成都市中考数学真题及答案解析

合集下载

2020学年四川省成都市中考试题数学及答案解析

2020学年四川省成都市中考试题数学及答案解析

2020年四川省成都市中考试题数学一、选择题(共10小题,每小题3分,共30分)1.实数a, b, c, d在数轴上对应的点的位置如图所示,这四个数中最大的是()i 2 匚________-3 -2 4 0 1 2 SA.aB.bC.cD.d解析:根据实数的大小比较解答即可.由数轴可得:aVbVcVd.答案:D2.2020年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鸽桥号”中继星,卫星进入近地点髙度为200公里、远地点髙度为40万公里的预立轨道.将数据40万用科学记数法表示为()A.4X10:B.4X105C.4X106D.0.4X106解析:科学记数法的表示形式为aX10=的形式,其中1W a <10, n为整数.1万=10000=104.40 万=400000=4 X105.答案:B3 •如图所示的正六棱柱的主视图是()D.、------- 』解析:根据主视图是从正而看到的图象判泄则可.从正而看是左右相邻的3个矩形,中间的矩形的而积较大,两边相同.答案:A4.在平而直角坐标系中,点P(-3, -5)关于原点对称的点的坐标是()A.(3, -5)B.(-3, 5)C.(3, 5)D.(-3, -5)解析:根据关于原点对称的点的坐标特点解答.点P(-3, -5)关于原点对称的点的坐标是(3, 5).答案:c5.下列计算正确的是()A.x'+x—x'B.(x-y)C.(x:y) 3=x6yD.(-x):• x3=x°解析:根据合并同类项法则、完全平方公式、积的乘方法则、同底数幫的乘法法则讣算,判断即可.A、x:+x:=2x\ A 错误;B、(x-y) c=x:-2xy+y:, B 错误:C、(x:y) 3=x*y s» C 错误;D^ (-x)5• x3=x s» D 正确.答案:D6•如图,已知ZABC二ZDCB,添加以下条件,不能判左△ABC9Z\DCB的是()A.ZA=ZDB.ZACB=ZDBCC.AC=DBD.AB二DC解析:全等三角形的判世方法有SAS, ASA, AAS, SSS,根据定理逐个判断即可.A、ZA二ZD, ZABC二ZDCB, BC二BC,符合AAS,即能推ABC^ADCB,故本选项错误:B、ZABC二ZDCB, BC二CB・ ZACB二ZDBC,符合ASA,即能推ABC^ADCB,故本选项错误;C 、 ZABC 二ZDCB, AC 二BD, BC 二BC,不符合全等三角形的判龙左理,即不能推出△ ABC^ADCB> 故本选项正确:D 、 AB 二DC. ZABC 二ZDCB, BC 二BC,符合 SAS,即能推ABC^ADCB,故本选项错误. 答案:C7•如图是成都市某周内最髙气温的折线统计图,关于这7天的日最髙气温的说法正确的是 ()A. 极差是8°CB. 众数是28°CC. 中位数是24°CD. 平均数是26°C解析:根拯折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题. 由图可得,极差是:30-20=109,故选项A 错误,众数是28°C,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是260 故选项C 错误,20 + 22 + 24 + 26 + 28 + 28 + 30 “3 -------------------------------------------- =25-平均数是: 7 7匸,故选项D 错误.答案:Bx + 1 1 -------- 1 ------ = 18•分式方程x x-2 的解是()A. x=lB. x 二TC. x —3D. x=-3x + 1 1--- + ----- x x-2去分母,方程两边同时乘以x(x-2)得:(x+1) (x-2)+x=x(x-2),x :-x-2+x=x"-2x,=1解析:x=l,经检验,X=1是原分式方程的解.答案:A9•如图,在口ABCD中,ZB=60° , OC的半径为3,则图中阴影部分的面积是()A.nB.2nC・3 nD. 6 n解析:根据平行四边形的性质可以求得zc的度数,然后根据扇形而积公式即可求得阴影部分的面积.•••在口ABCD 中,ZB=60° , 0C 的半径为3,A ZC=120° ,120x^x32 c--------------- =3兀・•・图中阴影部分的而积是:36°答案:C10.关于二次函数y=2x=+4x-l,下列说法正确的是()扎图象与y轴的交点坐标为(0, 1)B.图象的对称轴在y轴的右侧C.当xVO时,y的值随x值的增大而减小D.y的最小值为-3解析:根拯题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.Vy=2x=+4x-l=2 (x+l)=-3,.••当x二0时,y二-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-l时,y随x的增大而减小,故选项C错误,当x二-1时,y取得最小值,此时y=-3,故选项D正确.答案:D二、填空题(共4小题,每小题4分,共16分)11._______________________________________________ 等腰三角形的一个底角为50°,则它的顶角的度数为_________________________________ .解析:本题给出了一个底角为50° ,利用等腰三角形的性质得列一底角的大小,然后利用三角形内角和可求顶角的大小.•・•等腰三角形底角相等,.\180° -50° X2二80° ,・•・顶角为80° .答案:80°12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸岀一个乒3乓球,若摸到黄色乒乓球的概率为则该盒子中装有黄色乒乓球的个数是____________ •解析:•・•装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色3乒乓球的概率为3・•・该盒子中装有黄色乒乓球的个数是:16X8=6.答案:6u _b _c13.已知A 5 兀且a+b-2c=6,则a的值为 _____________ .解析:直接利用已知比例式假设出a, b, c的值,进而利用a+b-2c=6,得出答案.a _b _cV6 = 5 = 4,• •役&=6x, b—5x♦ c—lx 9Va+b^c^G,•: 6x+5x-8x=6,解得:x=2,故a=12.答案:12丄14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于亍AC的长为半径作弧,两弧相交于点NUHN;②作直线MN交CD于点E.若DE二2, CE二3,则矩形的对角线AC的长为由作法得MN 垂直平分AC,•••EA 二 EC 二 3,在 RtAADE 中,AD = d3,-W =圧三、解答题(本大题共6个小题,共54分)15. 计算.2?+遁-2sin60° + |-呵解析:(1)根据立方根的意义,特姝角锐角三角函数,绝对值的意义即可求出答案.=4+2-2x 遢+ 3 =点答案:(1)原式 2(2)化简:解析:(2)根据分式的运算法则即可求出答案.解析:连接AE,如图,在 RtAADC 中, AC = W+5,=俪_x+1_i(x+i)(x-i)_ x a+i)(z)_----- •------------- • --------- A — 1答案:⑵原式X+1 X x+1 X16.若关于x的一元二次方程£-(2a+l)x+a匚0有两个不相等的实数根,求a的取值范围. 解析:根据方程的系数结合根的判别式△>(),即可得出关于a的一元一次不等式,解之即可得出a的取值范围.答案:•••关于x的一元二次方程x:-(2a+l)x+a==0有两个不相等的实数根,••• △二[-(2a+l) ] 2-4a:=4a+l > 0,_丄解得:a> 4.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于'‘景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统汁图表.滿意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为 __ ,表中m的值 _____ .解析:⑴利用12 + 10%二120,即可得到m的值:用120X40%即可得到n的值.答案:(1)124-10%=120,故m二120,54n二120X40248, =45%.故答案为120: 45%.⑵请补全条形统计图.解析:(2)根据n的值即可补全条形统讣图.答案:(2)n二120X40%二48,画出条形图:(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯立,请你估计该景区服务工作平均每天得到多少名游客的肯泄.12 + 54解析:(3)根据用样本估计总体,3600X 120 X100%,即可答.12 + 54答案:(3) 3600 X 120 X 10021980(人),答:估计该景区服务工作平均每天得到1980名游客的肯圧.18.由我国完全自主设计、自主建造的首艘国产航母于2020年5月成功完成第一次海上实验任务.如图,航母由四向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70° ^0. 94, cos70° ^0.34, tan70°*2、75, sin37°心06 cos37° = 0. 80, tan37° ^0. 75)解析:根据题意得:ZACD=70°, ZBCD二3厂,AC二80海里,在直角三角形ACD中,由三角函数得出CD二27. 2海里,在直角三角形BCD中,得出BD,即可得岀答案.答案:由题意得:ZACD=70° , ZBCD二37° , AC二80 海里,在直角三角形ACD中,CD二AC • cosZACD二27. 2海里,在直角三角形BCD中,BD二CD • tanZBCD二20. 4海里.答:还需航行的距离BD的长为20.4海里.19•如图,在平面直角坐标系xOy中,一次函数y二x+b的图象经过点A(-2, 0),与反比例函ky =—数X (x>0)的图象交于B(a, 4).(1)求一次函数和反比例函数的表达式.解析:⑴根据一次函数y=x+b的图象经过点A(-2, 0),可以求得b的值,从而可以解答本题. 答案:(1)・.•一次函数ync+b的图象经过点A(-2, 0),0=-2+b t得b=2 ♦・•・一次函数的解析式为y二x+2,ky =-•••一次函数的解析式为y二x+2与反比例函数x (x>o)的图象交于B(a. 4),A4=a+2»得k_•••4=2,得k二8,8y =-即反比例函数解析式为:X (x>0)・k y =—⑵设H是直线AB上一点,过M作MN〃x轴,交反比例函数x(x>0)的图象于点N,若A, 0, M, N为顶点的四边形为平行四边形,求点M的坐标.解析:(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.答案:(2)・・•点A(-2, 0),•••0A二2,8_设点M(m-2, m),点N(加,m),当MN/7A0且MN二A0时,四边形A0MN是平行四边形,8_加-(m-2) 1=2,解得,m二2迥或m二2血+2,•••点M的坐标为(2血-2, 2血)或(2邑2屁2)・20.如图,在RtAABC中,ZC=90° , AD平分ZBAC交BC于点D, 0为AB上一点,经过点A, D的00分别交AB, AC于点E, F,连接0F交AD于点G.(1)求证:BC是O0的切线.解析:(1)连接0D,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等, 等量代换得到内错角相等,进而得到0D与AC平行,得到0D与BC垂直,即可得证.答案:(1)证明:如图,连接0D,TAD为ZBAC的角平分线,••• ZBAD 二ZCAD,VOA=OD,••• ZODA=ZOAD,••• ZODA=ZCAD>AODZ/AC,V ZC=90° ,•••ZODC二90° ,•••0D 丄BC,•••BC为圆0的切线.(2)设AB二x, AF=y,试用含x, y的代数式表示线段AD的长.解析:⑵连接DF,由⑴得到BC为圆0的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD.