2020年南京中考数学试卷评析

合集下载

2020年江苏省南京市中考数学试卷原卷附解析

2020年江苏省南京市中考数学试卷原卷附解析

2020年江苏省南京市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为( )A .136000B .11200C .150D .1302.若 3x=4y ,则x :y 等于( )A .3 : 4B .4 : 3C .11:34 D .11:43 3.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,展开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( ) A .(10213)+ cm B .(1013)+cm C .22cmD .18cm4.下列各组多项式中,没有公因式的一组是( )A .ax bx -与by ay -B .268xy y +与43y x --C .ab ac -与ab bc -D .3()a b y -与2()b a x - 5.一个晴箱里装有 10 个黑球,8 个白球, 12个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是( )A . 13B .18C .415D .411 6.如图,直线AB 、CD 相交于点O .OE 平分∠AOD ,若∠BOC =80°,则∠AOE 的度数是( )A .40°B .50°C .80°D . 100°7. m 箱橘子a (kg ),则 3箱橘子的重量是( )A .3a m (kg )B .3m a (kg )C .3am (kg )D .3a m(kg ) 3cm 3cm二、填空题8.在 Rt △ABC 中,锐角α的邻边是3,对边是则4,则tan α= . 9.己在同一直角坐标系中,函数11(0)y k x k =≠的图象与22(0)k y k x=≠的图象没有公共点,则12k k .(填“>”、“=”或“<”)10.如图,四边形ABCD 的对角线AC ,BD 交于点O ,EF 过点O ,若OA=OC ,OB=OD ,则图中全等的三角形有_ _ _对.11.如图,AB ∥CD ,若∠ABE=120°,∠DCE=35°,则∠BEC= .12.认真观察图中的 4个图中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征.特征 1: ;特征2: .13.请你从式子24a ,2()x y -,1,2b 中,任意选两个式子作差,并将得到的式子进行因式分解: . 14.三个同学对问题“若方程组111222a x b yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 解答题15.已知x+y=6,xy=4,则x 2y+xy 2的值为 .16.甲、乙两人环绕长为 400 m 的环形跑道散步一如果两人从同一点背道而行,那么经过2 min 相遇;如果两人从同一点同向而行,那么经过 20 min 相遇,已知甲的速度比乙快,则甲、乙两人散步速度分别为 m/min , m/min.17.如图所示的五家银行行标中,是轴对称图形的有 (填序号).OEFB C A E D 18.上学期期末考试,60名学生中,数学成绩为优秀的有20人,良好的有30人,及格的有10人.如果将其制成扇形统计图,则三个圆心角的度数分别为 、 、 .19.如图是根据某市l999年至2003年工业生产总值绘制的折线统计图.观察统计图可得:增长幅度最大的年份是 年,比它的前一年增加 亿元.工业生产总值,亿元20.如果 -22 元表示亏损 22 元,那么 45 元表示 .三、解答题21.如图,以直角三角形各边为直径的三个半圆围成的两个新月形( 阴影部分)的面积和,与直角三角形的面积有什么关系?为什么?22.已知: 如图, 在梯形ABCD 中, AD ∥BC, AB=CD, E 是底边BC 的中点, 连接AE 、DE. 求证: △ADE 是等腰三角形.23.如图,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .FC D AEB24.把不等式组21x x ≥-⎧⎨<⎩的解集表示在下面的数轴上:25.某养鱼户搞池塘养鱼.放养鳝鱼苗20000尾,其成活率为70%.随意捞出l0尾鱼,称得每尾的重量(单位:千克)如下:0.8.0.9.1.2,1.3,0.8,1.1,1.0,1.2,0.8,0.9.根据样本平均数估计这塘鱼的总产量是多少千克?若将鱼全部卖出,每千克可获利润1.5元,预计该养鱼户将获利多少元?26.如图,已知AB ∥CD ,∠1 = 53°,∠2 = 67°,试求∠3 的度数.27.用分数或整数表示下列各负整数指数幂的值:(1)32-;(2)31-;(3)3(3)--;(4)20.0l -28.如图所示,已知线段a ,c ,求作Rt △ABC ,使BC=a ,AB=c .29.据丽水市统计局关于经济和社会发展统计公报,丽水市2000~2003年全社会用电量的折线统计图如图所示:2000—2003年萧水市全社会用电量统计图(1)填写统计表:2000--2003年丽水市全社会用电量统计表年份2000200120022003全社会用电量(单位:亿千瓦13.33时)2003年比2001年的用电量增长百分率(保留2个有效数字).30.制作适当的统计图表示下列数据:(1)1 年份195219621970198019902005国内生产总值(亿6791149.32252.74517.818547.9189404元)动物鸡鹅鸭鸽子天数(天)21303016【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.C5.C6.A7.D二、填空题8.49.3< 010.611.12.都是轴对称图形;这些图形的面积都等于4个单位面积13.不唯一.如241(21)(21)a a a -=+- 14.510x y =⎧⎨=⎩15. 2416.110,9017.①②③18.120°, 180°,60°19.2003,4020.盈利 45 元三、解答题21.阴影部分面积之和=直角三角形面积,设直角三角形的斜边为c ,其余两条直角边分别为 a 、b ,则阴影部分面积之和2221111()2222a b c ab πππ=+-- 22211()22a b c ab π=+-+,∵222c a b =+,∴阴影部分面积之和=12ab ,12Rt S ab ∆=, ∴阴影部分面积之和=Rt S ∆.22.证: ∵ABCD 是等腰梯形 ,∴∠B=∠C, AB=CD∵E 是BC 中点 ,∴BE=CE ,∴△ABE ≌△DCE,∴AE=DE∴△AED 是等腰三角形23.利用△ABE ≌△CDF 即可略25.∵0.910x++=0.8+0.9=1.0(千克),∴1.0×20000×70%=14000(千克).∴l4000×1.5=21000(元).∴估计这塘鱼的总产量是l4 000千克,预计该养鱼户将获利21 000元26.60°27.(1)18;(2) 1;(3)127-;(4) 1000028.提示:两种情况29.(1)14.73,17.05,21.92 (2)49%30.(1)可选用折线统计图(图略) (2)可选用条形统计图(图略)。

