九年级数学圆的知识点总结
九年级数学圆的知识点总结大全
![九年级数学圆的知识点总结大全](https://img.taocdn.com/s3/m/cf6ebd49bfd5b9f3f90f76c66137ee06eff94eec.png)
圆是数学中的一个基本几何概念,九年级数学中关于圆的知识点如下:一、圆的定义和要素:1.圆的定义:由平面上离一个确定点(圆心)的距离相等的点的全体,构成一个平面图形,称为圆。
2.圆的要素:圆心、半径、直径、弧、弦、切线、割线、扇形、弓形等。
二、圆的性质:1.圆的任意两点之间的距离相等。
2.圆的半径是圆上任意一点到圆心的距离。
3.圆的直径是通过圆心的一条线段,直径的长度等于半径的两倍。
4.圆的弧是圆上两点之间的一段曲线,圆的圆心角对应的弧长是圆的周长的一部分。
5.圆的弦是圆上的两点间的线段。
6.圆的切线是与圆只有一个交点的直线。
7.圆的割线是与圆有两个交点的直线。
8.圆的相似圆是指具有相同圆心,半径成比例的圆。
9.圆与其他几何图形的关系,如圆与直线、圆与多边形等。
三、圆的图形和公式:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
2.圆的一般方程:x²+y²+Dx+Ey+F=0,对应一般方程的圆心坐标为(-D/2,-E/2),半径为√((D²+E²)/4-F)。
3.圆的表示方法:各种符号和字母的含义及表示。
四、圆的计算题:1.圆的周长:C=2πr,其中C为周长,r为半径。
2.圆的面积:A=πr²,其中A为面积,r为半径。
3.圆的弧长公式:L=2πr(θ/360°),其中L为弧长,r为半径,θ为圆心角的度数。
4.扇形的面积公式:A=(θ/360°)πr²,其中A为扇形的面积,r为半径,θ为圆心角的度数。
5. 弓形的面积公式:A=(θ/360°)πr²-hr,其中A为弓形的面积,r为半径,θ为弧对应的圆心角的度数,h为弓形的高。
五、圆的证明题:1.圆上的弦垂直于直径。
2.圆上的垂直于弦的直径。
3.圆的半径与切线垂直。
六、圆的应用:1.圆的模拟应用,如钟表等。
九年级数学圆知识点总结
![九年级数学圆知识点总结](https://img.taocdn.com/s3/m/8efeeed7f9c75fbfc77da26925c52cc58ad6904d.png)
九年级数学圆知识点总结在九年级数学学习的过程中,我们接触到了许多关于圆的知识。
圆是几何学中的重要概念之一,它有着特殊的性质和应用价值。
接下来,本文将对九年级数学中的圆知识点进行总结。
一、圆的定义与性质1. 圆的定义:圆是由平面上所有到一个给定点距离相等的点组成的图形。
这个给定点称为圆心,到圆心的距离称为半径。
2. 相关性质:- 圆的直径是圆上任意两点之间的最长距离,直径的长度是半径长度的两倍。
- 圆的半径相等,且平行于任意切线。
- 圆的弦是连接圆上任意两点的线段,直径是最长的弦。
- 相等弧所对的圆心角相等,且圆心角大于它所对的弧上任意角。
二、圆的周长与面积1. 周长:- 弧长:圆的周长也被称为圆的周长,用C表示。
弧长是圆上一段弧的长度,计算公式为:C = 2πr,其中r是圆的半径。
- 弧度制:弧度制是角度的一种衡量方式,常用的单位是弧度(radian)。
一个完整的圆周对应的弧度数为2π。
2. 面积:- 圆的面积:用A表示,计算公式为:A = πr^2,其中r是圆的半径。
三、圆的位置关系1. 内切与外切:- 内切:当一个圆的圆心与另一个圆的圆心重合,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为内切圆。
- 外切:当一个圆的圆心与另一个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为外切圆。
2. 切线与割线:- 切线:从圆外一点引出的与圆相切的直线称为切线,切线与半径垂直。
- 割线:与圆相交于两点的直线称为割线。
四、圆的常见定理和应用1. 切线定理:如果一条直线与一个圆相切,那么它与半径的垂直角都是直角。
2. 弧长与圆心角关系:弧长等于半径与对应圆心角的乘积。
3. 弧度制与角度制的转换关系:一周的弧度数为360°。
4. 圆心角、弦与弧的关系:圆心角的度数是对应的弧度数的两倍。
5. 弦切角定理:一个弦与切线所夹的角等于被切割的弧所对的圆心角。
九年级数学圆的知识点和公式总结
![九年级数学圆的知识点和公式总结](https://img.taocdn.com/s3/m/318c1fd70875f46527d3240c844769eae009a304.png)
九年级数学圆的知识点和公式总结圆是我们数学学习中一个非常重要的概念,它有着丰富的性质和应用。
在九年级数学中,我们学习了很多关于圆的知识点和公式。
本文将对这些内容进行总结和归纳。