答案:(2)连接DF,由(1)知BC为圆0的切线,••• ZFDC 二ZDAF,••• ZCDA=ZCFD,••• ZAFD 二ZADB,••• ZBAD 二ZDAF,AAABD^AADF,AB AD:.AD AF ,即AD:=AB • AF二xy,则AD=丄(3) 若 BE 二8, sinB 二 13,求 DG 的长.解析:(3)连接EF,设圆的半径为r,由sinB 的值,利用锐角三角函数立义求出r 的值,由 直径所对的圆周角为直角,得到EF 与BC 平行,得到sinZAEF 二sinB,进而求出DG 的长即 可./・_ 5设圆的半径为r,可得r + 813, 解得:r=5,AAE=1O, AB 二 18,•・・AE 是直径,•••ZAFE 二ZC 二90° ,•••EF 〃BC,••• ZAEF=ZB,AF = AEesin ZAEF = 10x —=— • 13 13 , •••AF 〃OD,50AG_ AF_JJ_10 13 .I DG OD 5 13 ,即 DG 二 23 AD >••• v 13 13“ 13 30x/13 30^13 DG = — x------------ = ----------则 23 13 23・填空题(共5小题,每小题4分,共20分)21 •已知 x+y 二0.2, x+3y=b 则代数式 x'+4xy+4y‘的值为 _____ .解析:原式分解因式后,将已知等式代入汁算即可求出值.Vx+y=0. 2 9 x+3y=l,A2x+4y=l. 2,即 x+2y=0. 6, 则原式二(x+2y)J0・36.答案:0. 36 22.汉代数学家赵爽在注解《周髀算经》时给岀的“赵爽弦图”是我国古代数学的瑰宝•如图 所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2: 3•现随sin B =OD 5 答案:(3)连接EF,在RtABOD 中,OB 13,sin ZAEF =AE 13,机向该图形内掷一枚小针.则针尖落在阴影区域的概率为・解析:针尖落在阴影区域的概率就是四个直角三角形的而积之和与大正方形而积的比.设两直角边分别是2x, 3x,则斜边即大正方形的边长为曲血小正方形边长为x,所以S大正方形=13乳S小正方形=乳S阴影=12x\12/ _ 12则针尖落在阴影区域的概率为13" 13・12答案:131 —一123 •已知a>0, a , S F-S厂1, »,•••(即当n 为大于1 的奇S =—« c数时,;当n为大于1的偶数时,Sn二-S H-1),按此规律,2 ________ .解析:根据Sn数的变化找出Sa的值每6个一循环,结合2018=336X6+2,即可得岀S沁二S:, 此题得解.2S5=* = —(" + l)Se 二-S?-l 二(a+1) -1二3,S厂丄=丄* ",…,・・・3的值每6个一循环.72018=336X6+2,6/ + 1答案:“424•如图,在菱形ABCD中,tanA=3 , M, N分别在边AD, BC上,将四边形AMNB沿MN翻折,BN使AB的对应线段EF经过顶点D,当EF丄AD时,CN的值为______ ・解析:延长NF与DC交于点H,V ZADF=90G ,•••ZA+ZFDH二90° ,V ZDFN+ZDFH=180° , ZA+ZB二180° , ZB=ZDFN,••• ZA=ZDFH,•••ZFDH+ZDFH二90° ,•••NH 丄DC,设DM二14 DE二3k, EM二5k,•••AD 二9k 二DC, DF=6k,4VtanA=tanZDFH=3 ,4则 sinZDFH 二 5 ,4 24 DH = — DF = —k •••5 53ACN=5CH=7k,ABN=2k,BN _2• C7V "7 • • •答案:7y =L25.设双曲线’x (k>0)与直线尸x 交于A, B 两点(点A 在第三象限),将双曲线在第一象 限的一支沿射线BA 的方向平移,使英经过点A,将双曲线在第三象限的一支沿射线AB 的方 向平移,使其经过点B,平移后的两条曲线相交于P, Q 两点,此时我们称平移后的两条曲ky =- 线所围部分(如图中阴影部分)为双曲线的“眸J PQ 为双曲线的“眸径“,当双曲线 x (k >0)的眸径为6时,k 的值为cos C = cos A =CH 3 Ivc "5解析:以PQ为边,作矩形PQQ' P r交双曲线于点P‘ . Q',联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y二p上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P'的坐标, 再利用反比例函数图象上点的坐标特征即可得岀关于k的一元一次方程,解之即可得出结论.以PQ为边,作矩形PQQ' P z交双曲线于点P‘ . Q* ,如图所示.y = x< k y =—联立直线AB及双曲线解析式成方程组,*•••点A的坐标为(一灰,一灰),点B的坐标为(仮,仄)・•••PQ二6,3 迈3^2・・.op二3,点P的坐标为(2 , 2 ).根据图形的对称性可知:AB二00’ =PP r ,3>/2----- +•••点P'的坐标为(2ky =-又・••点P‘在双曲线X上,3解得:k=2.3答案:2二、解答题(本大题共3小题,每小题10分,共30分)26•为了美化环境.建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调査,甲种花卉的种植费用y (元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.⑴直接写出当0WxW300和x>300时,y与X的函数关系式.解析:(1)由图可知y与x的函数关系式是分段函数,待立系数法求解析式即可.‘130x(0 K 300)答(1)'~[80A +15000(X>300)(2)广场上甲.乙两种花卉的种植而积共1200m3,若甲种花卉的种植而积不少于200*且不超过乙种花卉种植而积的2倍,那么应该怎样分配甲、乙两种花卉的种植而枳才能使种植总费用最少?最少总费用为多少元?解析:(2)设甲种花卉种植为a m2,则乙种花卉种植(12000-a)in2,根据实际意义可以确左a的范[1,结合种植费用y(元)与种植而积x(m2)之间的函数关系可以分类讨论最少费用为多少.答案:(2)设甲种花卉种植为am:,则乙种花卉种植(12000-(ml"> 200.[6/ < 2(1200-«)•••2OO0W8OO,当200Wa<300 时,WF130a+100(1200-a) =30a+12000;当a=200 时,W^=126000 元;当300WaW800 时,W:=80a+15000+100 (1200-a) =135000-20a:当圧800 时,W^=l 19000 元.VI19000 <126000.•.当a二800时,总费用最少,最少总费用为119000元.此时乙种花卉种植而积为1200-800=400m:.答:应该分配甲、乙两种花卉的种植而积分别是800m:和400m%才能使种植总费用最少, 最少总费用为119000元.27.在RtAABC 中,ZACB 二90° , AB二°, AC 二2,过点B 作直线m 〃AC,将ZkABC 绕点C 顺时针旋转得到AA' B‘ C'(点A, B的对应点分别为屮,B'),射线CA‘ , CB'分別交直线m于点P, Q.(1)如图1,当P与X重合时,求ZACA f的度数.解析:⑴由旋转可得:AC=A f C=2,进而得到BC二血,依据BC二90 °,可得cosZA f CB = — = —AC 2 ,即可得到ZA' CB二30° , ZACA Z二60° .答案:(1)由旋转可得:AC二A' 82,TZACB二90°,血",AC二2,・・・BC二的,V ZACB=90° , m〃AC,・・・ZA‘ BC二90° ,cos ZA'CB =—=—・A f C 2 ,•••ZA‘ CB二30° ,•••ZACA'二60°・(2)如图2,设A' B r与BC的交点为M,当M为"B‘的中点时,求线段PQ的长.PB =至BC =—解析:⑵根据M为A' B'的中点,即可得出ZA=ZA r CM,进而得到2勺>/3 2 7依据 tanZQ 二tanZA 二 2 ,即可得到 BQ 二BCX 石二2,进而得岀 PQ 二PB+BQ 二 2 .答案:(2)TM 为A' B'的中点,A ZA Z CM 二ZMA' C,由旋转可得,ZMA' C=ZA,A ZA=ZA Z CM,迺t an Z PCB=t an Z A= 2 ,PB = -BC = -・・・ 2 2 ,VtanZQ=tanZA= 2 ,_2_.'.BQ 二BCX V 二2,7•••PQ 二PB+BQ 二 2 ・(3) 在旋转过程中,当点P, Q 分别在CA‘ , CB'的延长线上时,试探究四边形PA' B f Q 的 而积是否存在最小值•若存在,求岀四边形PA' B‘ Q 的最小而积;若不存在,请说明理由. 解析:(3)依据%辺形PATQhS^pcQ-S'AmhSbPCQ-W,即可得到Smi 形“ Q 最小,即S»PCQ =-PQ^BC = ^-PQX 最小,而/2 答案:(3)如图所示:•;S PI 边走PA• 3 Q 最小,即S./.P8最小,I R・ S 込Q =^PQ X BC = *PQ法一:(几何法)取PQ 的中点G,则ZPCQ 二90° ,£利用几何法或代数法即可得到Sf 的最小值S M 边彤?A* B Q=3—备用图=S'PCQ — = S^PCQ••• CG二2 PQ,即PQ二2CG,当CG最小时,PQ最小,•••CG丄PQ,即CG与CB重合时,CG最小,.•.CdM, pg•二2®Sz.FCfl 的最小值二3, S 3 Q二3—丁^;法二(代数法)设PB-X, BQ二y, 由射影泄理得:刃二3, ・•・当PQ最小时,x+y最小, /• (x+y) :=x:+2xy+y:=x::+6+3r:: 2xy+6=12 当X二y二石时,“二”成立,•PQ = y/3+y/3=2s/3•• ,•\S AP CQ的最小值二3, S川边島PA 3 G二3-・528.如图,在平而宜角坐标系xOy中,以直线x=2对称轴的抛物线y=ax:+bx+c与直线1:y=kx+m(k>0)交于A(l, 1), B两点,与y轴交于C(0, 5),直线与y轴交于点D・(1)求抛物线的函数表达式. 解析:(1)根据已知列出方程组求解即可.~2a~2< c = 5a+b+c=\答案:(1)由题意可得,解得,a=l, b=-5> c=5:•••二次函数的解析式为:尸x :-5x+5.(2)设直线1与抛物线的对称轴的交点为F, G 是抛物线上位于对称轴右侧的一点,若 AF _ 3FB 4 ,且ABCG 与ABCD 面积相等,求点G 的坐标.解析:⑵作AM 丄x 轴,BN 丄x 轴,垂足分別为M, N,求出直线1的解析式,在分两种情况 分别分析出G 点坐标即可.AF MQ 3 则 ~FB =QN =43VMQ= 2 t9 HANQ=2, B(2 , 4).k + m = \' 9,1—K+m=—-12 4, 2< 1m =— 解得,I 12 ,1 1 1 =-x+— —2 2 , D (0・ 2 ), 同理可求, S BC =_亍 + 51 1 you = ~--v+- •••(DDG〃BC(G 在BC 下方),22 ,1 1 . c c一一x + —=对一5兀 + 5-2 2 ,3解得,X1=2 , x:二3,5Vx> 2 ,x—3»•••G(3, 一1).②G在BC上方时,直线GG与DG:关于BC对称,1 19y(: G =—x H—• 35 2 21 丄72 L -一一x + —= x -5x + 5-2 2 ,9 + 3佰9-3717解得,XF 4 ,氐二 4 ,5Vx> 2 ,9 + 3庐.•.X 二4,9 + 3庐67-3佰・・・G( 4 , 8 ),9 + 3 奶67-3庐综上所述点G的坐标为G(3. -1), G( 4 , 8 ).(3)若在x轴上有且仅有一点P,使ZAPB二90°,求k的值.解析:(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN 的中点,运用三角形相似建立等量关系列出方程求解即可.答案:(3)由题意可知:k+m二1,/• kx+1 - k二x■-5x+5 ♦解得,xFl, xFk+4,AB(k+4, k3+3k+l),设AB中点为O',TP点有且只有一个,・••以AB为直径的圆与x轴只有一个交点,且P为切点, A0r P丄x轴,・・.P为MN的中点,k + 5•••P( 2 , o),VAANfP^APNB,AM PN••9•••AM • BN=PN • PM>lx(C3R + l)+ + 4-字字•• ,Vk>0>.一6 + 4点(2>/6k = -------------- = _1 + --------二 6 3。