2020年江苏省南京市中考数学全真试题附解析

2020年江苏省南京市中考数学全真试题附解析

2020年江苏省南京市中考数学全真试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.人离窗子越远,向外眺望时此人的盲区是( )A.变小B.变大C.不变D.以上都有可能B2.已知圆A和圆B相切,两圆的圆心距为8cm,圆A的半径为3cm,则圆B的半径是()A.5cm B.11cm C.3cm D.5cm或11cm3.已知在正方形网格中,每个小方格都是边长为 1 的正方形,A,B两点在小方格的顶点上,位置如图所示,点 C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为1,则点C 的个数为()A.3个B.4个C. 5个D.6个4.已知点P(1,2)与点Q(x,y)在同一条平行于x轴的直线上,且Q点到y轴的距离等于2,那么点Q的坐标是()A.(2,2)B.(-2,2)C.(-2,2)和(2,2)D.(-2,-2)和(2,-2)1.确定平面上一个点的位置,一般需要的数据个数为()A.无法确定B.l个C.2个D.3个5.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点0,过点O作EF∥BC,交AB于点E,交AC于点F,△ABC的周长是24cm ,BC=10cm,则△AEF的周长是()A.10 cm B.12cm C.14 cm D.34 cm6.在同一平面内,作已知直线l的平行线,且到l的距离为7 cm,这样的平行线最多可以作( )A .1 条B .2 条C .3 条D . 无数条7.下列说法中,正确的是( )A .一颗质地均匀的骰子已连续抛掷了 2000次,其中抛掷出 5点的次数最少,则第2001次一定抛掷出 5点B .某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C .天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D .抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.下列说法中正确的是( )A .圆是轴对称图形,对称轴是圆的直径B .正方形有两条对称轴C .线段的对称轴是线段的中点D .任意一个图形,若沿某直线对折能重合,则此图形就是轴对称图形二、填空题9.如图1,先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上,再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB =4,BC =3,则图1和图2中点B 点的坐标为 ;点C 的坐标 . 解答题10.某学校食堂现有存煤 200 吨.这些煤能烧的天数y 与平均每天的吨数x 之间的函数解析式为 .11.在12x x --中,字母x 的取值范围是 . 12.如图所示,图形①与图形 成轴对称,图形①与图形 成中心对称(填写所 对应的序号).13.对2000个数据进行了整理,在频率分布表中,各组的频数之和等于 ,各组的频率之和等于 .14.已知△ABC 中,ACB=AC ,过点A 的直线把三角形分成两个等腰三角形,则∠B= . 解答题15.不等式x x 213>+的负整数解是 .16. 一副扑克共有54张牌,现拿掉大王、小王后,从中任取一张牌刚好是梅花的概率是 .17.在如图所示方格纸中,已知△DEF 是由△ABC 经相似变换所得的像,那么△DEF 的每条边都扩大到原来的__________倍.18.甲队有车160辆,乙队有车80辆,若从甲队调x 辆支援乙队,则甲队现有车 辆, 乙队现有车 辆.三、解答题19.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)20.分别求下列三角形的外接圆的半径:(1)△ABC 的三边为6cm,8cm,10cm. (2) △ABC 的三边都为4cm.21.如图,已知,EF ⊥AB ,CD ⊥AB ,G 在AC 边上,DG ∥BC .求证:∠1=∠2.22.如图,在面积为4的菱形ABCD 中,画一个面积为l 的△ABP ,使点P 在菱形ABCD 的边上(不写画法,但要保留作图痕迹).21G F E D CB A23.长方形的长为2a 米,面积为(4a 2-6ab+2a )米2,求该长方形的宽和周长.24.如图,在ABC △中,7050A B CD ∠=∠=,,平分ACB ∠.求∠ADC 的度数.25.如图.已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点.(1)若线段AC=6,BC=4,求线段MN 的长度.(2)若AC+BC=a ,求线段MN 的长度.(3)在(1)中“点C 在线段AB 上”,若改为“点C 在直线AB 上”,(1)中结果会有变化吗?若有,求出MN 的长度.26.下列各图中,有∠1和∠2是对顶角的图吗?若没有请画一对对顶角.B CA D27.(1)某公司有4个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段?(2)若该公司有5个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段?(3)某地区有n个通话员,其中把每两人之间的通话看做一条线段,那么共有多少条线段(用订表示)?28.下图是某省近年来全省港口吞吐量的统计图.(1)根据统计图中的数据制作折线统计图;(2)从上面条形统计图和你绘制的折线统计图中,你可以得到哪些信息?29.根据下列条件列方程:(1)某数与5的差的3倍等于21(2)某数的20%减去该数的l0%等于500(3)把一条带子剪去5 cm后,再对折一次,此时带子的长度正好是原带子长的13,求这条带子的原长.(4)彩票发行者预计将发行额的35%作为奖金,若奖金总数为70000元,彩票每张5元,问卖出多少张彩票时,刚好是这笔奖金?30.某超市出售的一种饼干的单价是7.89元/袋,一种蛋卷的单价是8.99元 /罐,小明购买蛋卷的罐数比购买饼干的袋数的一半少1.(1)设购买饼干的袋数为n,请用代数式表示购买饼干和蛋卷的总价;(2)若6n ,总价为多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.2.D3.D4.C C5.C6.B7.D8.D二、填空题9.B(4,0)、(32,2), C(4,3)、(2334-,2433+)10.200yx=11.1x ≥且2x ≠12.④,③13.2000,l14.45°或36°15.-5,-4,-3,-2,-116.1417. 218.160x -,80x +三、解答题19.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°, ∴四边形BECD 是矩形.CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米. tan BE CEβ=∵,tan 90tan 60BE CE β==⨯∴·°=米).CD BE ==∴(米)。