1. 圆的定义和性质圆是由平面上任意一点到定点的距离都相等的所有点的集合。
圆的性质有很多,其中一些重要的包括:圆上任意两点之间的直线段为弦,圆心到弦的垂线恰好平分弦,圆上任意一点到圆心的距离为半径,等等。
2. 圆的元素圆的重要元素有圆心、半径和直径。
圆心是圆的中心点,通常用字母O表示。
半径是圆心到圆上任意一点的距离,通常用字母r 表示。
直径是两个在圆上相对的点之间的线段,它等于两倍的半径。
3. 弧的定义和性质弧是圆上的一段弯曲部分,它由圆上两个点之间的弧度所确定。
弧有弧长和弧度两个重要的性质。
弧长是圆的一部分的长度,它可以通过圆的周长和圆心角的比例来计算。
弧度是圆的一部分所对应的圆心角所占据的弧长比例,它等于角度除以360°再乘以2π。
4. 圆的周长和面积公式圆的周长是圆上一周的长度,它等于直径乘以π。
周长公式可以表示为:C = πd 或C = 2πr,其中C是周长,d是直径,r是半径。
圆的面积是圆内部的所有点的集合的大小,它等于半径平方乘以π。
面积公式可以表示为:A = πr²,其中A是面积。
5. 弧长和扇形面积公式弧长是圆的一部分的长度,它可以通过弧度和半径的乘积来计算,即L = rθ。
扇形是由圆心、两个弧上的点和弧组成的区域,它的面积可以通过弧度和半径的平方乘积再除以2来计算,即A =½r²θ。
6. 切线和切点切线是与圆相切于一点的直线,它垂直于半径。
切点是切线和圆的交点,它位于切线与圆的交点处。
在九年级数学中,我们还学习了切线与半径的性质,例如切线长等于半径和切点与圆心连线所夹的角为直角。
7. 圆与其他几何图形的关系圆与其他几何图形之间存在着许多有趣的关系。
例如,圆与直线的关系可以分为相交、相离和相切三种情况。
九年级圆知识点总结
![九年级圆知识点总结](https://img.taocdn.com/s3/m/d8a768c9f71fb7360b4c2e3f5727a5e9856a27cd.png)
九年级圆知识点总结在数学中,圆是一个重要的几何概念,也是九年级数学课程中的重点内容之一。
掌握圆的基本性质和相关定理对于学好数学非常重要。
本文将对九年级圆的知识点进行总结和归纳,希望能够帮助同学们更好地理解和掌握圆。
一、圆的性质1. 定义:圆是由平面内所有离定点相等距离的点组成的集合。
这个定点叫做圆心,相等的距离叫做圆的半径。
2. 圆的要素:圆心、半径、直径、弦、弧、切线、相切等。
3. 圆的基本性质:在同一个圆或等圆中,以下性质成立。
- 圆心角相等:具有相同圆心的弧所对的圆心角相等。
- 弧长比:在同一圆或等圆中,弧长是半径的倍数。
- 弦长比:在同一圆或等圆中,弦长相等的弦所对的两条弧相等。
- 圆内任何一点到圆心的距离相等。
二、圆的重要定理和公式1. 弧度制:弧度是角度的补充单位,它是圆心角所对圆弧长度等于半径的角。
弧度与角度之间的换算关系是:弧度 = 角度× π / 180。
2. 圆周长:圆周长等于直径与π的乘积,即C = πd。
其中d为圆的直径。
3. 扇形面积:扇形面积等于圆心角所对弧所在圆的面积的比例,即S = (θ/360°) × πr²。
其中θ为圆心角的度数。
4. 弧长公式:弧长等于圆心角所对弧的弧度乘以半径,即L = θr。
5. 切线的性质:切线与半径的关系是垂直。
并且半径和切线在切点处相互垂直(T ⊥ R)。
6. 切线长:切线长等于半径与相切点到圆心的距离的乘积,即L = r × d。
三、圆的相关定理1. 内切圆定理:如果一个圆与一个三角形的三条边相切,则这个圆的圆心是这个三角形的内心。
2. 外切圆定理:如果一个圆与一个三角形的每一边都相切,则这个圆的圆心是这个三角形的外心。
3. 正切线定理:如果一条直线与一个圆相切,则这条直线垂直于半径,并且相切点处的切线与直线为垂直关系。
4. 弦弧定理:在同一个圆中,两条相交弦所对的弧相等。
综上所述,九年级圆的知识点包括圆的性质、圆的重要定理和公式,以及圆的相关定理。
人教版九年级数学第二十四章《圆》单元知识点总结
![人教版九年级数学第二十四章《圆》单元知识点总结](https://img.taocdn.com/s3/m/d29cae835122aaea998fcc22bcd126fff7055dda.png)
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
九年级数学圆的知识点
![九年级数学圆的知识点](https://img.taocdn.com/s3/m/f9164bcf9f3143323968011ca300a6c30c22f1f1.png)
九年级数学圆的知识点在九年级的数学学习中,圆是一个重要的概念。
掌握圆的基本知识点对于学生正确理解和应用数学知识至关重要。
本文将介绍九年级数学圆的知识点,包括圆的定义、性质、公式以及与圆相关的几何图形等。
让我们一起来详细了解吧。
1. 圆的定义在九年级数学中,我们定义圆为平面上到一个固定点距离相等的所有点的集合。
