高考数学考试大纲完整版

合集下载

2024 高考 数学考试大纲

2024 高考 数学考试大纲

2024 高考数学考试大纲2024年高考数学考试大纲主要分为数与式、函数、几何与变换、统计与概率四个部分。

一、数与式1. 实数:实数的概念、实数的四则运算、有理数与无理数的关系、开方运算。

2. 立方根:立方根的概念、立方根的计算、立方根的性质。

3. 代数式与多项式:代数式的概念、等价代数式的判定、多项式的概念与多项式的次数、整除与同余等概念。

二、函数1. 函数的定义:函数的定义域、函数的值域、函数的单调性、函数的奇偶性等概念。

2. 一次函数:一次函数的定义、一次函数的图象与性质。

3. 二次函数:二次函数的定义、二次函数的图象与性质。

4. 分式函数:分式函数的定义、分式函数的图象与性质。

5. 三角函数:正弦函数、余弦函数、正切函数等三角函数的定义与性质。

6. 指数函数与对数函数:指数函数与对数函数的定义、指数函数与对数函数的图象与性质。

三、几何与变换1. 平面几何:平行线与相交线、三角形、四边形、圆等平面图形的性质与判定。

2. 立体几何:空间几何体的表面积和体积,空间点线面的位置关系等概念。

3. 解析几何:直线的方程,圆的方程,圆锥曲线的方程等解析几何的基本概念。

4. 坐标变换:平移变换、旋转变换等坐标变换的概念与性质。

四、统计与概率1. 概率初步知识:概率的基本概念,随机事件的概率等概念。

2. 统计初步知识:总体与样本的概念,数据的整理与表示方法等概念。

3. 离散型随机变量及其分布:离散型随机变量的概念,几种常见的离散型随机变量的分布等概念。

4. 二项分布及其应用:二项分布的概念,二项分布的性质等概念。

高考数学全国卷大纲版(理科)(20200626113754)

高考数学全国卷大纲版(理科)(20200626113754)
7
时反弹, 反弹时反射角等于入射角。当点 P 第一次碰到 E 时, P 与
正方形的边碰撞的次数为
(A) 16
(B) 14
(C) 12
(D) 10
普通高等学校招生全国统一考试
理科数学(必修 +选修 II )
第 II 卷
二、 填空题(共 4 小题, 每小题 5 分, 共 20 分, 在试卷上作答
无效)
PF1 2 PF2 , 则 cos F1PF2
(A) 1
4
9、已知 x
ln , y
(B) 3
5 log5 2, z
(C) 3
4
1
e 2, 则
(A) x y z
(B) z x y
(D) 4
5
(C) z y x
(D) y z x
10、已知函数 y x3 3x c 的图象与 x 轴恰有两个公共点, 则 c
21、本题满分 12 分
已知抛物线 C : y
x 1 2 与圆 M : x 1 2
2
1 y
r 2 r 0 有一个公共
2
点 A , 且在 A 两曲线的切线为同一条直线 l 。
(I) 求 r ;
(II ) 设 m 、n 是异于 l 且与 C 及 M 都相切的两条直线, m 、心在原点, 焦距为 4 , 一条准线为 x 4 , 则该椭圆
的方程为
2
2
2
2
2
2
(A) x y 1
(B) x y 1
(C) x y 1
(D)
16 12
12 8
84
2
2
x y1
12 4
4、已知正四棱柱 ABCD A1B1C1D1 中, AB 2,CC1 2 2 , E 为 CC1的 中点, 则直线 AC1 与平面 BED 的距离为