2020年江苏省南京市中考数学试卷(含解析)印刷版

2020年江苏省南京市中考数学试卷(含解析)印刷版

2020年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.52.(2分)3的平方根是()A.9B.C.﹣D.±3.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a84.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.(2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC 的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3:.8.(2分)若式子1﹣在实数范围内有意义,则x的取值范围是.9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.10.(2分)计算的结果是.11.(2分)已知x、y满足方程组,则x+y的值为.12.(2分)方程=的解是.13.(2分)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是.14.(2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.15.(2分)如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.18.(7分)解方程:x2﹣2x﹣3=0.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D 作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.2020年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.5【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:3﹣(﹣2)=3+2=5.故选:D.2.(2分)3的平方根是()A.9B.C.﹣D.±【分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.【解答】解:∵()2=3,∴3的平方根.故选:D.3.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【分析】根据幂的乘方、同底数幂的除法的计算法则进行计算即可.【解答】解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务【分析】根据条形统计图中每年末贫困人口的数量,结合各选项逐一分析判断可得答案.【解答】解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【分析】先把方程(x﹣1)(x+2)=p2化为x2+x﹣2﹣p2=0,再根据方程有两个不相等的实数根可得△=1+8+4p2>0,由﹣2﹣p2>0即可得出结论.【解答】解:∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为﹣2﹣p2<0,∴一个正根,一个负根,故选:C.6.(2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC 的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3:﹣1(答案不唯一).【分析】首先根据一个负数的绝对值小于3,可得这个负数大于﹣3且小于0;然后根据绝对值的含义和求法,求出这个数是多少即可.【解答】解:∵一个负数的绝对值小于3,∴这个负数大于﹣3且小于0,∴这个负数可能是﹣2、﹣1.5、﹣1、….故答案为:﹣1(答案不唯一).8.(2分)若式子1﹣在实数范围内有意义,则x的取值范围是x≠1.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:若式子1﹣在实数范围内有意义,则x﹣1≠0,解得:x≠1.故答案为:x≠1.9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是2×10﹣8s.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:20ns=20×10﹣9s=2×10﹣8s,故答案为:2×10﹣8.10.(2分)计算的结果是.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式===.故答案为:.11.(2分)已知x、y满足方程组,则x+y的值为1.【分析】①+②×2得:5x+5y=5,两边除以5即可求得.【解答】解:,①+②×2得:5x+5y=5,则x+y=1,故答案为1.12.(2分)方程=的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程=,去分母得:x2+2x=x2﹣2x+1,解得:x=,经检验x=是分式方程的解.故答案为:x=.13.(2分)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是y=x+2.【分析】利用直线与两坐标轴的交点坐标,求得旋转后的对应点坐标,然后根据待定系数法即可求得.【解答】解:在一次函数y=﹣2x+4中,令x=0,则y=4,令y=0,则x=2,∴直线y=﹣2x+4经过点(0,4),(2,0)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),(2,0)的对应点是(0,2)设对应的函数解析式为:y=kx+b,将点(﹣4,0)、(0,2)代入得,解得,∴旋转后对应的函数解析式为:y=x+2,故答案为y=x+2.14.(2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为2cm2.【分析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=•EF•BF=×2×=2,故答案为2.15.(2分)如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=78°.【分析】解法一:过O作射线BP,根据线段的垂直平分线的性质得AO=OB=OC和∠BDO=∠BEO =90°,根据四边形的内角和为360°得∠DOE+∠ABC=180°,根据外角的性质得∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,相加可得结论.解法二:连接OB,同理得AO=OB=OC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE=∠COE,由平角的定义得∠BOD+∠BOE=141°,最后由周角的定义可得结论.