⨯⨯⨯=-114.32101.96=26/1044.1m A r -⨯ (3)=ρ=j E r 691044.1100.1-⨯⨯⨯m V r/1044.13⨯= 9-2 在半径分别为R 1和R 2(R 1< R 2)的两个同心金属球壳中间,充满电阻率为ρ的均匀的导电物质,若保持两球壳间的电势差恒定为V ,求(1)球壳间导电物质的电阻;(2)两球壳间的电流;(3)两球壳间离球心距离为r 处的场强。
解:(1)球面间任一薄层的电阻为:24rdrdR πρ= 整个球壳间导电物质的电阻为:)114421221R R rdr dR R R R -πρ=πρ==⎰⎰( (2))(41221R R R VR R VI -ρπ==(3)=⋅=⎰21R R r d E V =πε⎰dr rqR R 21204211204R R R R q -πε )( ˆ)(ˆ4212122120R r R rr R R R VR r r q E <<-=πε=∴9-3 一根铜线和一根铁线,长度均为l ,直径为d ,今把两者连接起来,并在此复合导线两端加电势差V 。
大学物理答案 9.第九章
第九章 热平衡的统计规律思考题9-14 已知 基本高斯积分公式2x e dx ∞-=⎰或2x e dx +∞--∞=⎰若记2ax nn I ex dx ∞-=⎰,验证 1202I a -=、1112I a -=以及递推公式 2(1)2n n n I I a--=。
9-15若气体密度的数量级为13/kg m ,估算气体分子间平均距离是液体分子间平均距离的多少倍。
9-16 在统计问题中,将相互独立的事件称为相乘事件,这是因为互相独立的事件同时发生的概率为各个时间发生概率的乘积。
例如,同时掷两组硬币,则两组硬币均出现“数字”一面的概率为111224⨯=。
两相加事件指的是互相排斥的事件,即或出现此事件、或出现彼事件。
例如,掷体筛子,出现1点或3点的概率应为 111663⨯=。
根据以上定义,试分析麦氏速度分布律(9.7)式、麦氏速率分布律(9.8)式和麦氏速度分量分布规律(例9.2(1)式)之间的关系。
9-17 由力学可知,声波在气体中传播的速度(声速)v =p 是气体压强,ρ是传播介质的密度。
假设声波传播可视为绝热过程,试证明声速v =(其中γ为比热容比)。
9-18 利用玻尔兹曼原理(9.28)式说明熵的可加性。
习题9-1 一氦氖气体激光管,工作时管内的温度是27摄氏度,压强是2.4mmHg ,氦气与氖气的压强比是7:1,问管内氖气和氦气的分子数密度各是多少? 解:112221223112132227,712.40.3()882.1()16.7610()9.6610()P P P P P P P mmHg P mmHg P P n KT m KTP n KT n m --+===∴====∴==⨯=∴=⨯1,n =9-2 水蒸汽分解成同温度的氢气和氧气,内能增加百分之几?(不计分子的振动自由度) 解:因为22222H O H O =+,所以,2摩尔的水分分成2摩尔的氢和1摩尔的氧气2206522222H H i U vRT U RT U RT =∴=⨯⨯∴=⨯⨯2222()51512125%212O H H O H O U U U U RT U +--=⨯⨯∴==9-3 一能量为1012ev (1.602×10-19J )的宇宙射线粒子射入一氖管中,氖管中含有氖气的0.1mol 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章思考题9-1 理想气体物态方程是根据哪些实验定律导出的,其适用条件是什么?9-2内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度愈高,则热量愈多;(2) 物体的温度愈高,则内能愈大?9-3 在p-V图上用一条曲线表示的过程是否一定是准静态过程?理想气体经过自由膨胀由状态(p1,V1,T1)改变到状态(p2,V2,T1),这一过程能否用一条等温线表示。
9-4有可能对物体传热而不使物体的温度升高吗?有可能不作任何热交换,而系统的温度发生变化吗?9-5在一个房间里,有一台电冰箱在运转着,如果打开冰箱的门,它能不能冷却这个房间?空调为什么会使房间变凉?9-6根据热力学第二定律判别下列两种说法是否正确?(1) 功可以全部转化为热,但热不能全部转化为功;(2) 热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体。
9-7 一条等温线和一条绝热线是否能有两个交点?为什么?9-8 为什么热力学第二定律可以有许多不同的表述?9-9 瓶子里装一些水,然后密闭起来。