这个固定点叫做圆心,到圆心的距离叫做半径。
圆由圆心和半径唯一确定。
2. 圆的性质- 半径相等的两个圆是相等的。
- 圆上任意两点到圆心的距离相等。
- 圆的直径是通过圆心的一条线段,它的长度是半径的两倍。
- 圆的周长是圆周长的一半,用公式C = 2πr表示,其中C表示周长,r表示半径。
- 圆的面积由公式A = πr²给出,其中A表示面积。
3. 圆与直线的关系- 圆内的点到圆心的距离小于半径,称为圆内部的点;到圆心的距离等于半径,称为圆上的点;到圆心的距离大于半径,称为圆外的点。
- 切线是与圆只有一个交点的直线。
- 弦是连接圆上两点的线段。
直径是一种特殊的弦,它通过圆心。
- 弧是圆上的一段弯曲的部分。
4. 弧与角的关系- 弧长是弧上的一段长度。
圆的弧长公式为L = 2πr,其中L表示弧长,r表示半径。
- 圆心角是以圆心为顶点的角,它所对的弧长是整个圆的弧长的一部分。
- 弦与其所对的弧所夹的圆心角相等。
5. 圆与其他几何图形的关系- 正方形的内接圆是正方形内接圆周围的正方形。
- 正方形的外接圆是正方形外接圆周围的正方形。
- 直角三角形的内切圆是三角形内接圆周围的圆。
- 直角三角形的外接圆是三角形外接圆周围的圆。
除了上述的知识点,还有关于圆的弦的性质、圆与切线的性质、圆的切线与切点定理、切线长的性质等内容需要学生在九年级进行深入的学习和理解。
通过掌握圆的相关知识点,可以帮助学生在解决几何问题、计算圆的周长和面积等方面得到更好的应用。
总结起来,九年级的数学圆的知识点主要包括圆的定义、性质、公式以及圆与其他几何图形的关系等。
九年级数学圆知识点及例题
![九年级数学圆知识点及例题](https://img.taocdn.com/s3/m/1ad542296fdb6f1aff00bed5b9f3f90f77c64d73.png)
九年级数学圆知识点及例题圆是初中数学中非常重要的一个几何概念,它与我们日常生活息息相关。
本文将带领大家系统地了解九年级数学中与圆相关的知识点,并提供一些例题进行辅助学习。
一、圆的基本概念1. 圆的定义:圆是平面上到一个定点(圆心)距离相等的所有点的集合。
2. 圆的要素:圆心、半径、直径、弧、弦、切线等。
二、圆的基本性质1. 圆的半径与直径的关系:直径是半径的两倍。
2. 圆的周长:圆的周长是其直径的倍数,即周长等于直径乘以π(π≈3.14)。
3. 圆的面积:圆的面积等于半径的平方乘以π。
三、圆的判定1. 距离判定定理:给定一定距离,平面上到该距离相等的点构成的图形是圆。
2. 切线定理:过圆外一点有且仅有一条切线,该切线与半径垂直。
四、圆的位置关系1. 同圆:拥有相同半径的两个圆。
2. 内切和外切:一个圆与另一个圆内部的一个点或外部的一个点相切。
3. 相交与相离:两个圆相交的情况包括相切和交叉,而相离则是两个圆不相交。
五、圆的综合应用1. 圆和三角形的关系:圆内切于一个三角形的关系、圆外接于一个三角形的关系等。
2. 圆和正多边形的关系:正n边形的内切和外切圆等。
3. 圆和椭圆、抛物线、双曲线的关系。
下面我们来看一些九年级数学中与圆相关的例题。
例题1:已知一个圆的半径是5cm,求其周长和面积。
解:根据圆的周长公式,周长等于直径乘以π。
我们已知半径是5cm,则直径是半径的两倍,即10cm。
所以,圆的周长为10cm × π ≈ 10 × 3.14 ≈ 31.4cm。
另外,根据圆的面积公式,面积等于半径的平方乘以π。
所以,圆的面积为5cm × 5cm × π ≈ 25 × 3.14 ≈ 78.5cm²。
例题2:已知圆A的半径是8cm,圆B的直径是12cm,判断这两个圆的位置关系。
解:首先,我们通过直径的关系得知,圆B的直径是圆A的直径的1.5倍,即12cm = 8cm × 1.5。
九年级数学知识点整理
![九年级数学知识点整理](https://img.taocdn.com/s3/m/a5c69bc6e109581b6bd97f19227916888486b9ff.png)
九年级数学知识点整理初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
数学知识点九年级圆的必考知识点(1)圆在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
圆有无数条对称轴。
九年级数学知识点总结圆
![九年级数学知识点总结圆](https://img.taocdn.com/s3/m/eb383f4803768e9951e79b89680203d8ce2f6a21.png)
九年级数学知识点总结圆数学中的圆是我们学习的重要几何形状之一,也是九年级数学中的一个重要知识点。
学习圆的相关知识,不仅可以提高我们的几何直观能力,还有助于我们解决实际问题。
接下来,我们就一起来总结九年级数学中关于圆的知识点。