2020四川成都中考数学试卷

2020四川成都中考数学试卷

2020年四川省成都市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .122.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1044.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 36.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接12BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .68.(3分)(2020•成都)已知x =2是分式方程1的解,那么实数k 的值为( )k x +x ‒3x ‒1=A .3B .4C .5D .69.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .10310.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x 2+3x = .12.(4分)(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m 的取值范围为 .13.(4分)(2020•成都)如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为 .14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+()﹣2+|2|;12-3-9(2)解不等式组:.{4(x -1)≥x +2,①2x +13>x ‒1.②16.(6分)(2020•成都)先化简,再求值:(1),其中x =3.-1x +3÷x +2x 2‒9+217.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D 处测得塔A 处的仰角为45°,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.(10分)(2020•成都)在平面直角坐标系xOy 中,反比例函数y (x >0)的图象=m x经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点.(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.20.(10分)(2020•成都)如图,在△ABC 的边BC 上取一点O ,以O 为圆心,OC 为半径画⊙O ,⊙O 与边AB 相切于点D ,AC =AD ,连接OA 交⊙O 于点E ,连接CE ,并延长交线段AB 于点F .(1)求证:AC 是⊙O 的切线;(2)若AB =10,tan B ,求⊙O 的半径;=43(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m 0有实数根,则实数m -32=的取值范围是 .23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线FA 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A ,F A 1A 1B 1B 1C 1C 1D 1D 1E 1E 1F 1B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线FA 1B 1C 1D 1E 1F 1的长度是 .24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y 交于B ,D =4x =-1x两点.当这两条直线互相垂直,且四边形ABCD 的周长为10时,点A 的坐标为 .225.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为  ,线段DH 长度的最小值为 .五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表:x (元/件)1213141516y (件)120011001000900800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求的值.AB BC28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求的最大值;S 1S 2(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2020年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A.﹣2B.1C.2D.1 2【解答】解:﹣2的绝对值为2.故选:C.2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A.B.C.D.【解答】解:从左面看是一列2个正方形.故选:D.3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A.3.6×103B.3.6×104C.3.6×105D.36×104【解答】解:36000=3.6×104,故选:B.4.(3分)(2020•成都)在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是( )A.(3,0)B.(1,2)C.(5,2)D.(3,4)【解答】解:将点P(3,2)向下平移2个单位长度所得到的点坐标为(3,2﹣2),即(3,0),故选:A .5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 3【解答】解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、a 3•a 2=a 5,原计算错误,故此选项不符合题意;C 、(﹣a 3b )2=a 6b 2,原计算正确,故此选项符合题意;D 、a 2b 3÷a =ab 3,原计算错误,故此选项不符合题意.故选:C .6.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人.故选:A .7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接12BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6【解答】解:由作图知,MN 是线段BC 的垂直平分线,∴BD =CD ,∵AC =6,AD =2,∴BD =CD =4,故选:C .8.(3分)(2020•成都)已知x =2是分式方程1的解,那么实数k 的值为( )k x +x ‒3x ‒1=A .3B .4C .5D .6【解答】解:把x =2代入分式方程得:1=1,k 2‒解得:k =4.故选:B .9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .103【解答】解:∵直线l 1∥l 2∥l 3,∴,AB BC =DE EF∵AB =5,BC =6,EF =4,∴,56=DE 4∴DE ,=103故选:D .10.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9【解答】解:∵二次函数y =x 2+2x ﹣8=(x +1)2﹣9=(x +4)(x ﹣2),∴该函数的对称轴是直线x =﹣1,在y 轴的左侧,故选项A 错误;当x =0时,y =﹣8,即该函数与y 轴交于点(0,﹣8),故选项B 错误;当y =0时,x =2或x =﹣4,即图象与x 轴的交点坐标为(2,0)和(﹣4,0),故选项C 错误;当x =﹣1时,该函数取得最小值y =﹣9,故选项D 正确;故选:D .二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x 2+3x = x (x +3) .【解答】解:x 2+3x =x (x +3).12.(4分)(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m 的取值范围为 m .>12【解答】解:∵一次函数y =(2m ﹣1)x +2中,函数值y 随自变量x 的增大而增大,∴2m ﹣1>0,解得m .>12故答案为:m .>1213.(4分)(2020•成都)如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为 30° .【解答】解:∵OB =OC ,∠B =55°,∴∠BOC =180°﹣2∠B =70°,∵∠AOB =50°,∴∠AOC =∠AOB +∠BOC =70°+50°=120°,∵OA =OC ,∴∠A =∠OCA 30°,=180°‒120°2=故答案为:30°.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .{5x +2y =102x +5y =8【解答】解:设1头牛值金x 两,1只羊值金y 两,由题意可得,,{5x +2y =102x +5y =8故答案为:.{5x +2y =102x +5y =8三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+()﹣2+|2|;12-3-9(2)解不等式组:.{4(x -1)≥x +2,①2x +13>x ‒1.②【解答】解:(1)原式=24+23×32+-3‒4+23=3+-3‒=3;(2),{4(x -1)≥x +2,①2x +13>x ‒1.②由①得,x ≥2;由②得,x <4,故此不等式组的解集为:2≤x <4.16.(6分)(2020•成都)先化简,再求值:(1),其中x =3.-1x +3÷x +2x 2‒9+2【解答】解:原式•=x +3‒1x +3(x ‒3)(x +3)x +2=x ﹣3,当x =3时,+2原式.=217.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 180 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 126° ;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【解答】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1﹣20%﹣15%﹣30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;(3)列表如下:甲乙丙丁甲一(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)一(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)一(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)一∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P (选中甲、乙).=212=1618.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D 处测得塔A 处的仰角为45°,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点D 作DE ⊥AB 于点E ,根据题意可得四边形DCBE 是矩形,∴DE =BC ,BE =DC =61,在Rt △ADE 中,∵∠ADE =45°,∴AE =DE ,∴AE =DE =BC ,在Rt △BDE 中,∠BDE =22°,∴DE 152.5,=BE tan 22°≈610.40≈∴AB =AE +BE =DE +CD =152.5+61≈214(米).答:观景台的高AB 的值约为214米.19.(10分)(2020•成都)在平面直角坐标系xOy 中,反比例函数y (x >0)的图象=mx经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点.(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y (x >0)的图象经过点A (3,4),=mx∴k =3×4=12,∴反比例函数的表达式为y ;=12x(2)∵直线y =kx +b 过点A ,∴3k +b =4,∵过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点,∴B (,0),C (0,b ),-bk∵△AOB 的面积为△BOC 的面积的2倍,∴4×||=2||×|b |,12×-b k ×12×-bk∴b =±2,当b =2时,k ,=23当b =﹣2时,k =2,∴直线的函数表达式为:y x +2,y =2x ﹣2.=2320.(10分)(2020•成都)如图,在△ABC 的边BC 上取一点O ,以O 为圆心,OC 为半径画⊙O ,⊙O 与边AB 相切于点D ,AC =AD ,连接OA 交⊙O 于点E ,连接CE ,并延长交线段AB 于点F .(1)求证:AC 是⊙O 的切线;(2)若AB =10,tan B ,求⊙O 的半径;=43(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.【解答】解:(1)如图,连接OD ,∵⊙O 与边AB 相切于点D ,∴OD ⊥AB ,即∠ADO =90°,∵AO =AO ,AC =AD ,OC =OD ,∴△ACO ≌△ADO (SSS ),∴∠ADO =∠ACO =90°,又∵OC 是半径,∴AC 是⊙O 的切线;(2)∵tan B ,=43=ACBC∴设AC =4x ,BC =3x ,∵AC 2+BC 2=AB 2,∴16x 2+9x 2=100,∴x =2,∴BC =6,∵AC =AD =8,AB =10,∴BD =2,∵OB 2=OD 2+BD 2,∴(6﹣OC )2=OC 2+4,∴OC ,=83故⊙O 的半径为;83(3)连接OD ,DE ,由(1)可知:△ACO ≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD ,又∵CO =DO ,OE =OE ,∴△COE ≌△DOE (SAS ),∴∠OCE =∠OED ,∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°﹣∠OEC ﹣∠OED =180°﹣2∠OCE ,∵点F 是AB 中点,∠ACB =90°,∴CF =BF =AF ,∴∠FCB =∠FBC ,∴∠DFE =180°﹣∠BCF ﹣∠CBF =180°﹣2∠OCE ,∴∠DEF =∠DFE ,∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 49 .【解答】解:∵a =7﹣3b ,∴a +3b =7,∴a 2+6ab +9b 2=(a +3b )2=72=49,故答案为:49.22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m0有实数根,则实数m -32=的取值范围是 m .≤72【解答】解:∵关于x 的一元二次方程2x 2﹣4x +m 0有实数根,-32=∴△=(﹣4)2﹣4×2×(m )=16﹣8m +12≥0,-32解得:m ,≤72故答案为:m .≤7223.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线FA 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A ,F A 1A 1B 1B 1C 1C 1D 1D 1E 1E 1F 1B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线FA 1B 1C 1D 1E 1F 1的长度是 7π .【解答】解:的长,F A 1=60⋅π⋅1180=π3的长,A 1B 1=60⋅π⋅2180=2π3的长,B 1C 1=60⋅π⋅3180=3π3的长,C 1D 1=60⋅π⋅4180=4π3的长,D 1E 1=60⋅π⋅5180=5π3的长,E 1F 1=60⋅π⋅6180=6π3∴曲线FA 1B 1C 1D 1E 1F 1的长度7π,=π3+2π3+⋯+6π3=21π3=故答案为7π.24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y 交于B ,D =4x=-1x两点.当这两条直线互相垂直,且四边形ABCD 的周长为10时,点A 的坐标为 (2,2)或(2,) .2222【解答】解:联立y =mx (m >0)与y 并解得:,故点A 的坐标为(=4x {x =±2m y =±2m,2),2mm 联立y =nx (n <0)与y 同理可得:点D (,),=-1x ‒1n-‒n ∵这两条直线互相垂直,则mn =﹣1,故点D (,),则点B (,),m -1m-m 1m则AD 2=()2+(2)25m ,2m‒m m +1m=5m+同理可得:AB 25m =AD 2,=5m+则AB 10,即AB 25m ,=14×2=252=5m+解得:m =2或,12故点A 的坐标为(,2)或(2,),2222故答案为:(,2)或(2,).222225.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为 3 ,线段2DH 长度的最小值为 .13‒2【解答】解:连接EF 交PQ 于M ,连接BM ,取BM 的中点O ,连接OH ,OD ,过点O 作ON ⊥CD 于N .∵四边形ABCD 是矩形,DF =CF ,AE =EB ,∴四边形ADFE 是矩形,∴EF =AD =3,∵FQ ∥PE ,∴△MFQ ∽△MEP ,∴,MF ME =FQPE∵PE =2FQ ,∴EM =2MF ,∴EM =2,FM =1,当点P 与A 重合时,PQ 的值最大,此时PM 2,MQ =AE 2+ME 2=22+22=2=,FQ 2+MF 2=12+12=2∴PQ =3,2∵MF ∥ON ∥BC ,MO =OB ,∴FN =CN =1,DN =DF +FN =3,ON 2,=12(FM +BC )=∴OD ,=DN 2+ON 2=32+22=13∵BH ⊥PQ ,∴∠BHM =90°,∵OM =OB ,∴OH BM ,=12=12×22+22=2∵DH ≥OD ﹣OH ,∴DH ,≥13‒2∴DH 的最小值为,13‒2故答案为3,.213‒2五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表:x (元/件)1213141516y (件)120011001000900800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.【解答】解:(1)∵y 与x 满足一次函数的关系,∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:,{1200=12k +b 1100=13k +b解得:,{k =-100b =2400∴y 与x 的函数关系式为:y =﹣100x +2400;(2)设线上和线下月利润总和为m 元,则m =400(x ﹣2﹣10)+y (x ﹣10)=400x ﹣4800+(﹣100x +2400)(x ﹣10)=﹣100(x ﹣19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求的值.AB BC【解答】解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴BC =BF ,∠FBE =∠EBC ,∵BC =2AB ,∴BF =2AB ,∴∠AFB =30°,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFB =∠CBF =30°,∴∠CBE ∠FBC =15°;=12(2)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处,∴∠BFE =∠C =90°,CE =EF ,又∵矩形ABCD 中,∠A =∠D =90°,∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF ,∴△FAB ∽△EDF ,∴,AF DE =AB DF∴AF •DF =AB •DE ,∵AF •DF =10,AB =5,∴DE =2,∴CE =DC ﹣DE =5﹣2=3,∴EF =3,∴DF ,=EF 2‒DE 2=32‒22=5∴AF 2,=105=5∴BC =AD =AF +DF =23.5+5=5(3)过点N 作NG ⊥BF 于点G ,∵NF =AN +FD ,∴NF AD BC ,=12=12∵BC =BF ,∴NF BF ,=12∵∠NFG =∠AFB ,∠NGF =∠BAF =90°,∴△NFG ∽△BFA ,∴,NG AB =FG FA =NF BF =12设AN =x ,∵BN 平分∠ABF ,AN ⊥AB ,NG ⊥BF ,∴AN =NG =x ,设FG =y ,则AF =2y ,∵AB 2+AF 2=BF 2,∴(2x )2+(2y )2=(2x +y )2,解得y x .=43∴BF =BG +GF =2x x x .+43=103∴.AB BC =AB BF =2x 103x =3528.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求的最大值;S 1S 2(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y =a (x +1)(x ﹣4).∵将C (0,﹣2)代入得:4a =2,解得a ,=12∴抛物线的解析式为y (x +1)(x ﹣4),即y x 2x ﹣2.=12=12-32(2)过点D 作DG ⊥x 轴于点G ,交BC 于点F ,过点A 作AK ⊥x 轴交BC 的延长线于点K ,∴AK ∥DG ,∴△AKE ∽△DFE ,∴,DF AK =DE AE∴,S 1S 2=S △BDE S △ABE =DE AE =DF AK设直线BC 的解析式为y =kx +b ,∴,解得,{4k +b =0b =‒2{k =12b =‒2∴直线BC 的解析式为y x ﹣2,=12∵A (﹣1,0),∴y 2,=-12‒=-52∴AK ,=52设D (m ,m ﹣2),则F (m ,m ﹣2),12m 2‒3212∴DF m +22m .=12m ‒2‒12m 2+32=-12m 2+∴m .S 1S 2=‒12m 2+2m52=‒15m 2+45=-15(m ‒2)2+45∴当m =2时,有最大值,最大值是.S 1S 245(3)符合条件的点P 的坐标为()或().689,3496+2415,3+415∵l ∥BC ,∴直线l 的解析式为y x ,=12设P (a ,),a 2①当点P 在直线BQ 右侧时,如图2,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M ,∵A (﹣1,0),C (0,﹣2),B (4,0),∴AC ,AB =5,BC =2,∵AC 2+BC 2=AB 2,∴∠ACB =90°,=55∵△PQB ∽△CAB ,∴,∵∠QMP =∠BNP =90°,PQ PB =AC BC =12∴∠MQP +∠MPQ =90°,∠MPQ +∠PBN =90°,∴∠MQP =∠PBN ,∴△QPM ∽△PBN ,∴,QM PN =PM BN =PQ PB =12∴QM ,PM (a ﹣4)a ﹣2,=a 4=12=12∴MN =a ﹣2,BN ﹣QM =a ﹣4a ﹣4,-a 4=34∴Q (a ,a ﹣2),34将点Q 的坐标代入抛物线的解析式得a ﹣2=a ﹣2,12×(34a )2‒32×34解得a =0(舍去)或a .=689∴P ().689,349②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为(a ,2).此时点P 的坐标为().546+2415,3+415。

【精选试卷】四川成都市中考数学解答题专项练习(答案解析)

【精选试卷】四川成都市中考数学解答题专项练习(答案解析)

一、解答题1.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?2.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 3.解不等式组3415122x x x x ≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来4.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.5.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?6.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?7.某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w87518751875875(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?8.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.9.将A B C D(1)A在甲组的概率是多少?,都在甲组的概率是多少?(2)A B10.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?11.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++12.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x. 13.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题: 当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若()2433a m n +=+,且ab m n 、、、均为正整数,求a 的值.14.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?15.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 16.计算:103212sin45(2π)-+--+-.17.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人? 18.矩形ABCD 的对角线相交于点O .DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠ACB =30°,菱形OCED 的而积为83,求AC 的长.19.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?20.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 21.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题: (1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.23.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标;(3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.24.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)25.如图,AD 是ABC 的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .(1)求证:四边形ADCE 是平行四边形;(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是13S 的三角形.26.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.27.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.28.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)29.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB . 30.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈)【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题 1. 2. 3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、解答题1.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.2.(1)223a 5ab 3b -+-;(2)m m 2-.【分析】()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a2b(2a b)-+--=2222a2ab ab2b4a4ab b+---+-223a5ab3b=-+-;(2)221m4m 4 1m1m m-+⎛⎫-÷⎪--⎝⎭=()2m m1 m2m1(m2)--⋅--mm2=-.【点睛】本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.3.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键. 4.(1)证明见解析;(2)四边形AECF是菱形.证明见解析.【解析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.5.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x的一元二次方程.6.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人), 答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图7.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85-a ),得a=80,w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w 取得最大值,此时w=2000,(3)设科技创新后成本为b 元,当x=90时,(-5×90+600)(90-b )≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.8.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.9.(1)12(2)16【解析】解:所有可能出现的结果如下:总共有6种结果,每种结果出现的可能性相同.(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1610.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧. 11.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.12.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n 为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.13.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 14.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x <50、50≤x <90两种情况分别列函数关系式可得;(3)当1≤x <50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x <90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y 1=kx+b ,将(1,41),(50,90)代入,得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩∴y 1=x+40,当50≤x<90时,y 1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.15.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.16.13【解析】 【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答. 【详解】 原式12212132=+-⨯+ =12121313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.17.甲公司有600人,乙公司有500人. 【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人, 根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x=500是该方程的实数根.18.(1)证明见解析;(2)8.【解析】【分析】(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.【详解】解:(1)∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∵四边形ABCD是矩形∴AO=OC=BO=OD∴四边形OCED是菱形(2)∵∠ACB=30°,∴∠DCO=90°-30°=60°又∵OD=OC∴△OCD是等边三角形过D作DF⊥OC于F,则CF=12OC,设CF=x,则OC=2x,AC=4x.在Rt△DFC中,tan60°=DF FC,∴DF=3x.∴OC•DF=83.∴x=2.∴AC=4×2=8.【点睛】本题考查了矩形的性质,对角线相等且互相平分,菱形的判定和性质,以及解直角三角形等知识点.19.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论. 试题解析:(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;∴22? (01){157?(1)x x y x x 甲<<=+>,=163y x +乙;(2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <12; 令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4; 令y 甲=y 乙,即15x+7=16x+3,解得:x=4; 令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型.20.44a -,3-. 【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -;当a=14时,原式=1444⨯-=14-=3-.考点:整式的混合运算—化简求值.21.(1)280名;(2)补图见解析;108°;(3)0.1. 【解析】 【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率. 【详解】解:(1)56÷20%=280(名), 答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名), 补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°, 答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D E A(A ,B )(A ,C ) (A ,D ) (A ,E ) B (B ,A )(B ,C )(B ,D ) (B ,E ) C (C ,A ) (C ,B )(C ,D )(C ,E ) D (D ,A ) (D ,B ) (D ,C )(D ,E )E(E ,A )(E ,B )(E ,C )(E ,D )用树状图为:共20种情况,恰好选到“C”和“E”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是0.1.22.(1)DE=3;(2)ADB S 15∆=. 【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可; (2)利用勾股定理求出AB 的长,然后计算△ADB 的面积. 【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°, ∴CD=DE , ∵CD=3, ∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.(1)213y x x 222=--;(2)D 的坐标为2⎛ ⎝⎭,2⎛+ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】。

四川省成都市中考数学试卷(A卷)

四川省成都市中考数学试卷(A卷)

四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1y2.<故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,=π,故S圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD ,再沿∠ADC 的平分线DE 折叠,如图2,点C 落在点C′处,最后按图3所示方式折叠,使点A 落在DE 的中点A′处,折痕是FG ,若原正方形纸片的边长为6cm ,则FG=cm .【分析】作GM ⊥AC′于M ,A′N ⊥AD 于N ,AA′交EC′于K .易知MG=AB=AC′,首先证明△AKC′≌△GFM ,可得GF=AK ,由AN=4.5cm ,A′N=1.5cm ,C′K ∥A′N ,推出=,可得=,推出C′K=1cm ,在Rt △A C′K 中,根据AK=,求出AK 即可解决问题.【解答】解:作GM ⊥AC′于M ,A′N ⊥AD 于N ,AA′交EC′于K .易知MG=AB=AC′, ∵GF ⊥AA′,∴∠AFG +∠FAK=90°,∠MGF +∠MFG=90°, ∴∠MGF=∠KAC′, ∴△AKC′≌△GFM , ∴GF=AK ,∵AN=4.5cm ,A′N=1.5cm ,C′K ∥A′N ,∴=,∴=,∴C′K=1cm ,在Rt △AC′K 中,AK==cm ,∴FG=AK=cm , 故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质、四点共圆、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活应用所学知识解决问题,学会添加辅助圆解决问题,属于中考压轴题.28.(10分)(2017•成都)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c 与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.。

2021年四川省成都市中考数学试题及参考答案(word解析版)

2021年四川省成都市中考数学试题及参考答案(word解析版)