忽然表面的一些水温度升高而蒸发成汽,余下的水温变低,这件事可能吗?它违反热力学第一定律吗?它违反热力学第二定律吗?9-10有一个可逆的卡诺机,以它做热机使用时,若工作的两热源温差愈大,则对做功越有利;当作制冷机使用时,如果工作的两热源温差愈大时,对于制冷机是否也愈有利?(从效率上谈谈)9-11可逆过程是否一定是准静态过程?准静态过程是否一定是可逆过程?有人说“凡是有热接触的物体,它们之间进行热交换的过程都是不可逆过程。
”这种说法对吗?9-12如果功变热的不可逆性消失了,则理想气体自由膨胀的不可逆性也随之消失,是这样吗?9-13热力学第二定律的统计意义是什么?如何从微观角度理解自然界自发过程的单方向性?9-14西风吹过南北纵贯的山脉:空气由山脉西边的谷底越过,流动到山顶到达东边,在向下流动。
空气在上升时膨胀,下降时压缩。
若认为这样的上升、下降过程是准静态的,试问这样的过程是可逆的吗?9-15 一杯热水置于空气中,他总要冷却到与周围环境相同的温度。
这一过程中,水的熵减少了,这与熵增加原理矛盾吗?9-16一定量气体经历绝热自由膨胀。
既然是绝热的,即0d =Q ,那么熵变也应该为零。
对吗?为什么?习 题9-1 一定量的某种理想气体按C pV =2(C 为恒量)的规律膨胀,分析膨胀后气体的温度的变化情况。
解:已知(1) 2C pV =理想气体状态方程(2) RT MpV μ=,将(2)式代如(1)式,得C V RT M=⋅μ,整理,R MCT V μ=⋅对于一定质量的理想气体,M为定值,令'RMCCμ=,则'CTV=⋅,所以膨胀后气体温度成比例降低。
9-2 0.020kg的氦气温度由17℃升到27℃,若在升温的过程中:(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量,试分别求出气体内能的改变,吸收的热量,外界对气体所作的功。
(设氦气可看作理想气体)解:理想气体内能是温度的单值函数,一过程中气体温度的改变相同,所以内能的改变也相同,为:热量和功因过程而异,分别求之如下:(1)等容过程:V=常量A=0 由热力学第一定律,(2)等压过程:由热力学第一定律,负号表示气体对外作功,(3)绝热过程Q=0 由热力学第一定律9-3分别通过下列过程把标准状态下的0.014kg 氮气压缩为原体积的一半:(1)等温过程;(2)绝热过程;(3)等压过程。
试分别求出在这些过程中内能的改变,传递的热量和外界对气体所作的功。
设氮气可看作理想气体,且R C V 25m ,。
解(1)等温过程:理想气体内能是温度的单值函数,过程中温度不变,故由热力学第一定律 负号表示系统向外界放热(2)绝热过程由 或 得由热力学第一定律 另外,也可以由及先求得A(3)等压过程,有或 而所以 = ==由热力学第一定律,也可以由求之另外,由计算结果可见,等压压缩过程,外界作功,系统放热,内能减少,数量关系为,系统放的热等于其内能的减少和外界作的功。
9-4在标准状态下0.016kg 的氧气,分别经过下列过程从外界吸收了80cal 的热量。
(1)若为等温过程,求终态体积。
(2)若为等体过程,求终态压强。
(3)若为等压过程,求气体内能的变化。
设氧气可看作理想气体,且R C V 25m , 。
解:(1)等温过程 则故(2)等体过程(3)等压过程9-5 1mol单原子理想气体的温度从300K增加到350K,(1)容积保持不变;(2)压强保持不变。
问在这两个过程中各吸收了多少热量?增加了多少内能?对外做了多少功?解:(1)等体过程由热力学第一定律得E Q ∆= 吸热J T R M T C ME Q V 25.623)300350(31.82323=-⨯⨯=∆=∆=∆=μμ对外作功 0=W (2)等压过程J T R i M T C MQ p 75.1038)300350(31.82522=-⨯⨯=∆+=∆==μμ吸热 T R iM T C ME V ∆=∆=∆2μμ内能增加J T R M T C ME V 25.623)300350(31.82323=-⨯⨯=∆=∆=∆μμ对外作功 J E Q W 41525.62375.1038=-=∆-=9-6 1mol 的氢气,在压强为51.010Pa ⨯,温度为20℃时,其体积为0V 。
如先保持体积不变,加热使其温度升高到80℃,然后使其作等温膨胀,体积变为原体积的2倍。
试计算该过程中吸收的热量,气体对外做的功和气体内能的增量。
解: 558.31601246.522V E C T R T J ∆=∆==∆=⨯⨯= 21ln8.31(27380)ln 22033.3==⨯+=V A RT J V 3279.8Q A E J =+∆=9-7标准状态下21.610kg -⨯的氧气,分别经过下列过程并从外界吸收334.4J 的热,(1)经等体过程,求末状态的压强; (2)经等温过程,求末状态的体积; (3)经等压过程,求气体内能的改变。