【解答】解:解法一:过O作射线BP,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°;解法二:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∵∠DOE+∠1=180°,∠1=39°,∴∠DOE=141°,即∠BOD+∠BOE=141°,∴∠AOD+∠COE=141°,∴∠AOC=360°﹣(∠BOD+∠BOE)﹣(∠AOD+∠COE)=78°;故答案为:78°.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是①②④.【分析】利用二次函数的性质一一判断即可.【解答】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.【分析】先计算括号内异分母分式的加法、将除式分子因式分解,再将除法转化为乘法,最后约分即可得.【解答】解:原式=(+)÷=•=.18.(7分)解方程:x2﹣2x﹣3=0.【分析】通过观察方程形式,本题可用因式分解法进行解答.【解答】解:原方程可以变形为(x﹣3)(x+1)=0;x﹣3=0,x+1=0;∴x1=3,x2=﹣1.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.【解答】证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴BD=CE.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集0<x<1.【分析】(1)把点(﹣2,﹣1)代入y=即可得到结论;(2)解不等式组即可得到结论.【解答】解:(1)∵反比例函数y=的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第2组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.【分析】(1)根据中位数的定义即可得到结论;(2)根据题意列式计算即可得到结论.【解答】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW•h的大约有7500户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.【分析】(1)列举出甲选择的2个景点所有可能出现的结果情况,进而求出相应的概率;(2)用列表法表示所有可能出现的结果,再求出两个景点相同的概率.【解答】解:甲选择的2个景点所有可能出现的结果如下:(1)共有6种可能出现的结果,其中选择A、B的有2种,∴P(A、B)==;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中选择景点相同的有3种,∴P(景点相同)==.故答案为:.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【分析】过点D作DH⊥AC于点H,根据锐角三角函数即可求出轮船航行的距离AD.【解答】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=,在Rt△DBH中,∠DBH=45°,∴BH=,∵BC=CH﹣BH,∴﹣=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=≈20.答:轮船航行的距离AD约为20km.24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D 作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【分析】(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF=∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可;(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF=180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可.【解答】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为250m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?【分析】(1)根据题意和函数解析式,可以计算出小丽出发时,小明离A地的距离;(2)根据题目中的函数解析式和题意,利用二次函数的性质,可以得到小丽出发至小明到达B地这段时间内,两人何时相距最近,最近距离是多少.【解答】解:(1)∵y1=﹣180x+2250,y2=﹣10x2﹣100x+2000,∴当x=0时,y1=2250,y2=2000,∴小丽出发时,小明离A地的距离为2250﹣2000=250(m),故答案为:250;(2)设小丽出发第xmin时,两人相距sm,则s=(﹣180x+2250)﹣(﹣10x2﹣100x+2000)=10x2﹣80x+250=10(x﹣4)2+90,∴当x=4时,s取得最小值,此时s=90,答:小丽出发第4min时,两人相距最近,最近距离是90m.26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.【分析】(1)根据两边成比例夹角相等两三角形相似证明即可.(2)过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.首先证明△CED∽△C′E′D′,推出∠CED=∠C′E′D′,再证明∠ACB=∠A′C′B′即可解决问题.【解答】(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C,∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=90°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′C′B′,∵=,∴△ABC∽△A′B′C′.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【分析】(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC=A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;(2)①由(1)的结论可求;②由(1)的结论可求解.【解答】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD++EB,(其中CD,BE都与圆相切)。