2021年成都市高中阶段教育学校统一招生考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.72.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×1084.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)5.下列计算正确的是()A.3mn﹣2mn=1 B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n2 6.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAFC.AE=AD D.∠AEB=∠AFD7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34 B.35 C.36 D.408.分式方程+=1的解为()A.x=2 B.x=﹣2 C.x=1 D.x=﹣19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4π B.6π C.8π D.12π第Ⅱ卷(非选择题共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.因式分解:x2﹣4=.12.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.根据图表信息,解答下列问题:(1)分别求出表中m ,n 的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角∠MBC =33°,在与点A 相距3.5米的测点D 处安置测倾器,测得点M 的仰角∠MEC =45°(点A ,D 与N 在一条直线上),求电池板离地面的高度MN 的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy 中,一次函数y =x+的图象与反比例函数y =(x >0)的图象相交于点A (a ,3),与x 轴相交于点B .(1)求反比例函数的表达式;(2)过点A 的直线交反比例函数的图象于另一点C ,交x 轴正半轴于点D ,当△ABD 是以BD 为底的等腰三角形时,求直线AD 的函数表达式及点C 的坐标.20.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,连接AC ,BC ,D 为AB 延长线上一点,连接CD ,且∠BCD =∠A .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为,△ABC 的面积为2,求CD 的长;(3)在(2)的条件下,E 为⊙O 上一点,连接CE 交线段OA 于点F ,若=,求BF 的长. B 卷(共50分)课程人数 篮球 m 足球 21 排球 30 乒乓球 n一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.答案与解析A卷(共100分)第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求)1.﹣7的倒数是()A.﹣B.C.﹣7 D.7【知识考点】倒数.【思路分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解题过程】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.【总结归纳】此题主要考查了倒数,正确掌握倒数的定义是解题关键.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解题过程】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×108【知识考点】科学记数法—表示较大的数.【思路分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解题过程】解:3亿=300000000=3×108.故选:D.【总结归纳】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()。

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)

成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。

3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。

考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。

4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。

5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。

A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。

1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。

据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。

2022年四川省成都市中考数学真题(解析版)

2022年四川省成都市中考数学真题(解析版)
A. B.
C. D.
【答案】A
【解析】
【分析】根据题意可以列出相应的方程组,从而可以解答本题.
【详解】解:设苦果有 个,甜果有 个,由题意可得,
故选:A.
【点睛】本题考查了由实际问题抽象出二元一次方程组的有关知识,正确找到相等关系是解决本题的关键.
8.如图,二次函数 的图像与 轴相交于 , 两点,对称轴是直线 ,下列说法正确的是()
故选:B.
【点睛】本题考查了众数的知识;解题的关键是熟练掌握众数的定义:众数是指在统计分布上具有明显集中趋势点的数值,也就是一组数据中出现次数最多的数值.
6.如图,正六边形 内接于⊙ ,若⊙ 的周长等于 ,则正六边形的边长为()
A. B. C.3D.
【答案】C
【解析】
【分析】连接OB,OC,由⊙O的周长等于6π,可得⊙O的半径,又由圆的内接多边形的性质,即可求得答案.
【答案】7
【解析】
【分析】连接EC,依据垂直平分线的性质得 .由已知易得 ,在Rt△AEC中运用勾股定理求得AE,即可求得答案.
【详解】解:由已知作图方法可得, 是线段 的垂直平分线,
连接EC,如图,
所以 ,
所以 ,
所以∠BEC=∠CEA=90°,
因为 , ,
所以 ,
在 中, ,
所以 ,
因此 的长为7.
(2)分别解出两个不等式的解集再求其公共解.
【详解】解:
(1)
=
=
=1.
(2)
不等式①的解集是x≥-1;
不等式②的解集是x<2;
所以原不等式组的解集是-1≤x<2.
【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

2020年四川省成都市中考数学试卷含解析

2020年四川省成都市中考数学试卷含解析

2020年四川省成都市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×1044.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 36.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6 8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .10310.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x 2+3x = .12.(4分)(2020•成都)一次函数y =(2m ﹣1)x +2的值随x 值的增大而增大,则常数m的取值范围为 .13.(4分)(2020•成都)如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为 .14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 .三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9; (2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②. 16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有 人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为 ;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)19.(10分)(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB =10,tan B =43,求⊙O 的半径;(3)若F 是AB 的中点,试探究BD +CE 与AF 的数量关系并说明理由.四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 .22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 .23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 .25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为 ,线段DH 长度的最小值为 .五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件)12 13 14 15 16 y (件) 1200 1100 1000 900 800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC 的值.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值; (3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.2020年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)(2020•成都)﹣2的绝对值是( )A .﹣2B .1C .2D .12 【解答】解:﹣2的绝对值为2.故选:C .2.(3分)(2020•成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )A .B .C .D .【解答】解:从左面看是一列2个正方形.故选:D .3.(3分)(2020•成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为( )A .3.6×103B .3.6×104C .3.6×105D .36×104【解答】解:36000=3.6×104,故选:B .4.(3分)(2020•成都)在平面直角坐标系中,将点P (3,2)向下平移2个单位长度得到的点的坐标是( )A .(3,0)B .(1,2)C .(5,2)D .(3,4)【解答】解:将点P (3,2)向下平移2个单位长度所得到的点坐标为(3,2﹣2),即(3,0),故选:A .5.(3分)(2020•成都)下列计算正确的是( )A .3a +2b =5abB .a 3•a 2=a 6C .(﹣a 3b )2=a 6b 2D .a 2b 3÷a =b 3【解答】解:A 、3a 与2b 不是同类项,不能合并,原计算错误,故此选项不符合题意;B 、a 3•a 2=a 5,原计算错误,故此选项不符合题意;C 、(﹣a 3b )2=a 6b 2,原计算正确,故此选项符合题意;D 、a 2b 3÷a =ab 3,原计算错误,故此选项不符合题意.故选:C .6.(3分)(2020•成都)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( )A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .7.(3分)(2020•成都)如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交AC 于点D ,连接BD .若AC =6,AD =2,则BD 的长为( )A .2B .3C .4D .6【解答】解:由作图知,MN 是线段BC 的垂直平分线,∴BD =CD ,∵AC =6,AD =2,∴BD =CD =4,故选:C .8.(3分)(2020•成都)已知x =2是分式方程k x +x−3x−1=1的解,那么实数k 的值为( )A .3B .4C .5D .6 【解答】解:把x =2代入分式方程得:k 2−1=1,解得:k =4.故选:B .9.(3分)(2020•成都)如图,直线l 1∥l 2∥l 3,直线AC 和DF 被l 1,l 2,l 3所截,AB =5,BC =6,EF =4,则DE 的长为( )A .2B .3C .4D .103【解答】解:∵直线l 1∥l 2∥l 3,∴AB BC =DE EF ,∵AB =5,BC =6,EF =4,∴56=DE 4,∴DE =103,故选:D .10.(3分)(2020•成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(﹣2,0)和(4,0)D .y 的最小值为﹣9【解答】解:∵二次函数y =x 2+2x ﹣8=(x +1)2﹣9=(x +4)(x ﹣2),∴该函数的对称轴是直线x =﹣1,在y 轴的左侧,故选项A 错误;当x =0时,y =﹣8,即该函数与y 轴交于点(0,﹣8),故选项B 错误;当y=0时,x=2或x=﹣4,即图象与x轴的交点坐标为(2,0)和(﹣4,0),故选项C错误;当x=﹣1时,该函数取得最小值y=﹣9,故选项D正确;故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)(2020•成都)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(4分)(2020•成都)一次函数y=(2m﹣1)x+2的值随x值的增大而增大,则常数m的取值范围为m>12.【解答】解:∵一次函数y=(2m﹣1)x+2中,函数值y随自变量x的增大而增大,∴2m﹣1>0,解得m>1 2.故答案为:m>1 2.13.(4分)(2020•成都)如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为30°.【解答】解:∵OB=OC,∠B=55°,∴∠BOC=180°﹣2∠B=70°,∵∠AOB=50°,∴∠AOC=∠AOB+∠BOC=70°+50°=120°,∵OA=OC,∴∠A=∠OCA=180°−120°2=30°,故答案为:30°.14.(4分)(2020•成都)《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为 {5x +2y =102x +5y =8 .【解答】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(12分)(2020•成都)(1)计算:2sin60°+(12)﹣2+|2−√3|−√9;(2)解不等式组:{4(x −1)≥x +2,①2x+13>x −1.②.【解答】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3 =3;(2){4(x −1)≥x +2,①2x+13>x −1.②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.16.(6分)(2020•成都)先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2. 【解答】解:原式=x+3−1x+3•(x−3)(x+3)x+2=x ﹣3, 当x =3+√2时, 原式=√2.17.(8分)(2020•成都)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有180人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为126°;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【解答】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1﹣20%﹣15%﹣30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;(3)列表如下:甲乙丙丁甲一(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)一(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)一(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)一∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.18.(8分)(2020•成都)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)【解答】解:过点D作DE⊥AB于点E,根据题意可得四边形DCBE是矩形,∴DE=BC,BE=DC=61,在Rt△ADE中,∵∠ADE=45°,∴AE=DE,∴AE=DE=BC,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22°≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.19.(10分)(2020•成都)在平面直角坐标系xOy 中,反比例函数y =mx (x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【解答】解:(1)∵反比例函数y =mx(x >0)的图象经过点A (3,4), ∴k =3×4=12,∴反比例函数的表达式为y =12x ; (2)∵直线y =kx +b 过点A , ∴3k +b =4,∵过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点, ∴B (−bk,0),C (0,b ),∵△AOB 的面积为△BOC 的面积的2倍, ∴12×4×|−bk |=2×12×|−bk |×|b |,∴b =±2, 当b =2时,k =23, 当b =﹣2时,k =2,∴直线的函数表达式为:y=23x+2,y=2x﹣2.20.(10分)(2020•成都)如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tan B=43,求⊙O的半径;(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.【解答】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tan B=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x 2+9x 2=100, ∴x =2, ∴BC =6,∵AC =AD =8,AB =10, ∴BD =2, ∵OB 2=OD 2+BD 2, ∴(6﹣OC )2=OC 2+4, ∴OC =83, 故⊙O 的半径为83;(3)连接OD ,DE ,由(1)可知:△ACO ≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE ≌△DOE (SAS ), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°﹣∠OEC ﹣∠OED =180°﹣2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°﹣∠BCF ﹣∠CBF =180°﹣2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .四、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21.(4分)(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 49 . 【解答】解:∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.22.(4分)(2020•成都)关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根,则实数m 的取值范围是 m ≤72.【解答】解:∵关于x 的一元二次方程2x 2﹣4x +m −32=0有实数根, ∴△=(﹣4)2﹣4×2×(m −32)=16﹣8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.23.(4分)(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 7π .【解答】解:FA1̂的长=60⋅π⋅1180=π3,A 1B 1̂的长=60⋅π⋅2180=2π3, B 1C 1̂的长=60⋅π⋅3180=3π3, C 1D 1̂的长=60⋅π⋅4180=4π3, D 1E 1̂的长=60⋅π⋅5180=5π3, E 1F 1̂的长=60⋅π⋅6180=6π3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π, 故答案为7π.24.(4分)(2020•成都)在平面直角坐标系xOy 中,已知直线y =mx (m >0)与双曲线y =4x交于A ,C 两点(点A 在第一象限),直线y =nx (n <0)与双曲线y =−1x交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为 (√2,2√2)或(2√2,√2) .【解答】解:联立y =mx (m >0)与y =4x 并解得:{x =2√m y =±2√m,故点A 的坐标为(√m,2√m ),联立y =nx (n <0)与y =−1x 同理可得:点D (√−1n ,−√−n ),∵这两条直线互相垂直,则mn =﹣1,故点D (√m ,1√m ),则点B (−√m ,√m), 则AD 2=(√m−√m )2+(2√m √m )2=5m +5m ,同理可得:AB 2=5m +5m =AD 2,则AB =14×10√2,即AB 2=252=5m +5m , 解得:m =2或12,故点A 的坐标为(√2,2√2)或(2√2,√2), 故答案为:(√2,2√2)或(2√2,√2).25.(4分)(2020•成都)如图,在矩形ABCD 中,AB =4,BC =3,E ,F 分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为3√2,线段DH长度的最小值为√13−√2.【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD﹣OH,∴DH ≥√13−√2,∴DH 的最小值为√13−√2, 故答案为3√2,√13−√2.五、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:件)与线下售价x (单位:元/件,12≤x <24)满足一次函数的关系,部分数据如下表: x (元/件) 12 13 14 15 16 y (件)120011001000900800(1)求y 与x 的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x 为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润. 【解答】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b 1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =﹣100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x ﹣2﹣10)+y (x ﹣10)=400x ﹣4800+(﹣100x +2400)(x ﹣10)=﹣100(x ﹣19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元. 27.(10分)(2020•成都)在矩形ABCD 的CD 边上取一点E ,将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若BC =2BA ,求∠CBE 的度数;(2)如图2,当AB =5,且AF •FD =10时,求BC 的长;(3)如图3,延长EF ,与∠ABF 的角平分线交于点M ,BM 交AD 于点N ,当NF =AN +FD 时,求AB BC的值.【解答】解:(1)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴BC =BF ,∠FBE =∠EBC , ∵BC =2AB , ∴BF =2AB , ∴∠AFB =30°, ∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠AFB =∠CBF =30°, ∴∠CBE =12∠FBC =15°;(2)∵将△BCE 沿BE 翻折,使点C 恰好落在AD 边上点F 处, ∴∠BFE =∠C =90°,CE =EF , 又∵矩形ABCD 中,∠A =∠D =90°,∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°, ∴∠AFB =∠DEF , ∴△F AB ∽△EDF , ∴AF DE=AB DF,∴AF •DF =AB •DE ,∵AF •DF =10,AB =5, ∴DE =2,∴CE =DC ﹣DE =5﹣2=3, ∴EF =3,∴DF =√EF 2−DE 2=√32−22=√5, ∴AF =10√5=2√5, ∴BC =AD =AF +DF =2√5+√5=3√5. (3)过点N 作NG ⊥BF 于点G ,∵NF =AN +FD , ∴NF =12AD =12BC , ∵BC =BF , ∴NF =12BF ,∵∠NFG =∠AFB ,∠NGF =∠BAF =90°, ∴△NFG ∽△BF A , ∴NG AB=FG FA=NF BF=12,设AN =x ,∵BN 平分∠ABF ,AN ⊥AB ,NG ⊥BF , ∴AN =NG =x , 设FG =y ,则AF =2y , ∵AB 2+AF 2=BF 2,∴(2x )2+(2y )2=(2x +y )2, 解得y =43x .∴BF =BG +GF =2x +43x =103x . ∴AB BC=AB BF=2x103x =35.28.(12分)(2020•成都)在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣1,0),B (4,0)两点,与y 轴交于点C (0,﹣2). (1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;(3)如图2,连接AC ,BC ,过点O 作直线l ∥BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使△PQB ∽△CAB .若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为y =a (x +1)(x ﹣4). ∵将C (0,﹣2)代入得:4a =2,解得a =12,∴抛物线的解析式为y =12(x +1)(x ﹣4),即y =12x 2−32x ﹣2.(2)过点D 作DG ⊥x 轴于点G ,交BC 于点F ,过点A 作AK ⊥x 轴交BC 的延长线于点K ,∴AK ∥DG , ∴△AKE ∽△DFE , ∴DF AK =DEAE , ∴S 1S 2=S △BDE S △ABE=DE AE=DF AK,设直线BC 的解析式为y =kx +b ,∴{4k +b =0b =−2,解得{k =12b =−2, ∴直线BC 的解析式为y =12x ﹣2, ∵A (﹣1,0), ∴y =−12−2=−52, ∴AK =52,设D (m ,12m 2−32m ﹣2),则F (m ,12m ﹣2),∴DF =12m −2−12m 2+32m +2=−12m 2+2m . ∴S 1S 2=−12m 2+2m52=−15m 2+45m =−15(m −2)2+45.∴当m =2时,S 1S 2有最大值,最大值是45.(3)符合条件的点P 的坐标为(689,349)或(6+2√415,3+√415). ∵l ∥BC ,∴直线l 的解析式为y =12x ,设P (a ,a2),①当点P 在直线BQ 右侧时,如图2,过点P 作PN ⊥x 轴于点N ,过点Q 作QM ⊥直线PN 于点M ,∵A (﹣1,0),C (0,﹣2),B (4,0),∴AC =√5,AB =5,BC =2√5,∵AC 2+BC 2=AB 2,∴∠ACB =90°, ∵△PQB ∽△CAB ,∴PQ PB=AC BC=12,∵∠QMP =∠BNP =90°,∴∠MQP +∠MPQ =90°,∠MPQ +∠PBN =90°, ∴∠MQP =∠PBN ,∴△QPM ∽△PBN , ∴QM PN=PM BN=PQ PB =12,∴QM =a4,PM =12(a ﹣4)=12a ﹣2, ∴MN =a ﹣2,BN ﹣QM =a ﹣4−a4=34a ﹣4, ∴Q (34a ,a ﹣2),将点Q 的坐标代入抛物线的解析式得12×(34a)2−32×34a ﹣2=a ﹣2,解得a =0(舍去)或a =689. ∴P (689,349).②当点P 在直线BQ 左侧时,由①的方法同理可得点Q 的坐标为(54a ,2).此时点P 的坐标为(6+2√415,3+√415).。