解:已知 kg M O 2106.12-⨯= J Q 4.334= R C V 25=Pa P 5010013.1⨯= K T 15.2730=(1) 等体过程 0=W T C E Q V ∆=∆=ν吸19.3231.8251032106.14.33432=⨯⨯⨯⨯==∆=∆--V V C Q C E T νν吸(K) )K (34.30519.3215.2730=+=∆+=T T T 由过程方程)(10132.110013.115.27334.305550000Pa T T P P T P T P ⨯=⨯⨯==⇒= (2)等温过程:,0T T =,0=∆E ,lnV VRT Q ν= L V 2.114.225.00=⨯=, ,2946.015.27331.85.03.334ln0=⨯⨯==RT Q V V ν )(04.152.11343.102946.0L V e V =⨯==(3)等压过程:T C Q p p ∆=ν,R C p 27=,)(86.2384.33475C E ,V J Q C C T C Q T p p V Pp=⨯==∆=∆=∆νν 9-8 1mol 双原子分子理想气体作如习题9-8图的可逆循环过程,其中1—2为直线,2—3为绝热线,3—1为等温线。
已知122T T =,138V V =,试求:(1)各过程的功,内能增量和传递的热量(用1T 和已知常数表示) (2)此循环的效率η。
(注:循环效率QW=η,W 为每一循环过程气体对外所做净功,1Q 为每一循环过程气体吸收的热量)解:13128,2 ,25,1V V T T R C V ====ν (1)各过程中的功、内能增量和热量21→:1125RT T C E V =∆=∆ν,11222V p V p C TpV =⇒= 4.12=+=ii γ,又因为32→是绝热过程,12121111222,2p p V V V T V T ==⇒=--γγ111121212115.05.0))((21)(RT V p V V p p V V p W =--+-=113RT W E Q =+∆=32→绝热过程125.225,0RT T R T C E W Q V =∆=∆=∆-==ν)m 3-3习题9-9图p p 3习题9-8图O13→等温过程:13113332ln 3ln,0RT V V RT Q W E -====∆ν(2)此过程的循环效率:%7.302ln 132ln 3111112=-=-=-==RT RT Q Q Q W η 9-9 1mol 单原子分子理想气体的循环过程如习题9-9图所示,其中c 点的温度为c T =600K .试求: (1)ab ﹑bc ﹑ca 各个过程系统吸收的热量;(2)经一循环系统所做的净功; (3)循环的效率。
(ln2=) 解:mol 1=ν R C V 23= K T T a c 600== (1) 等压过程b a →:K 30060021=⨯==⇒=a a b b b a b a T V V T T T V V )(5.6232)600300(31.8251J T C Q p p -=-⨯⨯⨯=∆=ν c b →等体过程: 02=W)(5.373930031.8231J T C E Q V V =⨯⨯⨯=∆=∆=νa c →等温过程:)(3.34552ln ln,033J RT V V RT Q E a caa ====∆(2)经一循环系统所做的净功;)3.9625.62323.34555.3739-J Q Q W (放吸=-+==(3) 循环的效率:%4.133.34555.37393.962=+==Q W η 9-10 如习题9-10图所示, C 是固定的绝热壁,D 是可动活塞,C ﹑D 将容器分成A ﹑B 两部分。
开始时A ﹑B 两室中各装入同种类的理想气体,它们的温度T ﹑体积V﹑压强p 均相同,并与大气压强相平衡。
先对A ﹑B 两部分气体缓慢加热,当对A 和B 给予相等的热量Q 以后,A 室中气体的温度升高度数与B 室中气体的温度升高度数之比为7:5。
(1)求该气体的定容摩尔热容C V 和定压摩尔热容C p 。
(2)B 室中气体吸收的热量有百分之几用于对外作功?解:由题意可知:p p p B A ==,V V V B A ==,T T T B A ==,57,=∆∆=B A B A T T Q Q (1) A 室为等体过程,B 室为等压过程,BP B A V A T C Q T C Q ∆=∆=νν 57=⇒V P C C )31.8( 5.3 ,5.2 ,5711--⋅⋅===∴+==K mol J R R C R C R C C C C P V V P V P(2)BV B A A V A T C E E T C Q ∆=∆∆=∆=νν75=∆∆⇒A B E E 72175=⇒-=-==∆∆B B B B B B B A B Q W Q W Q W Q E E 9-11如习题9-11图所示,体积为L 30的圆柱形容器内有一能上下自由活动的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔﹑温度为127℃的单原子分子理想气体。