数学二考试大纲2024

数学二考试大纲2024

数学二考试大纲2024一、考试概况数学二考试是2024年中学毕业生高考数学科目中的一部分,属于高等数学知识的延伸和扩展。

本次考试旨在考察学生对数学理论和实践应用的综合能力,重点检验学生在数学建模、数据分析和解决实际问题方面的能力。

二、考试要点1. 数学推理与证明本部分重点考察学生对数学定理和命题的理解与应用能力。

要求学生能够灵活运用数学推理和证明方法,以解决数学问题。

2. 函数与方程本部分重点考察学生对函数与方程的理解与应用能力。

要求学生能够熟练掌握常见函数的性质、图像和变换规律,并能运用函数的知识解决实际问题。

3. 三角学本部分重点考察学生对三角函数、三角恒等式和三角方程的掌握与应用能力。

要求学生能够理解三角函数的定义、性质和图像,能够熟练运用三角函数解决三角关系和实际问题。

4. 数列与数学归纳法本部分重点考察学生对数列与数学归纳法的理解与应用能力。

要求学生能够熟练掌握常见数列的性质与变化规律,并能运用数学归纳法解决数列相关问题。

5. 导数与微分本部分重点考察学生对导数与微分的理解与应用能力。

要求学生能够熟练掌握导数的计算方法和性质,并能灵活运用导数解决函数的极值、曲线的切线等相关问题。

6. 不定积分本部分重点考察学生对不定积分的理解与应用能力。

要求学生能够熟练掌握不定积分的基本规则与计算方法,并能运用不定积分解决相关问题。

7. 几何与向量本部分重点考察学生对几何与向量的理解与应用能力。

要求学生能够熟练掌握几何图形的性质与关系,并能运用向量解决平面几何和空间几何相关问题。

8. 概率与统计本部分重点考察学生对概率与统计的理解与应用能力。

要求学生能够熟练掌握概率计算方法和统计分析技巧,并能运用概率与统计解决实际问题。

三、考试要求1. 考试时间数学二考试共计120分钟,考试时间自9:00开始,至11:00结束。

考试期间严禁学生携带通讯工具,如手机、平板电脑等。

2. 考试形式本次考试采用闭卷形式,学生需自备数学工具、文具和计算器等必要物品。

2024年上海高考数学大纲

2024年上海高考数学大纲

2024年上海高考数学大纲一、绪论随着社会的发展和教育体制的改革,2024年上海高考数学大纲将进一步完善,更加贴合时代需求,为学生提供更广阔的发展空间。

本文将详细介绍2024年上海高考数学大纲的主要内容和改革方向,旨在为学生提供有效的学习指导和备考建议。

二、知识体系与重点1. 数与代数1.1 数的集合与运算1.2 代数式与方程1.3 函数与方程组2. 几何与图形2.1 平面向量与解析几何2.2 空间几何与立体几何2.3 图形的性质与变换3. 数据与统计3.1 数据收集与整理3.2 数据分析与概率3.3 统计与推断三、知识要求与能力培养根据数学学科的特点和学生的认知发展,2024年上海高考数学大纲注重培养学生的以下能力:1. 数与代数方面:提升学生的数的认识和运算能力,培养学生分析代数式、解决方程和应用函数的能力。