四川省成都市2023年中考数学真题和参考答案

四川省成都市2023年中考数学真题和参考答案

四川省成都市2023年中考数学真题和参考答案- 说明:本文档包含了四川省成都市2023年中考数学科目的真题和参考答案,旨在帮助考生备考。

请注意,以下内容仅供参考。

选择题1. 若正整数 $a$ 和 $b$ 满足 $a + b = 9$,则 $a$ 和 $b$ 的乘积最大值是多少?A. 12B. 18C. 20D. 27答案:D2. 若 $\frac{x-1}{a} + \frac{x}{b} = 2$,其中 $a$、$b$ 为正整数,则 $x = \_\_\_$。

答案:$\frac{ab}{b-a}$3. 若一个分数的分子和分母都是3位数,且分母比分子小27,则该分数的值是多少?A. $\frac{11}{13}$B. $\frac{13}{14}$C. $\frac{16}{17}$D. $\frac{18}{19}$答案:D4. 已知 $\log_a b = 2$,则 $a^4 + b^2 = \_\_\_$。

答案:21解答题5. 求下列方程的解集:$2(x - 3) - 4x + 1 = x + 5$。

解答:将方程化简得:$-2x - 5 = x + 5$。

移项得:$-3x = 10$。

两边同时除以-3得:$x = \frac{-10}{3}$。

所以,方程的解集为:$\{ \frac{-10}{3} \}$。

6. 若 $\triangle ABC$ 的内角 $A$ 为 $55^\circ$,边 $AB$ 长为4,边 $AC$ 长为11,则 $\sin C$ 的值为多少?解答:根据正弦定理,我们有:$\frac{4}{\sin 55^\circ} = \frac{11}{\sin C}$。

即,$\sin C = \frac{11}{4} \cdot \sin 55^\circ$。

所以,$\sin C$ 的值为 $\frac{11}{4} \cdot \sin 55^\circ$。

以上为四川省成都市2023年中考数学科目的部分真题和参考答案。

数学丨四川省成都市第七中学2025届高三11月期中考数学试卷及答案

数学丨四川省成都市第七中学2025届高三11月期中考数学试卷及答案

2024~2025 学年度上期高 2025届半期考试高三数学试卷考试时间:120 分钟总分:150 分注意事项:1.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.2.回答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,请考生个人留存试卷并将答题卡交回给监考教师.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.复数i i 4321-+的虚部是( )A.51-B .5 1 C .5 2 - D .52 2.式子15tan 115tan 1-+的 值为() A.3 B .2 C .5 D .63.由正数组成的等比数列{}n a ,n S 为其前n 项和,若241a a =,37S =,则5S 等于() A.152 B.314 C.3 34 D .1 72 4.在24 3)1()1()1(+++++++n x x x 的展开式中,含2x 项的系数是() A.33+n C B .123- +n C C.133- +n C D .331+-n C 5.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时(2)()0x f x '->,则当24a <<时,有()A.2(2)(2)(log )a f f f a << B.2(log )(2)(2)a f a f f <<C.2(log )(2)(2)a f a f f << D.2(2)(log )(2)a f f a f <<6.若向量,,abc 满足,22a b c == = ,则()()a b c b-⋅- 的最大值为()A.10B .12C . D . 7.若对R x ∈∀,函数a x x f +=2)(的函数值都不超过函数⎪⎩⎪⎨⎧≥+<+=1,21,2)(x x x x x x g 的函数值,则实数a 的取值范围是()A.2-≥a B .2≤a C.22≤≤-a D.2<a 8.在三棱柱1 1 1C B A ABC -中, 1CC CB CA ==,3 =AB ,1C 在面ABC 的投影为ABC ∆的外心,二面角1 1B CC A --为3π,该三棱柱的侧面积为() A.33 4 +B .3 7 C .3 6 D .35在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到m 50.9以上(含m 50.9)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(I)估计甲在校运动会铅球比赛中获得优秀奖的概率;(II)设X 是甲、乙、丙在校运动会铅球比赛中获优秀奖的总人数,估计X 的数学期望)(X E .17.(本小题满分15分)如图,在三棱柱11 1 ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,1 3CC =, 点,D E 分别在棱1AA 和棱1CC 上,且12,AD C E M ==为棱11A B 的中点.(I )求证:11C M B D ⊥;(II )求二面角1B B E D --的正弦值;(III )求直线AB 与平面1DB E 所成角的正弦值.椭圆)0(1:2 2 2 2>>=+b a by a x E 左焦点F 和),0(),0,(b B a A 构成一个面积为)12 (2+的F AB ∆,且22cos =∠AFB .(I )求椭圆E 的标准方程;(II )点P 是E 在三象限的点,P A 与y 轴交于M ,PB 与x 轴交于N ①求四边形ABNM 的面积;② 求PMN ∆面积最大值及相应P 点的坐标.19.(本小题满分17分)已知函数1)(2---=x ax e x f x .( 其中71828.2≈e )(I )当0=a 时,证明:0)(≥x f (II )若0>x 时,0)(>x f ,求实数a 的取值范围;(Ⅲ)记函数x xe x g x ln 21)(--=的最小值为m ,求证:)1,2023(-∈e m2024~2025 学年度上期高 2025届半期考试高三数学试卷参考答案一、单选题DABC D BCC二、多选题9.ABD 1 0.AC 1 1.BCD三、填空题12.2 00 ,1x N x ∃ ∈≤13.25)2()3( 2 2=-+-y x 14.22四、解答题15.【解】(I )21cos cos sin 32=-C C C ,12cos 212sin 23=-∴C C ,即sin(216C π-=,π<<C 0 ,262 C ππ ∴-=, 解得3π=C 。

2021年四川省成都市中考数学真题试卷 解析版

2021年四川省成都市中考数学真题试卷  解析版

2021年四川省成都市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.﹣7的倒数是()A.﹣B.C.﹣7D.72.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×1084.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)5.下列计算正确的是()A.3mn﹣2mn=1B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n26.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD 7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.408.分式方程+=1的解为()A.x=2B.x=﹣2C.x=1D.x=﹣19.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)因式分解:x2﹣4=.12.(4分)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.13.(4分)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.16.(6分)先化简,再求值:(1+)÷,其中a=﹣3.17.(8分)为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案(2021﹣2025年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.课程人数篮球m足球21排球30乒乓球n根据图表信息,解答下列问题:(1)分别求出表中m,n的值;(2)求扇形统计图中“足球”对应的扇形圆心角的度数;(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.18.(8分)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D(结果精确到1米;参考数据sin33°与N在一条直线上),求电池板离地面的高度MN的长.≈0.54,cos33°≈0.84,tan33°≈0.65)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y =(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为,△ABC的面积为2,求CD的长;(3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.22.(4分)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.23.(4分)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.24.(4分)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.25.(4分)我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是.二、解答题(本大题共3个小题,共30分,答过程写在答题卡上)26.(8分)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?27.(10分)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C 的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.2021年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.﹣7的倒数是()A.﹣B.C.﹣7D.7【分析】根据倒数:乘积是1的两数互为倒数,即可得出答案.【解答】解:∵﹣7×(﹣)=1,∴﹣7的倒数是:﹣.故选:A.2.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,底层的最右边是一个小正方形,上层是四个小正方形,右齐.故选:C.3.2021年5月15日7时18分,天问一号探测器成功着陆距离地球逾3亿千米的神秘火星,在火星上首次留下中国人的印迹,这是我国航天事业发展的又一具有里程碑意义的进展.将数据3亿用科学记数法表示为()A.3×105B.3×106C.3×107D.3×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:3亿=300000000=3×108.故选:D.4.在平面直角坐标系xOy中,点M(﹣4,2)关于x轴对称的点的坐标是()A.(﹣4,2)B.(4,2)C.(﹣4,﹣2)D.(4,﹣2)【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出答案.【解答】解:点M(﹣4,2)关于x轴对称的点的坐标是(﹣4,﹣2).故选:C.5.下列计算正确的是()A.3mn﹣2mn=1B.(m2n3)2=m4n6C.(﹣m)3•m=m4D.(m+n)2=m2+n2【分析】分别根据合并同类项法则,积的乘方运算法则,同底数幂的乘法法则以及完全平方公式逐一判断即可.【解答】解:A.3mn﹣2mn=mn,故本选项不合题意;B.(m2n3)2=m4n6,故本选项符合题意;C.(﹣m)3•m=﹣m4,故本选项不合题意;D.(m+n)2=m2+2mn+n2,故本选项不合题意;故选:B.6.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是()A.BE=DF B.∠BAE=∠DAF C.AE=AD D.∠AEB=∠AFD 【分析】由四边形ABCD是菱形可得:AB=AD,∠B=∠D,再根据每个选项添加的条件逐一判断.【解答】解:由四边形ABCD是菱形可得:AB=AD,∠B=∠D,A、添加BE=DF,可用SAS证明△ABE≌△ADF,故不符合题意;B、添加∠BAE=∠DAF,可用ASA证明△ABE≌△ADF,故不符合题意;C、添加AE=AD,不能证明△ABE≌△ADF,故符合题意;D、添加∠AEB=∠AFD,可用AAS证明△ABE≌△ADF,故不符合题意;故选:C.7.菲尔兹奖是数学领域的一项国际大奖,常被视为数学界的诺贝尔奖,每四年颁发一次,最近一届获奖者获奖时的年龄(单位:岁)分别为:30,40,34,36,则这组数据的中位数是()A.34B.35C.36D.40【分析】把所给数据按照由小到大的顺序排序,再求出中间两个数的平均数即可.【解答】解:把已知数据按照由小到大的顺序重新排序后为30,34,36,40,∴中位数为(34+36)÷2=35.故选:B.8.分式方程+=1的解为()A.x=2B.x=﹣2C.x=1D.x=﹣1【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:2﹣x﹣1=x﹣3,解得:x=2,检验:当x=2时,x﹣3≠0,∴分式方程的解为x=2.故选:A.9.《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x,y,则可列方程组为()A.B.C.D.【分析】设甲需持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【解答】解:设甲需持钱x,乙持钱y,根据题意,得:,故选:A.10.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π,故选:D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)因式分解:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.(4分)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为100.【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A所代表的正方形的面积A=36+64=100.【解答】解:由题意可知,直角三角形中,一条直角边的平方=36,一直角边的平方=64,则斜边的平方=36+64=100.故答案为100.13.(4分)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=1.【分析】由题意得:△=b2﹣4ac=4﹣4k=0,即可求解.【解答】解:由题意得:△=b2﹣4ac=4﹣4k=0,解得k=1,故答案为1.14.(4分)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为1+.【分析】由题目作图知,AD是∠CAB的平分线,则CD=DH=1,进而求解。