2020年江苏省南京市中考数学学业水平测试试卷附解析

2020年江苏省南京市中考数学学业水平测试试卷附解析

2020年江苏省南京市中考数学学业水平测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.tan60°·cos30°的值为( )A .23B .21C .23D .63 2.已知⊙O 半径为4 cm ,直线l 与圆心距离是3 cm ,则直线l 与⊙O 公共点个数为( )A .O 个B .1个C .2 个D .不能确定3.如图所示的阴影部分图案是由方格纸上3个小方格组成,我们称这样的图案为L 形.那么在由4×5个小方格组成的方格纸上最多可以画出不同位置的L 形图案的个数是( )A .16个B .32个C .48个D .64个 4.正方形具有而菱形不一定具有的特征有( ) A .对角线互相垂直平分 B .内角和为360°C .对角线相等D .对角线平分内角 5.如图,在△ABC 中,AB=AC=5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,那么四边形AFDE 的周长是( )A .5B .10C .15D .206.在□ABCD 中,对角线AC 与BD 相交于点0,那么能通过绕点0旋转达到重合的三角形有 ( )A .2对B .3对C 4对D .5对 7.无论m 取何实数,直线y=x-2m 与y=-2x+3的交点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限 8.在△ABC 中,∠A=1O5°,∠B-∠C=15°,则∠C 的度数为( )A . 35°B .60°C .45°D .30° 9.下列式子成立的是( )A .(2a -1)2=4a 2-1B .(a+3b )2=a 2+9b 2C .(-a+b )(-a-b )=a 2-b 2D .(-a -b )2=a 2-2ab+b 2 10.从一副扑克牌中任意抽出一张,可能性相同的的是( )A .大王与黑桃B .大王与10C .10与红桃D .红桃与梅花 11.下列对于旋转的判断中,正确的是( )A .图形旋转时,图形的形状发生了改变B .图形旋转时,图形的大小发生了改变C .图形旋转时,图形的位置发生了改变D .图形旋转时,图形的形状、大小和位置都发生了改变12.下列图形能比较大小的是()A.直线与线段B.直线与射线C.两条线段D.射线与线段二、填空题13.已知⊙O的半径为 6cm,弦 AB=6 cm,则弦 AB 所对的圆心角的度数为度.14.如图,平面直角坐标系中,P 点是经过0(0,0)、A(0,2)、B(2,0)的圆上一个动点(P 与0、B 不重合),则∠OAB = 度,∠OPB= 度.15.如图,以O为圆心的两个同心圆中,大圆的弦 AB 交小圆于C、D两点,AB=20,CD=12,则AC的长是.16.如图,将左边的矩形绕点B旋转一定角度后,位置如右边的矩形,则∠ABC= .17.如图,在四边形ABCD中,AB=CD,BC=AD,若∠A=110°,则∠C= °.18.一元二次方程4x二次项系数为:,一次项系数为:,常数项为:.-(2=)319.积的乘方等于积中各个因式分别,再把所得的.20.如图所示,在△ABC中,∠B=35°,∠C=60°,AE是∠BAC的平分线,AD⊥BC于D,则∠DAE的度数为.21.10 个小女孩去采花,其中 2个采到 x朵花,其余每人都采到 12 朵花,则 10 个小女孩共采到朵花.22.5的所有正整数之和为 .三、解答题23.画出如图所示三视图在生活中所表示的物体的草图.24.某种蝴蝶身长2.5 cm,它的身长与双翅展开后的长度之比成黄金比,求该展开双翅的长度.(精确到0. 1 cm)25.如图所示,在梯形ABCD中,AB∥DC,AD=BC,延长AB至E,使BE=DC,求证:AC=CE.26.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元)1015305060人数3611136因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?27.房梁的一部分如图所示,其中BC⊥AC,∠A=30°,AB=7.4 m,点D是AB的中点,且DE⊥AC,求BC、DE的长.28.如图,△ABC的顶点A平移到了点D,请你作出△ABC经平移变换后所得的像.29.小敏在解方程2x+5=x+7时,是这样写解的过程的:2x+5=x+7=2x-x=7-5=x-2(1)小敏这样写对不对?为什么?(2)应该怎样写?30.画一条数轴,把-2、3、和它们的相反数表示在数轴上,并比较这些数的大小.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.C5.B6.A7.C8.D9.C10.D11.C12.C二、填空题13.6014.45,45 或 135 15.416.90o17.11018.1,-6,519.乘方,幂相乘20.12.5°21.96+2x22.3三、解答题23.24.设均媒展开双坦的长度为x (cm).则2.551x-=,51x=-4.0x≈答:该蝴谋展开双翅的长度为 4. 0 cm.25.思路:证明ΔADC≌ΔCBE.26.解:(1)被污染处的人数为11人.设被污染处的捐款数为x元,则 11x+1460=50×38 ,解得x=40答:(1)被污染处的人数为11人,被污染处的捐款数为40元.(2)捐款金额的中位数是40元,捐款金额的众数是50元.27.BC=3.7 m,DE=1.85 m28.略29.(1)错,解方程不能用连等表示 (2)改正:x=230.-,它们在数轴上表示如图所示:-2,3,5的相反数分别是2,-3,5观察数轴可知:352253-<--<<。