2. 几何与图形方面:加强学生对几何概念的理解,培养学生分析几何性质、解决几何问题以及利用向量和坐标解决几何问题的能力。

3. 数据与统计方面:提高学生的数据收集、整理和分析的能力,培养学生利用统计方法进行推断和预测的能力。

四、教学与学习方法1. 深化课堂教学:教师要注重培养学生的思维能力和问题解决能力,通过开展探究、实验和课堂讨论等形式来激发学生的学习兴趣和创造力。

2. 引导自主学习:学生要积极参与学习,注重掌握基本概念和解题方法,通过实际问题的应用,培养灵活运用数学知识解决问题的能力。

3. 多样化评价方式:评价不仅要注重对学生知识掌握情况的评价,还要综合考察学生的思维方式、解题思路和创新能力,鼓励学生通过多种途径展示自己的数学能力。

五、备考建议1. 加强基础知识的学习:掌握数与代数、几何与图形、数据与统计方面的基本概念和解题方法,牢固打好基础。

2. 做好习题的练习:通过大量的习题练习,巩固知识点,培养解题能力和思维灵活性。

3. 关注题型变化:及时了解考试大纲的变化,熟悉新题型的解题思路和方法,提前做好应对准备。

2024高中数学高考考纲

2024高中数学高考考纲

2024高中数学高考考纲一、考试性质本考试旨在评估高中生对数学基础知识和基本技能的掌握程度,以及运用数学思维解决问题的能力。

二、考试目标1、掌握高中数学的核心概念、原理、方法和技能。

2、培养数学思维和解决问题的能力。

3、检测学生对数学知识的理解和应用能力。

三、考试内容与要求1、代数•集合与逻辑•函数及其性质•指数函数与对数函数•三角函数及其性质•数列与数列的极限•排列组合与概率初步2、几何•平面几何:三角形、四边形、圆的性质和定理•立体几何:空间几何体的性质、三视图与直观图•解析几何:直线、圆、圆锥曲线的方程及其性质3、概率与统计•概率论初步:随机事件、概率及其性质•统计初步:数据的收集、整理与描述,以及简单的统计分析4、微积分初步•极限的概念与性质•导数的概念与应用•定积分及其应用四、考试形式与试卷结构1、考试形式:闭卷,笔试。

考试时间为120分钟。

2、题型结构:选择题、填空题、解答题。

其中选择题和填空题占60%,解答题占40%。

3、分值分布:总分为150分。

代数部分占40%,几何部分占40%,概率与统计占15%,微积分初步占5%。

五、考试评价标准1、基础知识的掌握:要求考生对高中数学的基本概念、定理和公式有清晰的理解和掌握。

2、计算能力:能够准确、快速地进行基本的数学运算。

3、逻辑思维与分析能力:能够运用数学思维,分析问题,找到解决方案。

4、问题解决能力:能够运用所学知识解决实际问题或数学问题。

5、创新与应用能力:能够将数学知识应用于日常生活或其他学科中,具有一定的创新意识和能力。

以上是一个简略的2024年高中数学高考考纲草案。

在撰写完整考纲时,您需要进一步细化每个部分的内容,明确每个知识点的要求和标准,并给出具体的题型示例和分值分布。

同时,为了确保考纲的科学性和有效性,建议您在制定过程中充分征求教师、学生和课程专家的意见,并进行试测和反馈修订。

2023年高考数学复习提纲及大纲(最新最全)

2023年高考数学复习提纲及大纲(最新最全)

2023年高考数学复习提纲及大纲(最新最全)复提纲1. 函数- 函数的概念及分类- 函数的性质及其图像- 常见函数及其性质2. 数列- 数列的概念及其分类- 数列的通项公式及前n项和公式- 常见数列及其性质3. 三角函数- 三角函数的概念及其关系式- 常见三角函数的性质- 解三角函数的基本方程4. 平面向量- 向量的概念及其运算- 向量的线性运算及应用- 向量共线、垂直及夹角的判定5. 解析几何- 二维平面直角坐标系、极坐标系及其应用- 空间直角坐标系及其应用- 点、直线、圆、锥面、曲面及其方程大纲1. 函数与导数1.1 函数的概念与性质1.2 常见函数及其变换1.3 导数概念及其计算法1.4 函数的极值与最值1.5 函数的单调性及曲线的凹凸性2. 不等式组与线性规划2.1 一元一次不等式及其解法2.2 多元一次不等式组及其解法2.3 线性规划基本概念及其解法3. 数列与数学归纳法3.1 数列的概念及性质3.2 等差数列、等比数列及其应用3.3 数学归纳法的原理及应用4. 三角函数4.1 角度及弧度制与三角函数关系4.2 常见三角函数及其性质4.3 三角函数的图像及其变换4.4 解三角形的基本原理及解法5. 平面向量5.1 向量的概念及其运算5.2 向量的线性运算及应用5.3 向量的共线、垂直、平行及夹角的判定6. 解析几何6.1 二维平面直角坐标系、极坐标系及其应用6.2 空间直角坐标系及其应用6.3 几何图形的基本性质及其坐标表示7. 概率论基础7.1 随机事件与概率的概念7.2 基本概型及其计算7.3 条件概率及乘法公式7.4 全概率公式及贝叶斯公式8. 统计与统计图8.1 样本与总体的概念及其统计量8.2 常见统计图及其应用8.3 正态分布及其应用。