2020年四川省成都市中考数学试卷-含详细解析

2020年四川省成都市中考数学试卷-含详细解析

2020年四川省成都市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.−2的绝对值是()A. −2B. 1C. 2D. 122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.3.2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成.该卫星距离地面约36000千米,将数据36000用科学记数法表示为()A. 3.6×103B. 3.6×104C. 3.6×105D. 36×1044.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是()A. (3,0)B. (1,2)C. (5,2)D. (3,4)5.下列计算正确的是()A. 3a+2b=5abB. a3⋅a2=a6C. (−a3b)2=a6b2D. a2b3÷a=b36.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是()A. 5人,7人B. 5人,11人C. 5人,12人D. 7人,11人7.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于12BC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A. 2B. 3C. 4D. 68.已知x=2是分式方程kx +x−3x−1=1的解,那么实数k的值为()A. 3B. 4C. 5D. 69.如图,直线l1//l2//l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A. 2B. 3C. 4D. 10310. 关于二次函数y =x 2+2x −8,下列说法正确的是( )A. 图象的对称轴在y 轴的右侧B. 图象与y 轴的交点坐标为(0,8)C. 图象与x 轴的交点坐标为(−2,0)和(4,0)D. y 的最小值为−9二、填空题(本大题共9小题,共36.0分) 11. 分解因式:x 2+3x =______.12. 一次函数y =(2m −1)x +2的值随x 值的增大而增大,则常数m 的取值范围为______.13. 如图,A ,B ,C 是⊙O 上的三个点,∠AOB =50°,∠B =55°,则∠A 的度数为______. 14. 《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系.其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.15. 已知a =7−3b ,则代数式a 2+6ab +9b 2的值为______.16. 关于x 的一元二次方程2x 2−4x +m −32=0有实数根,则实数m 的取值范围是______.17. 如图,六边形ABCDEF 是正六边形,曲线FA 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA⏜1,A 1B 1⏜,B 1C 1⏜,C 1D 1⏜,D 1E 1⏜,E 1F 1⏜,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线FA 1B 1C 1D 1E 1F 1的长度是______.18. 在平面直角坐标系xOy 中,已知直线y =mx(m >0)与双曲线y =4x 交于A ,C 两点(点A 在第一象限),直线y =nx(n <0)与双曲线y =−1x 交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为10√2时,点A 的坐标为______.19.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为______,线段DH长度的最小值为______.三、计算题(本大题共1小题,共8.0分)20.成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台A处的高度,某数学兴趣小组在电视塔附近一建筑物楼项D处测得塔A处的仰角为45°,塔底部B处的俯角为22°.已知建筑物的高CD约为61米,请计算观景台的高AB的值.(结果精确到1米;参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)四、解答题(本大题共8小题,共76.0分)21.(1)计算:2sin60°+(12)−2+|2−√3|−√9;(2)解不等式组:{4(x−1)≥x+2, ①2x+13>x−1. ②.22. 先化简,再求值:(1−1x+3)÷x+2x 2−9,其中x =3+√2.23. 2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会.目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如图两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为______;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.24. 在平面直角坐标系xOy 中,反比例函数y =m x(x >0)的图象经过点A(3,4),过点A的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点. (1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.25.如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB 于点F.(1)求证:AC是⊙O的切线;(2)若AB=10,tanB=4,求⊙O的半径;3(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.26.在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:x(元/件)1213141516y(件)120011001000900800(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求AB的值.BC28.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(−1,0),B(4,0)两点,与y轴交于点C(0,−2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1的最大值;S2(3)如图2,连接AC,BC,过点O作直线l//BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:−2的绝对值为2.故选:C.利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】D【解析】解:从左面看是一列2个正方形.故选:D.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【答案】B【解析】解:36000=3.6×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:将点P(3,2)向下平移2个单位长度所得到的点坐标为(3,2−2),即(3,0),故选:A.纵坐标,上移加,下移减,横坐标不变可得点的坐标为(3,0).此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.5.【答案】C【解析】解:A、3a与2b不是同类项,不能合并,原计算错误,故此选项不符合题意;B、a3⋅a2=a5,原计算错误,故此选项不符合题意;C、(−a3b)2=a6b2,原计算正确,故此选项符合题意;D、a2b3÷a=ab3,原计算错误,故此选项不符合题意.故选:C.根据合并同类项、同底数幂的乘法和除法、积的乘方进行计算即可.本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法和除法,积的乘方,需熟练掌握且区分清楚,才不容易出错.6.【答案】A【解析】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人.故选:A.根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),即可得出答案.此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.【答案】C【解析】解:由作图知,MN是线段BC的垂直平分线,∴BD=CD,∵AC=6,AD=2,∴BD=CD=4,故选:C.根据线段垂直平分线的性质即可得到结论.本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.【答案】B【解析】解:把x=2代入分式方程得:k2−1=1,解得:k=4.故选:B.把x=2代入分式方程计算即可求出k的值.此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.【答案】D【解析】解:∵直线l1//l2//l3,∴ABBC =DEEF,∵AB=5,BC=6,EF=4,∴56=DE4,∴DE=103,故选:D.根据平行线分线段成比例定理得出比例式,代入求出即可.本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.10.【答案】D【解析】解:∵二次函数y=x2+2x−8=(x+1)2−9=(x+4)(x−2),∴该函数的对称轴是直线x=−1,在y轴的左侧,故选项A错误;当x=0时,y=−8,即该函数与y轴交于点(0,−8),故选项B错误;当y=0时,x=2或x=−4,即图象与x轴的交点坐标为(2,0)和(−4,0),故选项C错误;当x=−1时,该函数取得最小值y=−9,故选项D正确;故选:D.根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.11.【答案】x(x+3)【解析】解:x 2+3x =x(x +3).观察原式,发现公因式为x ;提出后,即可得出答案. 主要考查提公因式法分解因式,此题属于基础题.12.【答案】m >12【解析】解:∵一次函数y =(2m −1)x +2中,函数值y 随自变量x 的增大而增大, ∴2m −1>0,解得m >12. 故答案为:m >12.先根据一次函数的性质得出关于m 的不等式2m −1>0,再解不等式即可求出m 的取值范围.本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键. 13.【答案】30°【解析】解:∵OB =OC ,∠B =55°, ∴∠BOC =180°−2∠B =70°, ∵∠AOB =50°,∴∠AOC =∠AOB +∠BOC =70°+50°=120°, ∵OA =OC , ∴∠A =∠OCA =180°−120°2=30°,故答案为:30°.首先根据∠B 的度数求得∠BOC 的度数,然后求得∠AOC 的度数,从而求得等腰三角形的底角即可.考查了圆周角定理及等腰三角形的性质,解题的关键是求得∠AOC 的度数,难度不大.14.【答案】{5x +2y =102x +5y =8【解析】解:设1头牛值金x 两,1只羊值金y 两, 由题意可得,{5x +2y =102x +5y =8,故答案为:{5x +2y =102x +5y =8.根据“5头牛、2只羊共值金10两.2头牛、5只羊共值金8两”,得到2个等量关系,即可列出方程组.本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15.【答案】49【解析】解:∵a =7−3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b)2 =72 =49,故答案为:49.先根据完全平方公式变形,再代入,即可求出答案. 本题考查了完全平方公式,能熟记完全平方公式是解此题的关键,注意:(a +b)2=a 2+2ab +b 2.16.【答案】m ≤72【解析】解:∵关于x 的一元二次方程2x 2−4x +m −32=0有实数根, ∴△=(−4)2−4×2×(m −32)=16−8m +12≥0, 解得:m ≤72, 故答案为:m ≤72.根据根的判别式得出不等式,求出不等式的解集即可. 本题考查了根的判别式和解一元一次不等式,能熟记根的判别式得出关于m 的不等式是解此题的关键,注意:一元二次方程ax 2−bx +c =0(a 、b 、c 为常数,a ≠0),当△=b 2−4ac >0时,方程有两个不相等的实数根,当△=b 2−4ac =0时,方程有两个相等的实数根,当△=b 2−4ac <0时,方程没有实数根. 17.【答案】7π【解析】解:FA ⏜1的长=60⋅π⋅1180=π3,A 1B 1⏜的长=60⋅π⋅2180=2π3,B 1C 1⏜的长=60⋅π⋅3180=3π3, C 1D 1⏜的长=60⋅π⋅4180=4π3,D 1E 1⏜的长=60⋅π⋅5180=5π3, E 1F 1⏜的长=60⋅π⋅6180=6π3,∴曲线FA 1B 1C 1D 1E 1F 1的长度=π3+2π3+⋯+6π3=21π3=7π,故答案为7π.利用弧长公式计算即可解决问题.本题考查正多边形与圆,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.18.【答案】(√2,2√2)或(2√2,√2)【解析】解:联立y =mx(m >0)与y =4x 并解得:{x =√m y =±2√m,故点A 的坐标为(√m 2√m), 联立y =nx(n <0)与y =−1x 同理可得:点D(√−1n,−√−n),则AD2=(√m −√m)2+(2√m+√m)2=5m+5m,同理可得:AB2=5m+5m=AD2,则AB=14×10√2,即AB2=252=5m+5m,解得:m=2或12,故点A的坐标为(√2,2√2)或(2√2,√2),故答案为:(√2,2√2)或(2√2,√2).求出点A、D、B的坐标,则AD2=AB2=252=5m+5m,进而求解.本题考查的是反比例函数与一次函数的交点问题,解题的关键是求出A、B、D的坐标,确定AB=AD,进而求解.19.【答案】3√2√13−√2【解析】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ//PE,∴△MFQ∽△MEP,∴MFME =FQPE,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM=√AE2+ME2=√22+22=2√2,MQ=√FQ2+MF2=√12+12=√2,∴PQ=3√2,∵MF//ON//BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON=12(FM+BC)=2,∴OD=√DN2+ON2=√32+22=√13,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=12BM=12×√22+22=√2,∵DH≥OD−OH,∴DH≥√13−√2,∴DH的最小值为√13−√2,故答案为3√2,√13−√2.连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于本题考查矩形的性质,解直角三角形,梯形的中位线的性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.20.【答案】解:过点D 作DE ⊥AB 于点E ,根据题意可得四边形DCBE 是矩形, ∴DE =BC ,BE =DC =61, 在Rt △ADE 中, ∵∠ADE =45°, ∴AE =DE ,∴AE =DE =BC ,在Rt △BDE 中,∠BDE =22°, ∴DE =BEtan22∘≈610.40≈152.5,∴AB =AE +BE =DE +CD =152.5+61≈214(米). 答:观景台的高AB 的值约为214米.【解析】过点D 作DE ⊥AB 于点E ,根据题意可得四边形DCBE 是矩形,DE =BC ,BE =DC =61,再根据锐角三角函数可得DE 的长,进而可得AB 的值.本题考查了解直角三角形的应用−仰角俯角问题,解决本题的关键是掌握仰角俯角定义.21.【答案】解:(1)原式=2×√32+4+2−√3−3 =√3+4+2−√3−3=3;(2){4(x −1)≥x +2, ①2x+13>x −1. ②,由①得,x ≥2; 由②得,x <4,故此不等式组的解集为:2≤x <4.【解析】(1)根据特殊角的三角形函数,负整数指数幂,绝对值的意义和二次根式的性质进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大22.【答案】解:原式=x+3−1x+3⋅(x−3)(x+3)x+2=x−3,当x=3+√2时,原式=√2.【解析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.23.【答案】180 126°【解析】解:(1)根据题意得:54÷30%=180(人),答:这次被调查的学生共有180人;故答案为:180;(2)根据题意得:360°×(1−20%−15%−30%)=126°,答:扇形统计图中“篮球”对应的扇形圆心角的度数为126°,故答案为:126°;2种,∴P(选中甲、乙)=212=16.(1)根据跳水的人数和跳水所占的百分比即可求出这次被调查的学生数;(2)用360°乘以篮球的学生所占的百分比即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)∵反比例函数y=mx(x>0)的图象经过点A(3,4),∴k=3×4=12,∴反比例函数的表达式为y=12x;(2)∵直线y=kx+b过点A,∴3k+b=4,∵过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,∴B(−bk,0),C(0,b),∴12×4×|−bk|=2×12×|−bk|×|b|,∴b=±2,当b=2时,k=23,当b=−2时,k=2,∴直线的函数表达式为:y=23x+2,y=2x−2.【解析】(1)把A(3,4)代入y=mx(x>0)即可得到结论;(2)根据题意得到B(−bk,0),C(0,b),根据三角形的面积公式列方程即可得到结论.本题考查了待定系数法求反比例函数和一次函数的解析式,三角形的面积公式,正确的理解题意是解题的关键.25.【答案】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)∵tanB=43=ACBC,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6−OC)2=OC2+4,∴OC=83,故⊙O的半径为8;由(1)可知:△ACO≌△ADO ,∴∠ACO =∠ADO =90°,∠AOC =∠AOD , 又∵CO =DO ,OE =OE , ∴△COE≌△DOE(SAS), ∴∠OCE =∠OED , ∵OC =OE =OD ,∴∠OCE =∠OEC =∠OED =∠ODE ,∴∠DEF =180°−∠OEC −∠OED =180°−2∠OCE , ∵点F 是AB 中点,∠ACB =90°, ∴CF =BF =AF , ∴∠FCB =∠FBC ,∴∠DFE =180°−∠BCF −∠CBF =180°−2∠OCE , ∴∠DEF =∠DFE , ∴DE =DF =CE ,∴AF =BF =DF +BD =CE +BD .【解析】(1)连接OD ,由切线的性质可得∠ADO =90°,由“SSS ”可证△ACO≌△ADO ,可得∠ADO =∠ACO =90°,可得结论;(2)由锐角三角函数可设AC =4x ,BC =3x ,由勾股定理可求BC =6,再由勾股定理可求解;(3)连接OD ,DE ,由“SAS ”可知△COE≌△DOE ,可得∠OCE =∠OED ,由三角形内角和定理可得∠DEF =180°−∠OEC −∠OED =180°−2∠OCE ,∠DFE =180°−∠BCF −∠CBF =180°−2∠OCE ,可得∠DEF =∠DFE ,可证DE =DF =CE ,可得结论. 本题是圆的综合题,考查了圆的有关知识,切线的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键. 26.【答案】解:(1)∵y 与x 满足一次函数的关系, ∴设y =kx +b ,将x =12,y =1200;x =13,y =1100代入得:{1200=12k +b1100=13k +b ,解得:{k =−100b =2400,∴y 与x 的函数关系式为:y =−100x +2400; (2)设线上和线下月利润总和为m 元,则m =400(x −2−10)+y(x −10)=400x −4800+(−100x +2400)(x −10)=−100(x −19)2+7300,∴当x 为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.【解析】(1)由待定系数法求出y 与x 的函数关系式即可;出答案.本题考查了二次函数的性质、待定系数法求一次函数的解析式等知识;熟练掌握二次函数的性质是解题的关键.27.【答案】解:(1)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴BC=BF,∠FBE=∠EBC,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD//BC,∴∠AFB=∠CBF=30°,∴∠CBE=12∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处,∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴AFDE =ABDF,∴AF⋅DF=AB⋅DE,∵AF⋅DF=10,AB=5,∴DE=2,∴CE=DC−DE=5−2=3,∴EF=3,∴DF=√EF2−DE2=√32−22=√5,∴AF=√5=2√5,∴BC=AD=AF+DF=2√5+√5=3√5.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=12AD=12BC,∵BC=BF,∴NF=12BF,∴NGAB =FGFA=NFBF=12,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=43x.∴BF=BG+GF=2x+43x=103x.∴ABBC =ABBF=2x103x=35.【解析】(1)由折叠的性质得出BC=BF,∠FBE=∠EBC,根据直角三角形的性质得出∠AFB=30°,可求出答案;(2)证明△FAB∽△EDF,由相似三角形的性质得出AFDE =ABDF,可求出DE=2,求出EF=3,由勾股定理求出DF=√5,则可求出AF,即可求出BC的长;(3)过点N作NG⊥BF于点G,证明△NFG∽△BFA,NGAB =FGFA=NFBF=12,设AN=x,设FG=y,则AF=2y,由勾股定理得出(2x)2+(2y)2=(2x+y)2,解出y=43x,则可求出答案.本题是四边形综合题,考查了矩形的性质,直角三角形的性质,折叠的性质,角平分线的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握折叠的性质及矩形的性质是解题的关键.28.【答案】解:(1)设抛物线的解析式为y=a(x+1)(x−4).∵将C(0,−2)代入得:4a=2,解得a=12,∴抛物线的解析式为y=12(x+1)(x−4),即y=12x2−32x−2.(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,∴AK//DG,∴DFAK =DEAE,∴S1S2=S△BDES△ABE=DEAE=DFAK,设直线BC的解析式为y=kx+b,∴{4k+b=0b=−2,解得{k=12b=−2,∴直线BC的解析式为y=12x−2,∵A(−1,0),∴y=−12−2=−52,∴AK=52,设D(m,12m2−32m−2),则F(m,12m−2),∴DF=12m−2−12m2+32m+2=−12m2+2m.∴S1S2=−12m2+2m52=−15m2+45m=−15(m−2)2+45.∴当m=2时,S1S2有最大值,最大值是45.(3)符合条件的点P的坐标为(689,349)或(6+2√415,3+√415).∵l//BC,∴直线l的解析式为y=12x,设P(a,a2),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,∵A(−1,0),C(0,−2),B(4,0),∴AC=√5,AB=5,BC=2√5,∵AC2+BC2=AB2,∴∠ACB=90°,∴PQPB =ACBC=12,∵∠QMP=∠BNP=90°,∴∠MQP+∠MPQ=90°,∠MPQ+∠PBN=90°,∴∠MQP=∠PBN,∴△QPM∽△PBN,∴QMPN =PMBN=PQPB=12,∴QM=a4,PM=12(a−4)=12a−2,∴MN=a−2,BN−QM=a−4−a4=34a−4,∴Q(34a,a−2),将点Q的坐标代入抛物线的解析式得12×(34a)2−32×34a−2=a−2,解得a=0(舍去)或a=689.∴P(689,349).②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2).此时点P的坐标为(6+2√415,3+√415).【解析】(1)设抛物线的解析式为为y=a(x−1)(x−4),将点C的坐标代可求得a的值,从而得到抛物线的解析式;(2)过点D作DG⊥x轴于点G,交BC于点F,过点A作AK⊥x轴交BC的延长线于点K,证明△AKE∽△DFE,得出DFAK =DEAE,则S1S2=S△BDES△ABE=DEAE=DFAK,求出直线BC的解析式为y=12x−2,设D(m,12m2−32m−2),则F(m,12m−2),可得出S1S2的关系式,由二次函数的性质可得出结论;(3)设P(a,a2),①当点P在直线BQ右侧时,如图2,过点P作PN⊥x轴于点N,过点Q作QM⊥直线PN于点M,得出Q(34a,a−2),将点Q的坐标代入抛物线的解析式求得a的值即可,②当点P在直线BQ左侧时,由①的方法同理可得点Q的坐标为(54a,2),代入抛物线的解析可得出答案.本题是二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式,相似三角形的性质和判定,勾股定理的应用,二次函数的性质,三角形的面积等知识,熟练掌握相似三角形的判定与性质是解题的关键.。