一、圆的概念及性质圆是平面上所有到一个固定点距离相等的点的集合。
在圆上,我们常见的有圆心、半径、直径、弦、弧等概念。
1. 圆心:圆心是圆上离任何一点距离相等的点,通常用字母O 表示。
2. 半径:从圆心到圆上任一点的线段称为半径,通常用字母r 表示。
3. 直径:通过圆心的任意两点构成的线段称为直径,通常用字母d表示,直径等于半径的两倍。
4. 弦:在圆上任意选取的两点之间的线段称为弦。
5. 弧:在圆上两个点之间的曲线部分称为弧。
圆的性质有很多,比如圆心角是指圆上两条半径之间的夹角,它的度数等于它所对应的弧所对的圆心角的一半。
此外,对于一个圆,任意一条直径将圆分为两个相等的半圆,而一个圆只有一个圆心和一个半径。
圆的任意两条弦的长度相等,且直径是一个弦的最长长度。
二、圆的计算在九年级数学中,我们还需要学习如何计算与圆相关的一些特性,包括圆的周长和面积的计算。
1. 周长:圆的周长也被称为圆周长,通常用公式2πr表示,其中π是一个约等于3.14的常数,r是圆的半径。
2. 面积:圆的面积可以用公式πr²来计算,其中π是一个约等于3.14的常数,r是圆的半径。
三、圆的相交关系及定理在几何学中,圆与直线或其他圆的相交关系是我们需要掌握的重要知识。
1. 圆与直线的相交:若直线和圆有两个交点,则该直线被称为圆的切线,若直线与圆相交于两个不同的交点,则直线被称为圆的弦。
2. 圆与圆的相交:两个圆可以有三种相交关系,即相离、相切和相交。
当两个圆内部没有公共点时为相离,当两个圆的外切线只有一个公共点时为相切,当两个圆内外各有一个公共点时为相交。
在圆的相交关系中,我们还有一些重要的相关定理,比如切线定理和割线定理等,它们有助于我们计算圆内外的线段长度。
九年级上册数学圆章节知识点总结
![九年级上册数学圆章节知识点总结](https://img.taocdn.com/s3/m/9539f06d59fb770bf78a6529647d27284b733791.png)
九年级上册数学圆章节知识点总结What is a classic? It takes about 100 years to become a classic.与圆相关的基本知识和计算一、知识梳理:一:圆及圆的有关概念1.圆:到顶点的距离等于定长的点的集合叫做圆;2.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,它是圆的最长的弦;4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;二圆的有关性质:1.对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线;2.垂径定理及其推论:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;2、推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系1定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;2推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等.4.圆周角与圆心角的关系1在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;2推论:半圆或直径所对的圆周角是直角,090的圆周角所对的弦是直径;5.圆内接四边形对角互补.(三)点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.1d>r点在圆外;2d=r点在圆上;3d<r点在圆内.2、确定圆的条件:不在同一直线上的三个点确定一个圆.(四)直线与圆的位置关系1、1直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.2用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1直线l和⊙O相交d<r如图1所示;2直线l和⊙O相切d=r如图2所示;3直线l和⊙O相离d>r如图3所示.2、切线1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质:圆的切线垂直于过切点的半径.3切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.4切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.