内蒙古2024年高考数学大纲

内蒙古2024年高考数学大纲

内蒙古2024年高考数学大纲一、前言本大纲根据教育部关于2024年高考改革的精神和要求,结合内蒙古地区的实际情况制定。

其目的是为了明确内蒙古地区2024年高考数学科目的考试内容和要求,确保考试的公平、公正和有效性。

本大纲是考生复习备考的指导性文件,也是评价教学质量的重要依据。

二、考试性质与目的高考是内蒙古地区最高级别的高中学业水平考试,用于选拔优秀学生进入高等教育机构。

考试目的在于考查学生的数学基础知识和基本技能,以及运用数学思维解决问题的能力。

同时,通过高考的引导作用,促进高中数学教学的改革和发展,提高数学教学质量。

三、考试内容与要求1.集合与逻辑:集合的基本概念和性质,集合的运算,命题逻辑的基本概念和推理规则。

2.函数与导数:函数的定义、性质和图像,函数的导数及其应用,微积分的基本概念和定理。

3.三角函数与平面向量:三角函数的基本性质和图像,三角恒等变换,平面向量的基本概念和运算,向量的数量积、向量积和混合积。

4.数列与不等式:数列的基本概念和性质,等差数列和等比数列的通项公式和求和公式,不等式的基本性质和解法。

5.平面解析几何:直线、圆、椭圆、双曲线和抛物线的方程和性质,直线与圆、椭圆、双曲线和抛物线的位置关系。

6.立体几何:空间几何体的基本性质和体积、表面积的计算,空间直线和平面的位置关系。

7.概率与统计:概率的基本概念和计算方法,随机变量的分布,统计的基本概念和方法。

要求考生熟练掌握各部分内容的定义、性质、定理和公式,能够运用所学知识解决实际问题,具备一定的创新思维和探究能力。

同时,要求考生能够理解和应用数学语言,具备数学表达和交流的能力。

四、考试形式与时间1.考试形式:闭卷笔试。

2.考试时间:150分钟。

五、试卷结构与分值1.试卷结构:试卷分为选择题、填空题和解答题三个部分。

选择题主要考查基础知识和基本技能;填空题主要考查数学思维和计算能力;解答题主要考查综合运用知识和解决问题的能力。

2023年新高考数学考试大纲

2023年新高考数学考试大纲

2023年新高考数学考试大纲一、2023年各省市所使用的教材及试卷1、以下地区使用新教材(1)新高考全国一卷:浙江、山东、河北、江苏、湖北、湖南、福建、广东。

(2)新高考全国二卷:辽宁、重庆、海南。

(3)使用新教材且未实施选科走班改革地区的全国卷(数学文理同卷):黑龙江、吉林、山西、安徽、云南。

注:目前不清楚使用新教材且未实施选科走班改革地区的全国卷到底考几卷,只能说文理同卷,并且会按照新教材的范围进行考察。

2、以下地区使用旧教材(1)全国甲卷(文理分卷):广西、贵州、四川、西藏。

(2)全国乙卷(文理分卷):新疆、青海、宁夏、甘肃、内蒙古、河南、陕西、江西。

二、知识点调整(一)新增的知识点适用地区:山东、湖北、河北、江苏、湖南、福建、广东、辽宁、重庆、海南、黑龙江、吉林、山西、安徽、云南1、必学知识点:(1)(必修第二册)平面向量投影的概念以及投影向量的意义(实际上旧教材里面也有)(2)(必修第二册)有限样本空间的含义(3)(必修第二册)分层随机抽样的样本均值和样本方差(4)(必修第二册)用样本估计百分位数及百分位数的统计含义(5)(选择性必修第一册)空间向量投影的概念以及投影向量的意义(6)(选择性必修第一册)用向量法解决空间中的距离问题(实际上旧教材里面也有)(7