2020年四川成都中考数学试卷(解析版)

2020年四川成都中考数学试卷(解析版)




4
19. 在平面直角坐标系 中,反比例函数 与 轴、 轴分别交于 , 两点.
的图象经过点
,过点 的直线
y
x
O
( 1 ) 求反比例函数的表达式.
(2) 若
的面积为
的面积的 倍,求此直线的函数表达式.
20. 如图,在
的边 上取一点 ,以 为圆心, 为半径画⊙ ,⊙ 与边

,连接 交⊙ 于点 ,连接 ,并延长交线段 于点 .


,则 的
2
A. B. C. D.
10. 关于二次函数 A. 图象的对称轴在 轴的右侧 B. 图象与 轴的交点坐标为 C. 图象与 轴的交点坐标为 D. 的最小值为
,下列说法正确的是( ). 和
二、填空题(本大题共4小题,每小题4分,共16分)
11. 分解因式:

12. 一次函数
的值随 值的增大而增大,则常数 的取值范围为








∴点 的坐标为
. , , .
∵点 在抛物线的图象上,


整理得:
解得:

∴点 的坐标为
, (舍去),

②当点 在直线 左侧时,如图,
轴交 于点 .
26
同理,

又∵
故答案为:

的值随 值的增大而增大, .
13. 解析:
10








故答案为: .
, .
, ,
14.
解析:
设 头牛值金 两, 只羊值金 两,

四川省成都市2020年中考数学试题及答案(word版含答案)

四川省成都市2020年中考数学试题及答案(word版含答案)

2020年成都中考数学试题A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. -2的绝对值是(A) -2 (B) 1 (C) 2 (D)122.如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是3.2020 年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成。该卫星距离地面约36000千米,将数据36000用科学记数法表示为 ()3A 3.610⨯ 4()3.610B ⨯ 5()3.610C ⨯ 4()3610D ⨯4.在平面直角坐标系中将点P(3,2)向下平移2个单位长度得到的点的坐标是(A) (3,0) (B) (1,2) (C) (5,2) (D) (3,4)5.下列计算正确的是()325A a b ab += 326()B a a a ⋅=3262()()C a b a b -= 233()D a b a b ÷=6.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴。某班同学分小组到以上五个地方进行研学旅行,人数分别为:12 ,5,11,5,7(单位:人) ,这组数据的众数和中位数分别是(A)5人,7人 (B) 5人,11人 (C) 5人,12人 (D) 7人,11人7.如图,在△ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N;②作直线MN交AC 于点D,连接BD.若AC=6,AD=2,则BD 的长为(A) 2 (B) 3 (C) 4 (D) 68.已知x=2是分式方程311k x x x -+=-的解,那么实数k 的值为 (A) 3 (B)4 (C) 5 (D) 69. 如图,直线123////,l l l 直线AC 和DF 被123,,l l l 所截,AB=5, BC=6,EF=4,则DE 的长为(A) 2 (B) 3(C) 4 10()3D 10.关于二次函数228y x x =+-,下列说法正确的是(A)图象的对称轴在y 轴的右侧(B)图象与y 轴的交点坐标为(0,8)(C)图象与x 轴的交点坐标为(-2 ,0)和(4,0)(D)y 的最小值为-9第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.分解因式:23x x += ______.12.一次函数y=(2m-1)x + 2的值随x 值的增大而增大,则常数m 的取值范围为________.13.如图,A,B,C 是⊙O 上的三个点,∠AOB=50°,∠B=55° ,则∠A 的度数为_______.14.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系。其中卷八方程【七】中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为______.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每题6分)(1)计算: 212sin 60()|22︒-++ (2)解不等式组:4(1)2,21 1.3x x x x -≥+⎧⎪⎨+>-⎪⎩②①16. (本小题满分6分)先化简,再求值:212(1)39x x x +-÷+-,其中3x =17. (本小题满分8分)2021年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会。目前,运动会相关准备工作正在有序进行,比赛项目已经确定。某校体育社团随机调查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图。根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;(2)扇形统计图中“篮球”对应的扇形圆心角的度数为____.(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大运会志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率。18. (本小题满分8分)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地。如图,为测量电视塔观景台A 处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶D 处测得塔A 处的仰角为45° ,塔底部B 处的俯角为22°.已知建筑物的高CD 约为61米,请计算观景台的高AB 的值.(结果精确到1米;参考数据:sin22°≈0.37 ,cos22°≈0.93 ,tan22°≈0.40)19. (本小题满分10分)在平面直角坐标系xOy 中,反比例函数(0)m y x x=>的图象经过点A(3,4) ,过点A 的直线y=kx+b 与x 轴、y 轴分别交于B,C 两点。(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式。20. (本小题满分10分)如图,在△ABC 的边BC 上取一点O,以O 为圆心,OC 为半径画⊙O, ⊙O 与边AB 相切于点D,AC=AD,连接OA 交⊙O 于点E,连接CE ,并延长交线段AB 于点F.(1)求证:AC 是⊙O 的切线;(2)若AB=10,tanB=43,求⊙O 的半径; (3)若F 是AB 的中点,试探究BD+CE 与AF 的数量关系并说明理由。B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.已知a =7-3b,则代数式2269a ab b ++的值为______.22.关于x 的一元二次方程232402x x m -+-=有实数根,则实数m 的取值范围是___.23.如图,六边形ABCDEF 是正六边形,曲线111111FA B C D E F ⋅⋅⋅叫做“正六边形的渐开线”,11111111111,,,,,FA A B B C C D D E E F …的圆心依次按A,B,C,D,E,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线111111FA B C D E F 的长度是____.24.在平面直角坐标系xOy 中,已知直线y=mx (m> 0)与双曲线4y x=交于A,C 两点(点A 在第一象限),直线y=nx(n<0)与双曲线1y=-交于B,D两点。当这两条直线互相垂直,且四边形ABCD的x周长为时,点A的坐标为___.25.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P 的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为_____,线段DH长度的最小值为____.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26. (本小题满分8分)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫。已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售。调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:(1)求y与x的函数关系式;(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.27. (本小题满分10分)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C 恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE 的度数;(2)如图2,当AB=5,且AF·FD= 10时,求BC 的长;(3)如图3,延长EF,与∠ABF 的角平分线交于点M , BM 交AD 于点N,当NF=AN+FD 时,求AB BC的值.28. (本小题满分12分)在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于A(-1 ,0),B(4,0)两点,与y 轴交于点C(0,-2).(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD,BC 交于点E,连接BD,记△BDE 的面积为1,S △ABE 的面积为2,S 求12S S 的最大值;(3)如图2,连接AC,BC,过点O 作直线l//BC,点P,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB ∽△CAB.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.。

2021年四川省成都市中考数学试卷(含答案解析版)

2021年四川省成都市中考数学试卷(含答案解析版)

2021年四川省成都市中考数学试卷(含答案解析版) 2021年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃ 2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A. B. C. D.3.(3分)总投资647亿元的西成高铁预计2021年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108 B.6.47×109 C.6.47×1010 D.6.47×1011 4.(3分)二次根式中,x的取值范围是() A.x≥1 B.x>1 C.x≤1 D.x<1 5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.(3分)下列计算正确的是()A.a5+a5=a10 B.a7÷a=a6 C.a3?a2=a6 D.(﹣a3)2=﹣a6 7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100 人数(人) 7 12 10 8 3 则得分的众数和中位数分别为() A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分 8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图OA′=2:3,形,若OA:则四边形ABCD与四边形A′B′C′D′的面积比为()第1页(共22页)A.4:9 B.2:5 C.2:3 D.﹣:9.(3分)已知x=3是分式方程=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.2 10.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c 的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0 C.abc<0,b2﹣4ac<0 D.abc >0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分) 11.(4分)(﹣1)0= . 12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为. 13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1 y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共14小题,共104分) 15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;第2页(共22页)(2)解不等式组:16.(6分)化简求值:.÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率. 18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.第3页(共22页)20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a= . 23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则= .24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),第4页(共22页)我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,B′均在反比例函数y=的图象上.它们的倒影点A′,若AB=2,则k= .25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A 落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D E x(千米) 8 9 10 11.5 13 y1(分钟) 18 20 22 25 28 (1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间. 27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.第5页(共22页)28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x 轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.第6页(共22页)2021年四川省成都市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分) 1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B. 2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A. B. C. D.【解答】解:从上边看一层三个小正方形,故选:C. 3.(3分)总投资647亿元的西成高铁预计2021年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108 B.6.47×109 C.6.47×1010 D.6.47×1011 【解答】解:647亿=647 0000 0000=6.47×1010,故选:C. 4.(3分)二次根式中,x的取值范围是() A.x≥1 B.x>1 C.x≤1 D.x<1 【解答】解:由题意可知:x ﹣1≥0,∴x≥1,故选(A) 5.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.第7页(共22页)【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误; B、不是轴对称图形,是中心对称图形,故本选项错误; C、是轴对称图形,不是中心对称图形,故本选项错误; D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D. 6.(3分)下列计算正确的是()A.a5+a5=a10 B.a7÷a=a6 C.a3?a2=a6 D.(﹣a3)2=﹣a6 【解答】解:A.a5+a5=2a5,所以此选项错误; B.a7÷a=a6,所以此选项正确; C.a3?a2=a5,所以此选项错误; D.(﹣a3)2=a6,所以此选项错误;故选B. 7.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100 人数(人) 7 12 10 8 3 则得分的众数和中位数分别为() A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C. 8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图OA′=2:3,形,若OA:则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.9.(3分)已知x=3是分式方程A.﹣1 B.0C.1D.2﹣=2,第8页(共22页)﹣=2的解,那么实数k的值为()【解答】解:将x=3代入∴(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c 解得:k=2,故选(D) 10.的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0 C.abc<0,b2﹣4ac<0 D.abc >0,b2﹣4ac<0 【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.二、填空题(本大题共4小题,每小题4分,共16分) 11.(4分)(﹣1)0= 1 .【解答】解:(﹣1)0=1.故答案为:1. 12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为 40°.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°. 13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1 < y2.(填“>”或“<”).第9页(共22页)【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<. 14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N 为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为 15 .【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.三、解答题(本大题共6小题,共54分) 15.(12分)(1)计算:|(2)解不等式组:﹣1|﹣+2sin45°+()﹣2;.第10页(共22页)【解答】解:(1)原式==﹣1﹣2=3;(2)++4﹣1﹣2+2×+4,①可化简为2x﹣7<3x﹣3,﹣x<4, x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.16.(6分)化简求值:【解答】解:∵x=﹣1,=.÷(1﹣÷(1﹣)=),其中x=?=﹣1.,∴原式=17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有 50 人,估计该校1200名学生中“不了解”的人数是 360 人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,第11页(共22页)∴P(恰好抽到一男一女的)==.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB?cos∠BAD=4cos60°=4×=2(千米), BD=AB?sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.第12页(共22页)【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2∴P(2,或2,)或(2,4).20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;第13页(共22页)(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴∴=, =,,第14页(共22页)∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF 是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴∴=,,,r2=(舍),.解得:r1=综上所述,⊙O的半径为第15页(共22页)21.(4分)如图,数轴上点A表示的实数是【解答】解:由图形可得:﹣1到A的距离为﹣1 .=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1. 22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a= .【解答】解:由两根关系,得根x1+x2=5,x1?x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1?x2=25﹣4a=4,∴a=,.故答案为:23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA 为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【解答】解:设⊙O的半径为1,则AD=故S圆O=π,阴影部分面积为:π则P1=故=,P2=..,×2+×,﹣π=2,故答案为:第16页(共22页)24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,B′均在反比例函数y=的图象上.它们的倒影点A′,若AB=2,则k= ﹣.),【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,B′(,∵AB=∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴解得:k=﹣.故答案为:﹣.,),==(b﹣a)=2,25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,第17页(共22页)∴=,∴C′K=1cm,在Rt△AC′K中,AK=∴FG=AK=故答案为cm,.=cm,26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x (单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D E x(千米) 8 9 10 11.5 13 y1(分钟) 18 20 22 25 28 (1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则 y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,ymin==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.第18页(共22页)27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD ⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.第19页(共22页)∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,=3.∴BF=第20页(共22页)28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【解答】解:(1)由题意抛物线的顶点C(0,4),A(﹣2解析式为y=ax2+4,把A(﹣2,0)代入可得a=﹣,,0),设抛物线的∴抛物线C的函数表达式为y=﹣x2+4.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为y=(x﹣2m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<2,∴满足条件的m的取值范围为2<m<2.(3)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.第21页(共22页)由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(舍弃),∴m=﹣3时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上,四边形PMP′N能成为正方形,m=﹣3或6.第22页(共22页)。