五三角形的外接圆和内切圆1、三角形的外接圆1定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.2三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.2、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.六:圆的有关计算一正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n3600; 二 弧长与扇形面积1、在半径为R 的圆中,0n 圆心角所对的弧长l=180n ℜπ;2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360n 2R π;半径为R,弧长为l 的扇形面积为扇形S =R l 21;3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πrl+πr 2.。
九年级数学圆的知识点总结大全
![九年级数学圆的知识点总结大全](https://img.taocdn.com/s3/m/3c7d5f550a4e767f5acfa1c7aa00b52acfc79c25.png)
一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。
二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。
2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。
3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。
4.圆周角的度量:可以用角的度数来衡量。
三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。
2.切线与半径的关系:切线与半径的关系是切线⊥半径。
3.弦的定义:两点之间的线段叫做弦。
4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。
四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。
2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。
五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。
2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。
六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。
九年级圆知识点总结归纳完整版
![九年级圆知识点总结归纳完整版](https://img.taocdn.com/s3/m/8e6826785627a5e9856a561252d380eb6294233a.png)
九年级圆知识点总结归纳完整版圆是初中数学中一个重要的几何概念,它有着广泛的应用。
本文将对九年级圆的相关知识点进行总结和归纳,帮助同学们更好地理解和掌握这一内容。
一、圆的定义圆是平面上的一个几何图形,由与其内部距离相等的所有点组成。
其中,距离圆心最远的点称为圆上的点,这个距离称为半径,用字母r表示。
圆上的任意两点之间的距离称为弦,圆的直径是一条穿过圆心并且与圆上的两点相接的弦,直径的长度是半径的两倍。
二、圆的性质1. 圆的周长公式:C = 2πr,其中C是圆的周长,r是圆的半径,π是一个无理数,近似值为3.14或22/7。
周长是圆上一周的长度,也可以说是圆的边界长度。
2. 圆的面积公式:A = πr²,其中A是圆的面积。
面积是圆所包围的平面区域的大小。
3. 切线的性质:切线是与圆只有一个交点的直线。
圆与切线相切时,切线与半径的夹角是直角。
4. 弦的性质:圆的直径是最长的弦,且直径平分圆。
如果两弦在圆内或圆上的交点连线通过圆心,则交线垂直于这两条弦。
三、圆的定位1. 圆的内切和外切:当一个圆与一个三角形的三条边都相切时,该圆称为三角形的内切圆;当一个圆与一个三角形的每条边的延长线相切时,该圆称为三角形的外切圆。
2. 圆的相似:两个圆的半径之比等于两个圆的周长之比,它们是相似的。
四、圆的推理与证明1. 直径在同一直线上的圆是同心圆:当两个圆的直径重合时,它们是同心圆。
2. 圆内接四边形的性质:一个四边形能够内切于一个圆的充要条件是,这个四边形的对角线互相垂直。
3. 正多边形外接圆的性质:一个正n边形可以内切与一个圆的充要条件是,这个正n边形的对角线互相垂直。
五、圆的应用1. 圆与三角形的应用:可以利用圆的性质来解决三角形的推理证明题,如证明三角形内切圆的性质、利用相似三角形证明圆的性质等。
2. 圆的平移、旋转和镜像:圆可以通过平移、旋转和镜像等变换来进行操作,这在解决几何问题时有着重要的作用。