2020年江苏省南京市中考数学试卷 (解析版)

2020年江苏省南京市中考数学试卷 (解析版)

2020年江苏省南京市中考数学试卷一、选择题(共6小题).1.(2分)计算3(2)--的结果是( ) A .5-B .1-C .1D .52.(2分)3的平方根是( )A .9B .3C .3-D .3±3.(2分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( ) A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x 的方程2(1)(2)(x x p p -+=为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根6.(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: . 8.(2分)若式子111x --在实数范围内有意义,则x 的取值范围是 . 9.(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 s .10.(23312+的结果是 .11.(2分)已知x 、y 满足方程组31,23,x y x y +=-⎧⎨+=⎩,则x y +的值为 .12.(2分)方程112x x x x -=-+的解是 . 13.(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 .14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 2cm .15.(2分)如图,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠= .16.(2分)下列关于二次函数22()1(y x m m m =--++为常数)的结论:①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图象上.其中所有正确结论的序号是 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算212(1)11a aa a a +-+÷++. 18.(7分)解方程:2230x x --=.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.20.(8分)已知反比例函数ky x=的图象经过点(2,1)--. (1)求k 的值.(2)完成下面的解答.解不等式组21,1xkx->⎧⎪⎨>⋅⎪⎩①②解:解不等式①,得.根据函数kyx=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1893x<50293178x<1003178263x<344263348x<115348433x<16433518x<17518603x<28603688x<1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26︒方向航行至D处,在B、C处分别测得45ABD∠=︒、37C∠=︒.求轮船航行的距离AD.(参考数据:sin260.44︒≈,cos260.90︒≈,tan260.49︒≈,sin370.60︒≈,cos370.80︒≈,tan 370.75︒≈.)24.(8分)如图,在ABC ∆中,AC BC =,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交O 于点F . 求证:(1)四边形DBCF 是平行四边形; (2)AF EF =.25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为1y m 、2y m .1y 与x 之间的函数表达式是11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 26.(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC ABC D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BCC D A C B C==''''''时,判断ABC∆与△A B C'''是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A B'与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC CB AC C B'+<'+.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2分)计算3(2)--的结果是( ) A .5-B .1-C .1D .5解:3(2)325--=+=. 故选:D .2.(2分)3的平方根是( )A .9B C .D .解:2(3)3±=,3∴的平方根.故选:D .3.(2分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a解:322322624()a a a a a a ⨯-÷=÷==, 故选:B .4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( ) A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务解:A .2019年末,农村贫困人口比上年末减少166********-=(万人),此选项错误; B .2012年末至2019年末,农村贫困人口累计减少超过98995519348-=(万人),此选项正确;C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确; 故选:A .5.(2分)关于x 的方程2(1)(2)(x x p p -+=为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根解:关于x 的方程2(1)(2)(x x p p -+=为常数),2220x x p ∴+--=,∴△22184940p p =++=+>,∴方程有两个不相等的实数根,两个的积为22p --, ∴一个正根,一个负根,故选:C .6.(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)解:设O 与x 、y 轴相切的切点分别是F 、E 点,连接PE 、PF 、PD ,延长EP 与CD 交于点G ,则PE y ⊥轴,PF x ⊥轴, 90EOF ∠=︒, ∴四边形PEOF 是矩形,PE PF =,//PE OF , ∴四边形PEOF 为正方形,5OE OF PE OF ∴====,(0,8)A , 8OA ∴=, 853AE ∴=-=,四边形OACB 为矩形,8BC OA ∴==,//BC OA ,//AC OB , //EG AC ∴,∴四边形AEGC 为平行四边形,四边形OEGB 为平行四边形,3CG AE ∴==,EG OB =, PE AO ⊥,//AO CB , PG CD ∴⊥, 26CD CG ∴==,862DB BC CD ∴=-=-=, 5PD =,3DG CG ==, 4PG ∴=,549OB EG ∴==+=,(9,2)D ∴.