)(人教A版选择性必修第三册/人教B版选择性必修第二册)利用概率公式计算概率2、选学知识点(1)(人教A版必修第二册/人教B版必修第四册)复数的三角形式(2)(人教A版选择性必修第三册/人教B版选择性必修第二册)贝叶斯公式图片(二)删除的知识点(1)(必修1)删除映射(2)(必修2)删除三视图、中心投影和平行投影(3)(必修3)删除算法(4)(必修3)删除系统抽样(5)(必修3)删除几何概型(6)(必修5)删除二元一次不等式与简单的线性规划问题(7)(选修2-1)删除基本逻辑连接词中的“且”与“或”、命题的四种形式(8)(选修2-2)删除推理与证明(数学归纳法保留,但高考不作要求)(9)(选修2-2)删除定积分与微积分基本定理(10)(选修4-4)删除“极坐标与参数方程”整本书(11)(选修4-5)删除“不等式选讲”整本书使用旧教材的考试内容参考2019版考试大纲!。

高考数学(文科)考试大纲

高考数学(文科)考试大纲

高考数学(文科)考试大纲以下是高考数学(文科)考试大纲:一、考试内容本科目考试内容分为数与式、函数与方程、三角函数与解三角形、解析几何、数列与数学归纳法、概率与统计和数学思想方法等七个部分。

二、考试形式本科目考试采取笔试形式。

三、考试时间考试时间为 120 分钟。

四、知识点1.数与式1.1 数的基本概念1.2 数的运算与性质1.3 数的应用1.4 算式的基本概念1.5 算式的运算1.6 算式的应用2.函数与方程2.1 函数的基本概念2.2 常用函数的性质2.3 函数的图像与性质2.4 函数的应用2.5 方程的基本概念2.6 一元一次方程及应用2.7 一元二次方程及应用2.8 二元一次方程组及图像2.9 其他代数方程及应用3.三角函数与解三角形3.1 角的基本概念3.2 三角函数的定义与性质3.3 三角函数的图像与性质3.4 解三角形4.解析几何4.1 解析几何基本概念4.2 二维坐标系与图形4.3 三维坐标系与图形4.4 平面解析几何4.5 空间解析几何5.数列与数学归纳法5.1 数列的基本概念5.2 数列的通项公式和递推公式5.3 数列的分类5.4 数学归纳法6.概率与统计6.1 概率的基本概念6.2 概率的计算方法6.3 统计的基本概念6.4 统计的数据处理方法7.数学思想方法7.1 数学证明的基本方法7.2 数学建模的基本方法7.3 数学探究的基本方法7.4 数学推理的基本方法以上是高考数学(文科)考试大纲的全文。

河南高考数学教学大纲(完整版)

河南高考数学教学大纲(完整版)

河南高考数学教学大纲(完整版)河南高考数学教学大纲河南省高考数学科目的考试大纲(文史类)规定,考生需掌握以下内容:1.集合与常用逻辑用语。

2.函数。

3.方程与不等式。

4.空间几何。

5.解析几何。

6.立体几何。

7.排列组合与概率。

8.统计与概率。

9.极限。

10.导数及其应用。

11.复数。

12.选考内容。

以上只是文史类高考数学大纲的部分内容,具体考试范围和要求请参考官方发布的信息。

天津高考数学教学大纲根据公开资料,暂时无法获知天津高考数学的大纲信息。

如果您需要了解其他关于天津高考数学的信息,请提供更具体的问题,我会尽力为您提供帮助。

什么是高考数学教学大纲高考数学教学大纲是教育部考试中心依据教育部制定的《普通高中数学课程标准(实验)》和现行数学教材,针对高考数学学科的教学和考试要求而制定的纲领性指导文件。