九年级数学圆知识点
![九年级数学圆知识点](https://img.taocdn.com/s3/m/b1c4ca76ff4733687e21af45b307e87100f6f845.png)
九年级数学圆知识点在九年级数学学习中,圆是一个重要的知识点。
下面将介绍圆的定义、性质以及与圆相关的主要公式和定理。
一、圆的定义和性质:1. 定义:圆是由平面上的一点到另一点距离不变的所有点的集合。
2. 圆心和半径:圆心是圆的中心,圆的半径是圆心到圆上任一点的距离。
3. 直径和直径长:直径是圆上任意两点之间通过圆心的线段,直径长等于半径的两倍。
4. 弦:连接圆上任意两点的线段。
5. 弧:由圆上两点所确定的一段圆形曲线。
6. 弧长:圆的周长被称为弧长,可以表示为2πr(r为圆的半径)。
7. 弧度制:圆的周长为360°,也可以用弧度来表示,一周的弧度数为2π。
二、圆的相关公式和定理:1. 圆的周长公式:C = 2πr,其中C表示周长,r表示半径。
2. 圆的面积公式:A = πr²,其中A表示面积,r表示半径。
3. 弧长公式:L = 2πr × (θ/360°),其中L表示弧长,r表示半径,θ表示所对应的圆心角的度数。
4. 弦长公式:如果圆心角θ的度数已知,弦长可通过公式l = 2r × sin(θ/2)计算。
5. 切线与半径的关系:切线与半径的相交点处,切线是半径的垂直平分线。
6. 切线与弦的关系:切线与弦的相交点处,切线与弦的夹角等于所对应的弧的圆心角的一半。
7. 弦割定理:如果两个弦相交于圆的内部,那么相交点之间的两个弦的长度的乘积等于两个弦的切割线段的长度的乘积。
8. 切割定理:如果两条切线相交于圆的外部,那么相交点之间的两个切线段的长度的乘积等于两个切线的切割线段的长度的乘积。
三、应用示例:1. 根据给定的半径,求解圆的面积和周长。
2. 根据给定的弦长和半径,求解所对应的圆心角的度数。
3. 根据所给条件,利用切线和弦的关系解题。
4. 根据所给条件,应用弦割定理或切割定理解决问题。
综上所述,九年级数学中的圆知识点包括了圆的定义、性质、相关公式和定理。
九年级数学上册圆的知识点总结
![九年级数学上册圆的知识点总结](https://img.taocdn.com/s3/m/44ade33ca36925c52cc58bd63186bceb19e8ed02.png)
九年级数学上册圆的知识点总结一、圆的认识1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长的点的集合)2.圆的表示方法:①圆心用字母O表示,半径用字母r表示;②弧用弧长表示,扇形用圆心角表示;③圆是一种曲线图形,圆上任意一点P到圆心的距离OP都等于半径r;④圆心角是指顶点在圆心上的角,圆心角的一边与圆相交,另一边与圆相切或相割;⑤在同圆或等圆中,能够互相重合的弧叫做等弧;⑥半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
1.圆的各部分名称及性质:①圆心:将圆对折,两个折痕相交于一点,这一点叫做圆心。
圆心一般用字母O表示。
圆心决定圆的位置。
②半径:连接圆心到圆上任意一点的线段叫做半径。
半径用字母r表示。
圆的半径决定圆的大小。
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
③直径:通过圆心且两个端点都在圆周上的线段叫做圆的直径。
直径用字母d表示。
直径是半径的2倍,同一个圆内所有的直径都相等。
直径是圆中最长的线段。
④弦:连接圆上任意两点的线段叫做弦。
在同一个圆内最长的弦是直径。
直径是最长的弦。
⑤弧:经过圆上任意两点间的部分叫做弧。
在同一个圆内,能够互相重合的弧叫做等弧。
等弧只有在同一个圆里才能出现。
⑥扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
顶点在圆心上的扇形叫做圆心扇形,顶点在圆周上的扇形叫做圆周扇形。
在同一个圆里,由过一条弧的中点且垂直于这条弧所平分的那条弦与这条弧所组成的图形叫做弓形。
弓形的弧小于半圆的弧,弓形的弦大于半圆的弦。