故选:A .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: 1-(答案不唯一) . 解:这个数的绝对值小于3, ∴这个数的绝对值等于0、1或2, ∴这个负数可能是2-、1-.故答案为:1-(答案不唯一). 8.(2分)若式子111x --在实数范围内有意义,则x 的取值范围是 1x ≠ . 解:若式子111x --在实数范围内有意义, 则10x -≠, 解得:1x ≠. 故答案为:1x ≠.9.(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 8210-⨯ s .解:98202010210ns s s --=⨯=⨯,故答案为:8210-⨯.10.(2解:原式13===. 故答案为:13. 11.(2分)已知x 、y 满足方程组31,23,x y x y +=-⎧⎨+=⎩,则x y +的值为 1 . 解:3123x y x y +=-⎧⎨+=⎩①②, ①2⨯-②得:55y =-,解得:1y =-,①-②3⨯得:510x -=-,解得:2x =,则211x y +=-=, 故答案为1.12.(2分)方程112x x x x -=-+的解是 x = 解:方程112x x x x -=-+, 去分母得:22221x x x x +=-+, 解得:14x =, 经检验14x =是分式方程的解. 故答案为:14x =. 13.(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 122y x =+ . 解:在一次函数24y x =-+中,令0x =,则4y =,∴直线24y x =-+经过点(0,4),将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,则点(0,4)的对应点为(4,0)-, 旋转后得到的图象与原图象垂直,则对应的函数解析式为:12y x b =+, 将点(4,0)-代入得,1(4)02b ⨯-+=, 解得2b =,∴旋转后对应的函数解析式为:122y x =+, 故答案为122y x =+. 14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 23 2cm . 解:连接BF ,BE ,过点A 作AT BF ⊥于TABCDEF 是正六边形,//CB EF ∴,AB AF =,120BAF ∠=︒,PEF BEF S S ∆∆∴=,AT BE ⊥,AB AF =,BT FT ∴=,60BAT FAT ∠=∠=︒,sin 603BT FT AB ∴==︒=,223BF BT ∴==,120AFE ∠=︒,30AFB ABF ∠=∠=︒,90BFE ∴∠=︒, 112232322PEF BEF S S EF BF ∆∆∴===⨯⨯=, 故答案为23.15.(2分)如图,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠=78︒ .解:过O 作射线BP ,线段AB 、BC 的垂直平分线11、2l 相交于点O ,AO OB OC ∴==,90BDO BEO ∠=∠=︒,180DOE ABC ∴∠+∠=︒,1180DOE ∠+∠=︒,139ABC ∴∠=∠=︒,OA OB OC ==,A ABO ∴∠=∠,OBC C ∠=∠,AOP A ABO ∠=∠+∠,COP C OBC ∠=∠+∠,23978AOC AOP COP A ABC C ∴∠=∠+∠=∠+∠+∠=⨯︒=︒,故答案为:78︒.16.(2分)下列关于二次函数22()1(y x m m m =--++为常数)的结论:①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图象上.其中所有正确结论的序号是 ①②④ .解:①二次函数2()1(y x m m m =--++为常数)与函数2y x =-的二次项系数相同, ∴该函数的图象与函数2y x =-的图象形状相同,故结论①正确; ②在函数22()1y x m m =--++中,令0x =,则2211y m m =-++=,∴该函数的图象一定经过点(0,1),故结论②正确;③22()1y x m m =--++,∴抛物线开口向下,对称轴为直线x m =,当x m >时,y 随x 的增大而减小,故结论③错误; ④抛物线开口向下,当x m =时,函数y 有最大值21m +,∴该函数的图象的顶点在函数21y x =+的图象上.故结论④正确,故答案为①②④.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算212(1)11a a a a a +-+÷++. 解:原式211(2)()111a a a a a a -+=+÷+++ 211(2)a a a a a +=++ 2a a =+. 18.(7分)解方程:2230x x --=.解:原方程可以变形为(3)(1)0x x -+=30x -=,10x +=13x ∴=,21x =-.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.【解答】证明:在ABE ∆与ACD ∆中A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ACD ∴∆≅∆.AD AE ∴=.BD CE ∴=.20.(8分)已知反比例函数k y x =的图象经过点(2,1)--. (1)求k 的值. (2)完成下面的解答.解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解:解不等式①,得 1x < .根据函数k y x=的图象,得不等式②的解集 . 把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集 .解:(1)反比例函数k y x=的图象经过点(2,1)--, (2)(1)2k ∴=-⨯-=;(2)解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解:解不等式①,得1x <.根据函数k y x=的图象,得不等式②的解集02x <<. 把不等式①和②的解集在数轴上表示为:∴不等式组的解集为01x <<,故答案为:1x <,02x <<,01x <<.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h 进行调查,整理样本数据得到下面的频数分布表. 