陕西高考数学教学大纲2023年陕西省高考数学考试大纲内容如下:一、坚持考查数学基础知识、基本技能和基本方法的核心理念,强调通性通法,淡化特殊技巧。

二、进一步加强对数学基本方法的考查,加强对分析能力的考查,强调运算求解能力。

三、合理安排考试内容,遵循考试平稳,坚持考查有利于中学实施素质教育,有利于培养学生创新精神和实践能力原则。

四、考试范围严格按照《普通高中数学课程标准(实验)》和教育部考试中心编制的《2023年普通高等学校招生全国统一考试大纲(数学)》规定的考试内容及要求。

如果您想了解更多有关陕西高考数学的大纲的信息,建议您查阅最新的高考大纲或者咨询当地的数学教育专家。

普高数学教学大纲高中数学新课程标准建议初等教学模块为5个,分别为:集合与集合运算、函数概念与基本初等函数、三角函数、数列与差分、复数、立体几何、平面几何、解析几何、排列组合、统计与概率、极限、导数及其应用、行列式与矩阵、几何变换与公式选讲等。

河南高考数学教学大纲为本网站原创作品,不得擅自转载!。

高考数学考试大纲

高考数学考试大纲

高考数学考试大纲
高考数学考试大纲要求学生掌握以下内容:
1. 函数与方程
a. 一次函数与二次函数的性质和图像表示
b. 一元二次方程的解法及应用
c. 一次不等式与二次不等式的解法及应用
2. 平面向量与立体几何
a. 平面向量的基本性质和运算法则
b. 直线和平面的方程及其相互位置关系
c. 空间中点、距离和角的计算方法
3. 三角函数与解三角形
a. 任意角的概念和弧度制
b. 三角函数的基本性质和图像表示
c. 解直角三角形和一般三角形的方法
4. 数列与数列问题
a. 等差数列和等差数列的性质和公式
b. 等比数列和等比数列的性质和公式
c. 求和公式和数列问题的解法
5. 概率与统计
a. 事件的概率和基本概率公式
b. 随机变量、概率分布和期望值
c. 统计指标、样本调查与推断
6. 导数与微分
a. 函数的极限和连续性的概念
b. 导数的定义和计算法则
c. 求函数极值和函数图像的性质
7. 积分与积分应用
a. 不定积分和定积分的定义和计算法则
b. 定积分的几何与物理意义
c. 利用积分计算平均值和面积
备注:以上各大纲部分可能根据具体学校或地区的差异而有所调整,具体以当地相关政策和指导意见为准。

2024年高考四川数学考纲

2024年高考四川数学考纲

2024年高考四川数学考纲摘要:1.2024年四川高考数学考纲概述2.数学试卷结构与题型分布3.考试要求与难度等级4.备考策略与建议正文:一、2024年四川高考数学考纲概述根据教育部颁布的《2024年普通高等学校招生全国统一考试大纲》,四川高考数学试卷分为理科数学和文科数学两个类别。