二、点和圆的三种位置关系1.点和圆的三种位置关系:设⊙O的半径为r,点P到圆心的距离OP为d,则有:①点P在圆外⇔d>r;②点P在圆上⇔d=r;③点P在圆内⇔d<r.1.确定圆的条件:不在同一直线上的三个点确定一个圆.常用符号“(1)P (2)r (3)”表示.即要确定一个圆必须知道它的和圆的半径.若已知三点的位置关系是①②③,则可确定一个圆,若位置关系是①③,则可确定无数个圆;若是位置关系②,则不能确定一个圆,应先找出这三点所在直线的垂线段的中垂线,再根据垂径定理作出中垂线,它和三点确定的直线外一点和以该点为圆心,垂线段的长度为半径确定一个唯一的圆.若是位置关系③,则根据从直线外一点向这条直线所作的垂线段最短,确定垂足的位置,再根据垂径定理作出中垂线,它和三点确定的直线外一点和以该点为圆心,垂线段的长度为半径确定一个唯一的圆.若是位置关系①②,则以不共线的三点为三个顶点作三个三角形,这三个三角形的三条边分别两两相交且交点不重合的三个交点为三个圆心,以各顶点到相应交点的距离为半径作三个圆,这三个圆的公共部分即为以不共线的三点确定的圆的三个交点组成的图形,简称“三交圆”.若是位置关系①③,则以不共线的三点为三个顶点作三个三角形,这三个三角形的三条边分别两两相交且交点不重合的三个交点为三个圆心,以各顶点到相应交点的距离为半径作三个圆,这三个圆的公共部分即为以不共线的三点确定的圆的三个交点组成的图形,简称“三交圆”.若是位置关系②③,则不能确定一个唯一的圆.若是位置关系①②③也不能确定一个唯一的确定的唯一的确定的确定的确定的确定的确定的。
九年级数学圆的知识点总结大全
![九年级数学圆的知识点总结大全](https://img.taocdn.com/s3/m/bdec2c6a2bf90242a8956bec0975f46526d3a77b.png)
一、圆的基本概念和性质1.圆的定义:平面上的点到圆心的距离等于半径的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:a.对于圆上任意一点P和圆心O,OP是半径;b.圆上任意两点P和Q的半径相等;c.圆上两个不同的弧所对的圆心角相等;d.圆心角的度数等于它所对的弧的度数;e.圆的内切四边形的对角线互相垂直;f.圆的内切四边形的对边互相平行且相等;g.圆内接正方形的边长等于半径的2倍。
4.圆心角与弧的关系:a.弧所对的圆心角是其两倍;b.圆心角相等的弧相等;c.同弧度数的圆心角相等;d.弧需要圆的整个周长的弧数表示。
二、圆的运算1.圆周长:圆周长是圆周上的弧长,可以通过半径和直径推导得到。
2.圆的面积:圆的面积是圆心角度和圆的半径之间的数学关系,可以通过面积公式πr²计算得到。
三、圆的位置关系1.圆的判定:a.两个圆相交,如果两个圆的圆心距离小于半径之和但大于半径之差;b.两个圆相切,如果两个圆的圆心距离等于半径之和或半径之差;c.两个圆外离,如果两个圆的圆心距离大于半径之和;d.两个圆内含,如果一个圆完全位于另一个圆内部。
2.相切圆的性质:a.相切圆的切点在半径的连线上;b.相切圆的切线相互垂直;c.相切圆的切线公共切点的连线通过两个圆的圆心。
四、圆与线的位置关系1.弦的性质:a.弦和圆心连线垂直,那么弦是直径;b.弦的中点位于圆心。
2.弧与弦:a.弧上的两个弦相等,则它们所对的圆心角相等;b.两个等圆弧所对的圆心角相等;c.弦所夹的圆弧是圆心角的一半。
3.弦的长度:等于两个切线段的和。
4.直线和圆的位置关系:a.直线与圆相交于两点;b.直线与圆相切于一点;c.直线与圆不相交。
五、切线和切线长1.切线的定义:从圆外的一点引一条直线,直线与圆相交于该点,这条直线叫做切线。
2.切线的性质:a.切线与半径垂直;b.切线与切线垂直;c.相切圆的切线相互垂直。
3.切线长的计算:可以通过勾股定理得到切线长的计算公式。
九年级圆数学知识点总结
![九年级圆数学知识点总结](https://img.taocdn.com/s3/m/2cd62d71ce84b9d528ea81c758f5f61fb6362858.png)
九年级圆数学知识点总结在九年级的数学学习中,圆是一个重要的几何形状。
本文将总结九年级学生需要了解的关于圆的数学知识点,包括圆的定义、圆的性质、圆的周长和面积计算公式等。
一、圆的定义圆是平面上所有到圆心距离相等的点的集合。
圆由圆心和半径两个要素唯一确定。
二、圆的性质1. 圆心角性质:圆心角的度数等于所对弧的度数。
2. 弧长角性质:圆心角和所对弧的弧长成正比,即圆心角是所对弧的弧长的一半。
3. 正切线性质:切线与半径的垂直关系。
4. 直径性质:直径是过圆心的两个端点,也是圆的两个切线的临界情况。
5. 弦性质:弦是圆上任意两点的连线,圆心角大于所对弦的弦长所对应的圆心角。
三、圆的周长和面积计算公式1. 圆的周长计算公式:周长等于直径乘以π(π取近似值3.14),或者等于半径乘以2π。
2. 圆的面积计算公式:面积等于半径的平方乘以π。
四、圆的相关概念和定理1. 弧:弧是圆上的一段弧段,可以用圆心角的度数或弧长来表示。
2. 弧度制和角度制:弧度制是以圆的半径长度为单位,角度制是以度数为单位。
3. 弧长公式:弧长等于圆心角的弧度数乘以半径。
4. 扇形:扇形是由圆心角和所对弧组成的图形。
5. 圆锥曲线:圆是一种特殊的椭圆,椭圆的两个焦点重合形成圆。
6. 圆和直线的位置关系:直线可能与圆相切、相交或不相交。
五、九年级圆的应用1. 圆的测量:了解如何使用直径、弧长和半径求圆的周长和面积。
2. 圆的运动学应用:了解圆的运动学应用,如圆周运动和圆周速度的计算等。