四川省成都市中考数学试题及答案

四川省成都市中考数学试题及答案

精品基础教育教学资料,仅供参考,需要可下载使用!成都市高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。

3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。

4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

5.保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是( ) (A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A) 18.1×105 (B) 1.81×106 (C) 1.81×107 (D) 181×104 4. 计算()23x y -的结果是( )(A) 5x y - (B) 6x y (C) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( ) (A) 34° (B) 56°(C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2)7. 分式方程213xx =-的解为( ) (A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁9. 二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下 (B) 抛物线经过点(2,3) (C) 抛物线的对称轴是直线x=1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则BC ︵的长为( )(A) 103π (B) 109π (C) 59π (D) 518π第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 已知|a+2|=0,则a = ______.12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B=___°. 13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上,且x 1< x 2 <0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15. (本小题满分12分,每题6分)(1)计算:()()302162sin302016π-+-+-(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m. 根据测量数据,求旗杆CD 的高度。

2024年四川省成都市中考数学真题卷及答案解析

2024年四川省成都市中考数学真题卷及答案解析

2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15- D. 152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( )A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4--B. ()1,4-C. ()1,4D. ()1,4-5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D.ACB ACD∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C DE DF = D. 53BE EF =第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.10. 分式方程132x x=-解是____.11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______..的12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48的园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD中点,的连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将的其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A.3. 下列计算正确的是()A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4-- B. ()1,4- C. ()1,4 D. ()1,4-【答案】B【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 64【答案】B【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A AB AD = B. AC BD ⊥ C. AC BD = D. ACB ACD∠=∠【答案】C【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C. DE DF = D. 53BE EF =【答案】D【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AE EF DF ED==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10. 分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO ' 中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒--4212=+-+-5=+-5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.的【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan AB ADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠,即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠=EBC DBF∴ ∽EC CBDF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF ∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CBACCF BC ∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=5CB ===不妨设EF y =,那么AE AF EF y BE=-=-=在Rt CEB △中,CE EF CF y =+=+5CB =,BE y=-222(5)y y ∴+=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF∴==DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =- (3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004ts +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BDBE AB=,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x ky x =+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5bm n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5bm n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CBCD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BCBF EF =∴221m x x m+=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①.> ②. 112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<, ∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .的(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克 (2)A 种水果的最低销售单价为12.5元/kg 【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB = (2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DHABD BH ∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为是()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a--=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017成都市中考数学真题及答案解析A卷(共100分)一.选择题(本大题共十个小题,每题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数,若其意义相反,则分别叫做正数与负数,若气温为零上10℃,记作+10℃,则-3℃表示气温为()(A)-3 (B)-1 (C)1 (D)3解析:本题考查有理数的意义,答案:A2.如图所示的几何体是由4个大小下同的立方块搭成,其俯视图是()解析:本题考查三视图,答案:C3.总投资647亿元的西成高铁预计2017年11月竣工,解释成都到西安只需3小时,上午游武侯祠,晚上看大雁塔将成为现实,用科学计数法表示647亿为()(A) 647×108(B) 6.47×109(C) 6.47×1010(D) 6.47×1011解析:本题考查科学计数法,答案:C4.二次根式√x−1中,x的取值范围是()(A) x≥1(B) x>1(C) x≤1(D) x<1解析:本题考查二次根式的定义域,答案:A5.下面图标中,既是轴对称又是中心对称图形的是()解析:本题考查轴对称图形以及中心对称图形的定义,答案:D6.下列计算正确的是()(A) a5+a5=a10(B) a7÷a=a6(C) a3·a2=a6(D) (−a3)2=−a6解析:本题考查乘方的计算法则,答案:B7.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60 70 80 90 100人数(人)7 12 10 8 3则得分的众数和中位数分别为()(A)70分,70分(B)80分,80分(C)70分,80分(D)80分,70分解析:本题考查众数和中位数的定义,答案:C8.如图,四边形ABCD和A′B′C′D′是以点O为位似图形,若OA:OA′=2:3,则四边形ABCD和四边形A′B′C′D′的面积比为()(A)4:9(B)2:5(C)2:3(D)√2:√3解析:本题考查相似比与面积之间的关系,答案:A9. 已知x =3是分式方程2x1-k 21-x kx =-的解,那么实数k 的值为( ) (A)−1(B) 0(C) 1(D) 2解析:本题考查分式方程的含参计算10. 在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c 的图像如图所示,下列说法正确的是( )(A) abc <0,b 2−4ac >0(B) abc >0,b 2−4ac >0 (C) abc <0,b 2−4ac <0(D) abc >0,b 2−4ac <0 解析:本题考查二次函数标准式中的系数与图象的关系,答案:B二. 填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. (√2017−1)0=_____________解析:本题考查乘方的计算法则,答案:112. 在△ABC 中∠A:∠B:∠C =2:3:4,则∠A 的度数为_____________ 解析:本题考查三角形内角和,答案:40°13. 如图,正比例函数y 1=k 1x 和一次函数y 2=k 2x +b 的图像相交于点A(2,1),当x <2时,y 1_______y 2(填“>”或“<”) 解析:本题考查一次函数与不等式的关系,答案:<14. 如图,在□ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 与点M ,N ;②分别以M ,N 为圆心,以大于MN 21的长为半径作弧,两弧相交于点P ;③作射线AP ,交边CD 于点Q ,若DQ =2QC ,BC =3,则ABCD 的周长为_________ 解析:本题考查尺规作图之角平分线及平行四边形的基本性质,答案:15三. 解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15. (本小题满分12分,每题6分) (1) 计算:22145sin 28-|1-2|-+︒+)(解析:本题考查计算,答案:3(2) 解不等式组:⎪⎩⎪⎨⎧-≤+-<x 321334137-x 2x )x (解析:本题考查不等式的计算,答案:−4<x ≤−116. (本小题满分6分)化简求值:)x (x 1211x 21-x 2+-÷++,其中x =√3−1 解析:本题考查不等式的计算,答案:原式=1x+1,代入得:√3317. (本小题满分8分)随着经济快速发展,环境问题越来越受到人么的关注,某校学生会为了解节能减排,垃圾分类等知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将结果绘制成下面的两幅统计图(1) 本次调查的学生共有__________人,估计该校1200名学生中“不了解”的人数是_________人;(2) “非常了解”的4人有A 1,A 2两名男生,B 1,B 2两名女生,若从中随即抽取两人向全校作环保交流,请利用树状图或列表的方法,求恰好抽到一男一女的概率 解析:本题考查统计图,答案:(1)50人;360人 (2)32128==)一男一女(P 18. (本小题满分8分)科技改变生活,手机导航极大地方便了人们的出行,如图,小明一家自家到古镇游玩,达到A 地后,导航显示车辆应沿北偏西60°方向行驶4千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 第的正北方向,求B 、C 两地的距离。

解析:本题考查三角函数的简单应用 过点B 作BD ⊥AC 于点D ∵AB =4km∴2360sin ==︒AB BD ,∴BD =2√3(km) 2245cos ==︒BC BD ,∴ BD =2√6(km)19. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知正比例函数x 21y =的图象与分比例函数xky =的图象交于A(a,−2),B 两点 (1) 求反比例函数的表达式和点B 的坐标(2) P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若△POC 的面积为3,求点P 的坐标 解析:本题考查反比例函数与一次函数的综合 解:(1)由题意得:a ka ==-212,解得:⎩⎨⎧=-=84k a ∴反比例函数表达式为:x8y =联立方程组⎪⎪⎩⎪⎪⎨⎧==xy x 218y 解得:⎩⎨⎧-=-=2411y x ,⎩⎨⎧==2422y x∴点B 的坐标为:B(4,2)(2) 设点),x (Px 8,∴),x (C x 21,∴||PC x x 218-= ∴P POC △PC S x ⋅⋅=21,即:x x x ⋅-⋅=||218213,解得:x 1=±2或x 2=±2√7 ∵ P 在第一象限,所以x P >0,∴P 1(2,4),),(P 77472220. (本小题10分)如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连接DE 交线段OA 于点F 。

(1) 求证:DH 是⊙O 的切线 (2) 若A 为EH 的中点,求FDEF的值 (3) 若EA =EF =1,求⊙O 的半径解析:本题考查反比例函数与一次函数的综合 解:(1)连接OD 、AD ,则∠ADB =90° ∵ AB =AC ,∴ D 为BC 中点, 由∵ O 为AB 中点,∴OD ∥AC ,再∵ DH ⊥AC ,∴∠DHC =90°,∴∠ODH =∠DHC =90°(2)由(1)得:2OD =AB =AC ,EA ∥OD ∴∠C =∠B =∠E ,∴DE =DC , ∵ DH ⊥EC ,∴H 为EC 中点 又∵ A 为EH 中点,∴EC EH EA 4121==,∴AC EA 31= ∴322131===AC ACOD EA FD EF(3) ∵OD ∥AE ,∴△AEF ∽△ODF ,∵AE =FE ,∴FD =OD ,∴ 设FD =OD=a , ∴AC =AB =2OD =2x ,BD =CD =ED =x +1 ∴CE =2x +1,CB =2x +2∴由割线定理得:CA ·CE =CD ·CB ,即:2x (2x +1)=(x +1)(2x +2)解得:215+=x 或0215<+-=x (舍)即:⊙O 的半径为:215+B 卷(共50分)一. 填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上) 21. 如图,数轴上点A 表示的实数是____________解析:本题考察用数轴表示无理数及勾股定理,答案:√5−122. 已知x 1,x 2是关于x 的一元二次方程x 2−5x +a =0的两个实数根,且x 12−x 22=10,则a =_____________解析:本题考查韦达定理的运用,答案:21423. 已知⊙O 的两条直径AC ,BD 的互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图所示的图形,县随即向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 的概率为P 2,则=21P P _____________ 解析:本题考查概率统计,答案:2π24. 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P(x ,y),我们把点y1x 1+='P 成为点P 的“倒影点”,直线y =−x +1上有两点A ,B ,他们的倒影点A ′,B′均在反比例函数xky =的图象上,若AB =2√2,则k =__________解析:本题考查简单材料阅读及特殊角度值与函数斜率的关系以及伪一元二次方程的解法。

答案:−43 25.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在C′上,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=_______cm解析:本题考查翻折性质及相似△的应用,答案:√10二.解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(本小题满分8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一战处地铁,再骑共享单车回家。

设他出地铁的站点与文化宫站的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其干洗如下表:(1)求y1关于x的函数表达式;地铁站 A B C D Ex(千米)8 9 10 11.5 13y(分钟)18 20 22 25 28(2) 李华骑单车的时间y 2(单位:分钟)也受x 的影响,其关系可以用781121y 22+-=x x 来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫站到家所需要的时间最短?并求出最短时间 解析:(1)考查表示变量关系的方法——表格法与表达式法;(2)考察一元二次方程的应用 解:(1)y 1=2x +2(2) 设李华从文化宫站到家需要y 分钟,则53992178x 11x 212x 2y y y 2221.)x (+-=+-++=+= ∵021>,∴ 当x =9时,y min =39.5(分钟)27. (本小题满分10分) 问题背景:如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD ⊥BC 于点D ,则D 为BC 的中点,于是32==ABBDAB BC迁移应用(1) 如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D 、E 、C 三点在同一条直线上,连接BD i ) 求证:△ADB ≌△AECii ) 请直接写出线段AD ,BD ,CD 之间的等量关系式 拓展延伸(2) 如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接AE并延长交BM于点F,连接CE,CFi)证明△CEF是等边三角形ii)若AE=5,CE=2,求BF的长解析:(1)考查表示翻折及等腰三角形性质;(2)考察三角函数的应用(1)i)证:∵∠DAE=∠BAC=120°,∴∠DAB=∠EAC,∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE∴△ABC ≌△ADEii)CD=√3AD+BD(2)i) 证:连接BE,并过点B作BG⊥AF于G,则由翻折性质得:∠FBC=∠FBE,∠EFB=∠CFB,BC=BE,EF=CF∴∠ABG=∠EBG,∴∠GBF=0.5∠ABC=60°,∴∠GFB=30°,∴∠EFC=60°∴△EFC为等边三角形ii) 由(2) i)得:EF=CE=2,EG=AG=0.5AE=2.5∴GF=4.5,又∵∠BGF=90°,∠GFB=30°,∴BF=3√328.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴交于点A,B两点,顶点为D(0,4),AB=4√2,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C’(1)求抛物线C的函数表达式:(2) 若抛物线C 与抛物线C ’在y 轴的右侧有两个不同的公共点,求m 的取值范围(3) 如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ’上的对应点为P ’,设M 是C 上的动点,N 是C ’上的动点,试探究四边形PMP ’N 能否成为正方形,若能,求出m 的值;若不能,请说明理由解析:(1)抛物线顶点坐标为D(0,4),由顶点式设解析式为y =ax 2+4因抛物线关于y 轴对称,且AB=4√2所以A(−2√2,0),B(2√2,0),带入解析式得:a =−12即:y =−12x 2+4(2)顶点D(0,4)关于F(m ,0)的对称点为(2m ,-4),故C ’的顶点为(2m ,-4),开口大小不变 即a 的绝对值不变,开口方向反向,则a=12,所以C ’:y =12(x −2m )2−4 联立:{y =−12x 2+4y =12(x −2m )2−4化简为x 2−2mx +2m 2−8=0 交点在y 轴右侧,则一元二次方程x 2−2mx +2m 2−8=0有两个不相等正实数根: {∆=(−2m )2−4(2m 2−8)>02m >02m 2−8>0,解得:2<m <2√2 (3)由题意得:只需PM 两点构成等腰直角三角形时,PMP ’N 即可成为正方形设点P(a ,a),则代入抛物线C 的解析式解得:a =2或a =−4,因为P 在第一象限∴P(2,2),过点P 作PG ⊥x 轴于点G ,过点M 作MN ⊥x 轴于点N ,则① 当F 在G 左侧时△PFG ≌ △FMN ,∴MH =FG =m −2,NF =PG =2∴M(2+m ,m −2),代入抛物线C 的解析式得 ∴4)2(21-2-m 2++=m 解得:m 1=−3+√17,m 2=−3−√17(舍) ②当F 在G 右侧时△PFG ≌ △FMN ,∴MH =FG =m −2,OH =m −2 ∴ M(m −2,2−m),代入抛物线C 的解析式得 ∴42)-(m 21-m 22+=- 解得:m 1=6,m 2=0(舍)综上所述:m =−3+√17或m =6。

相关文档
最新文档