本文将对2024年四川高考数学考纲进行详细解析,以帮助广大考生更好地备战高考。

二、数学试卷结构与题型分布1.理科数学:(1)选择题:12题,每题6分,共计72分。

(2)填空题:10题,每题6分,共计60分。

(3)解答题:8题,每题20分,共计160分。

2.文科数学:(1)选择题:10题,每题6分,共计60分。

(2)填空题:8题,每题6分,共计48分。

(3)解答题:6题,每题20分,共计120分。

三、考试要求与难度等级1.理科数学:(1)基础知识:掌握数学基础知识,包括代数、几何、三角、概率与统计等内容。

(2)解题能力:能运用数学公式、定理、性质解决题目,具备一定的数学思维能力。

(3)计算能力:熟练掌握各类计算方法,保证计算准确率。

2.文科数学:(1)基础知识:掌握数学基础知识,包括代数、几何、三角、概率与统计等内容。

(2)解题能力:能运用数学公式、定理、性质解决简单题目,具备一定的数学思维能力。

(3)计算能力:熟练掌握基本计算方法,保证计算准确率。

四、备考策略与建议1.制定合理的学习计划,确保复习进度。

2.立足教材,打牢基础知识。

3.针对性地进行题型训练,提高解题速度和准确率。

4.定期进行模拟考试,检验复习成果,调整学习方法。

5.保持良好的心态,积极面对高考挑战。

总之,了解2024年四川高考数学考纲对于考生至关重要。

通过掌握考纲要求,合理制定备考策略,相信广大考生定能取得优异的成绩。

2023年云南省高考数学考试大纲

2023年云南省高考数学考试大纲

2023年云南省高考数学考试大纲
1、必学知识点:
(1)(必修第二册)平面向量投影的概念以及投影向量的意义(实际上这个知识点旧教材里也有)。

(2)(必修第二册)有限样本空间的含义。

(3)(必修第二册)分层随机抽样的样本均值和样本方差。

(4)(必修第二册)用样本估计百分位数,及百分位数的统计含义。

(5)(选择性必修第一册)空间向量投影的概念以及投影向量的意义。

(6)(选择性必修第一册)用向量方法解决空间中的距离问题(实际上这个知识点旧教材里也有)。

(7)(人教A版选择性必修第三册/人教B版选择性必修第二册)利用全概率公式计算概率。

2、选学知识点:
(1)(人教A版必修第二册/人教B版必修第四册)复数的三角形式。

(2)(人教A版选择性必修第三册/人教B版选择性必修第二册)贝叶斯公式。

2024年高考数学考试大纲

2024年高考数学考试大纲

2024年高考数学考试大纲本部分包括必考内容和选考内容两部分,必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。

(一) 必考内容与要求1.集合(1) 集合的含义与表示①了解集合的含义、元素与集合的属于关系。

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2) 集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3) 集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用韦恩(Venn)图表达集合的关系及运算。

2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1) 函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图像理解和研究函数的性质。

(2) 指数函数①了解指数函数模型的实际背景。

②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。

④知道指数函数是一类重要的函数模型。

(3) 对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。

③知道对数函数是一类重要的函数模型。

④了解指数函数与对数函数互为反函数(a>0,且a≠1 )。

(4) 幂函数①了解幂函数的概念。

2024新高考数学考纲

2024新高考数学考纲

2024年新高考数学考纲一、数学基础知识数学基础知识是高考数学考试的重要内容,涵盖了代数、几何、概率与统计等多个方面。

考生需要掌握以下内容:1. 代数部分:(1)函数:包括函数的定义、函数的性质(单调性、奇偶性、周期性等)、函数的应用等。

(2)数列:包括等差数列、等比数列的通项公式、求和公式等。

(3)不等式:包括不等式的性质、不等式的解法、不等式的证明等。

(4)解析几何:包括直线、圆、椭圆、双曲线的方程和性质等。

2. 几何部分:(1)平面几何:包括三角形、四边形、圆等图形的性质和判定等。

(2)立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。

3. 概率与统计部分:(1)概率:包括事件的概率、独立事件的概率、条件概率等。

(2)统计:包括数据的收集、整理、分析、描述等。

二、几何与空间几何与空间部分主要考察考生的空间想象能力和逻辑推理能力,考生需要掌握以下内容:1. 平面几何:包括三角形的重心坐标、四边形的对角线长度相等、圆的半径相等等基本性质。