3. 圆的工程应用:了解圆在工程领域中的应用,如轮胎的制造和车辆的转弯半径计算等。
六、小结在九年级数学学习中,圆是一个重要的几何形状。
通过掌握圆的定义、性质、周长和面积计算公式,以及相关概念和定理,学生可以更好地理解圆的特点和应用。
掌握圆的知识,有助于解决和应用各类与圆相关的数学问题,同时也为进一步学习高级几何打下坚实的基础。
初中数学九年级上圆的知识点
![初中数学九年级上圆的知识点](https://img.taocdn.com/s3/m/6604bd7fa9956bec0975f46527d3240c8547a16a.png)
初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。
一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。
这个定点称为圆心,距离称为半径,用字母r表示。
圆通常用圆的轮廓线表示,在数学表达中用字母O表示。
二、圆的性质1. 圆的任意两点到圆心的距离相等。
这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。
2. 圆的直径是圆上任意两点之间的最长距离。
直径的长度是半径的两倍。
3. 圆的弦是圆上任意两点之间的线段。
弦不一定通过圆心,可以在圆内或圆外。
4. 圆上的切线垂直于半径。
切线是与圆相切的线,与圆的切点处的半径垂直。
三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。
2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。
3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。
4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。
四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。
圆的面积等于圆内所包围的面积,即S=πr²。
2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。
3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。
综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角
对的弦是圆的直径。
②同圆或等圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心
角的一半。
③同弧(或等弧)所对的圆周角相等;相等的圆周角所对的弧相等。
切 定义 经过半径外端且垂直于这条半径的直线叫作圆的切线。或与园有一个公共点的
线
直线 。
性质 圆的切线垂直于经过切点的半径。
推论:1)经过圆心且垂直于切线的直线必经过切点。
③圆上任意两点间的部分叫做弧。
⑴小于半圆周的圆叫做劣弧 ⑵大于半圆周的圆弧叫做优弧。
定义 顶点在圆心,两边与圆相交的角叫做圆心角。
性质 圆
心
角
在同圆或等圆中, ⑴相等的圆心角所对的弧相等、所对的弦相等。 ⑵如果弦相等,那么所对的圆心角、所对的弧相等。 ⑶如果弧相等,那么所对的圆心角,所对的弦相等。
⑷如果弧相等,那么所对的圆心角,所对的弦相等,弦心距也相等。
九年级数学圆的知识点总结
概念
性质及定义
定义
当一条线段 OA 绕着它的一个端点 O 在平面内旋转一周时,它的另一个端点
A 的轨迹叫做圆。或到一个定点的距离等于定长的点的集合。
这个以点 O 为圆心的圆叫作“圆 O”,记为“⊙O”。
圆的
①线段 OA 是圆的半②连结圆上任意两点之间的线段叫做弦
2)经过切点且垂直于切线的直线必经过圆心。
判定 ① 经过半径外端且垂直于这条半径的直线是圆的切线。
②与园有一个公共点的直线 。
弦 定义 弦与切线的夹角,(顶点在圆上,一边和圆相交)
切 性质 弦切角等于所夹弧所对的圆周角
角
③平分弦所对一条弧的直径,平分弦所对的另一条弧。
④弦的垂直平分线经过圆心,平分弦所对的的两条弧。
☆弦、弦所对圆心角、所对两条弧、弦心距有一组量相等,其他组量都相等
圆 定义 顶点在圆上,两边与圆相交的角叫做圆周角。
周 性质 ①半圆或直径所对的圆周角都相等,都等于 90°(直角)。反之 90°的圆周角所
(弦与圆心的距离简称弦心距)
☆如果弦、弦心距、圆心角、弦所对的弧有一组量相等。其他组量都相等。
对称性
圆是轴对称图形,它的任意一条直径所在的直线都是它的对称轴
垂径定理 ※垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:△①平分弦的直径垂直于这条弦,并且平分弦所对的弧;
△②平分弧的直径垂直平分这条弧所对的弦。