2. 立体几何:包括空间点、线、面的关系,空间几何体的性质和判定等。

在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。

3. 解析几何:包括直线与圆的位置关系,椭圆、双曲线和抛物线的方程和性质等。

在解题过程中,考生需要能够将几何问题转化为代数问题,运用方程的思想解决几何问题。

4. 空间向量:包括空间向量的加减运算、数乘运算、数量积运算等基本运算规则。

在解题过程中,考生需要能够运用空间向量的运算规则解决空间位置关系问题。

5. 图形变换:包括平移变换、旋转变换等基本变换规则。

在解题过程中,考生需要能够运用图形变换的规则解决几何作图和判断问题。

6. 圆的性质:包括圆的标准方程、一般方程和参数方程的求法,直线与圆的位置关系等。

在解题过程中,考生需要能够运用圆的性质解决直线与圆的位置关系问题。

高考数学试卷大纲

高考数学试卷大纲

一、试卷结构本试卷分为选择题、填空题、解答题三个部分,总分150分,考试时间150分钟。

二、考试内容1. 必修一:集合与函数概念、指数函数、对数函数、三角函数、数列。

2. 必修二:平面向量、空间几何、立体几何、解析几何。

3. 必修三:算法初步、概率统计、复数。

4. 选修一:三角恒等变换、三角函数的性质与应用、解三角形。

5. 选修二:立体几何的应用、解析几何的应用、概率统计的应用。

6. 选修三:算法的应用、复数的应用。

三、题型及分值分布1. 选择题(共20题,每题3分,共60分)(1)集合与函数概念(2题)(2)指数函数、对数函数(3题)(3)三角函数(5题)(4)数列(5题)(5)平面向量(2题)(6)空间几何(2题)2. 填空题(共10题,每题3分,共30分)(1)集合与函数概念(2题)(2)指数函数、对数函数(2题)(3)三角函数(2题)(4)数列(2题)(5)平面向量(2题)3. 解答题(共10题,每题15分,共150分)(1)三角恒等变换(2题)(2)三角函数的性质与应用、解三角形(2题)(3)立体几何的应用、解析几何的应用(2题)(4)概率统计的应用(2题)(5)算法的应用、复数的应用(2题)四、考试要求1. 理解集合与函数概念,掌握指数函数、对数函数、三角函数的基本性质和图像。

2. 掌握数列的概念和性质,能够运用数列解决实际问题。

3. 理解平面向量的基本概念和运算,掌握空间几何和立体几何的基本知识。

4. 掌握解析几何的基本知识,能够运用解析几何解决实际问题。

5. 掌握算法初步、概率统计、复数的基本知识,能够运用它们解决实际问题。

6. 能够运用三角恒等变换、三角函数的性质与应用、解三角形解决实际问题。

7. 能够运用立体几何的应用、解析几何的应用、概率统计的应用解决实际问题。

8. 能够运用算法的应用、复数的应用解决实际问题。

五、试卷特点1. 试题内容丰富,涵盖了高中数学的基本知识。

2. 试题难度适中,既有基础题,也有有一定难度的试题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年最新高考数学考试大纲I.命题指导思想坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的原则,体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养. 发挥数学作为主要基础学科的作用,考查考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能.II.考试内容与要求一.考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.(1)了解要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别,初步应用等.(3)掌握要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.2.能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想象能力能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换.对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. (2)抽象概括能力抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力是对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或作出新的判断.(3)推理论证能力推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.(4)运算求解能力会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.(5)数据处理能力会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断. 数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.(6)应用意识能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.4.考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.(1)对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度.(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际. 对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要考查运用概率统计的基本方法和思想解决实际问题的能力。

(4)对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.命题以教育部考试中心《普通高等学校招生全国统一考试数学(文科)考试大纲(课程标准实验•2012年版)》和本说明为依据.试题适用于使用全国中小学教材审定委员会初审通过的各版本普通高中课程标准实验教科书的考生.二、考试范围与要求(一)必考内容与要求1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用韦恩图(Venn)表达集合的关系及运算。

2.函数概念与基本初等函数I(指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图像理解和研究函数的性质。

(2)指数函数①了解指数函数模型的实际背景。

②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

③理解指数函数的概念,理解指数函数的单调性,掌握函数图像通过的特殊点。

(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点。

③了解指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。

(4)幂函数①了解幂函数的概念。

②结合函数21321x y x y x y x y x y =====,,,,的图象,了解它们的变化情况。

(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。

②根据具体函数的图像,能够用二分法求相应方程的近似解。

(6)函数模型及其应用①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。

②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。

3.立体几何初步(1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。

相关文档
最新文档