组别用电量分组 频数 1893x < 50 293178x < 100 3178263x < 34 4263348x < 11 5348433x < 1 6433518x < 1 7518603x < 2 8 603688x <1 根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第 2 组内;(2)估计该地1万户居民六月份的用电量低于178kW h 的大约有多少户.解:(1)有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)50100100007500200+⨯=(户), 答:估计该地1万户居民六月份的用电量低于178kW h 的大约有7500户.22.(8分)甲、乙两人分别从A 、B 、C 这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A 、B 的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是13. 解:用列表法表示所有可能出现的结果如下:(1)共有9种可能出现的结果,其中选择A 、B 的有2种,(,)29A B P ∴=; (2)共有9种可能出现的结果,其中选择景点相同的有3种, ()3193P ∴==景点相同. 故答案为:13. 23.(8分)如图,在港口A 处的正东方向有两个相距6km 的观测点B 、C .一艘轮船从A 处出发,沿北偏东26︒方向航行至D 处,在B 、C 处分别测得45ABD ∠=︒、37C ∠=︒.求轮船航行的距离AD .(参考数据:sin 260.44︒≈,cos 260.90︒≈,tan 260.49︒≈,sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈.)解:如图,过点D 作DH AC ⊥于点H ,在Rt DCH ∆中,37C ∠=︒,tan 37DH CH ∴=︒, 在Rt DBH ∆中,45DBH ∠=︒,tan 45DH BH ∴=︒, BC CH BH =-,∴6tan 37tan 45DH DH -=︒︒, 解得18DH ≈,在Rt DAH ∆中,26ADH ∠=︒,20cos 26DH AD ∴=≈︒. 答:轮船航行的距离AD 约为20km .24.(8分)如图,在ABC ∆中,AC BC =,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交O 于点F .求证:(1)四边形DBCF 是平行四边形;(2)AF EF =.【解答】证明:(1)AC BC =,BAC B ∴∠=∠,//DF BC , ADF B ∴∠=∠,BAC CFD ∠=∠,ADF CFD ∴∠=∠,//BD CF ∴,//DF BC ,∴四边形DBCF 是平行四边形;(2)连接AE ,ADF B ∠=∠,ADF AEF ∠=∠,AEF B ∴∠=∠, 四边形AECF 是O 的内接四边形,180ECF EAF ∴∠+∠=︒,//BD CF ,180ECF B ∴∠+∠=︒,EAF B ∴∠=∠,AEF EAF ∴∠=∠,AE EF ∴=.25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为1y m 、2y m .1y 与x 之间的函数表达式是11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 250 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 解:(1)11802250y x =-+,22101002000y x x =--+,∴当0x =时,12250y =,22000y =,∴小丽出发时,小明离A 地的距离为22502000250()m -=,故答案为:250;(2)设小丽出发第xmin 时,两人相距sm ,则222(1802250)(101002000)108025010(4)90s x x x x x x =-+---+=-+=-+, ∴当4x =时,s 取得最小值,此时90s =,答:小丽出发第4min 时,两人相距最近,最近距离是90m .26.(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC AB C D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BC C D A C B C ==''''''时,判断ABC ∆与△A B C '''是否相似,并说明理由. 【解答】(1)证明:AD A D AB A B ''='', ∴AD AB A D A B ='''', CD AC ABC D A C A B =='''''', ∴CD AC AD C D A C A D =='''''', ADC ∴∆∽△A D C '',A A ∴∠=∠',AC ABA C AB ='''', ABC ∴∆∽△A B C '''.故答案为:CD AC AD C D A C A D =='''''',A A ∠=∠'. (2)如图,过点D ,D '分别作//DE BC ,//D E B C '''',DE 交AC 于E ,D E ''交A C ''于E './/DE BC ,ADE ABC ∴∆∆∽, ∴AD DE AE AB BC AC==, 同理,A D D E A E AB BC A C ''''''=='''''', AD A DAB A B ''='', ∴DE D E BC B C ''='', ∴DE BC D E B C ='''', 同理,AE A E AC A C ''='', ∴AC AE A C A E AC A C -''-''='',即EC E C AC A C ''='', ∴EC AC E C A C ='''', CD AC BCC D A C B C =='''''', ∴CD DE EC C D D E E C =='''''', DCE ∴∆∽△D C E ''',CED C E D ∴∠=∠''',//DE BC ,90CED ACB ∴∠+∠=︒,同理,180C E D A C B ∠'''+∠'''=︒,ACB A B C ∴∠=∠''',AC CBA C CB ='''', ABC ∴∆∽△A B C '''.27.(9分)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A 、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A 关于l 的对称点A ',线段A B '与直线l 的交点C 的位置即为所求,即在点C 处建燃气站,所得路线ACB 是最短的.为了证明点C 的位置即为所求,不妨在直线1上另外任取一点C ',连接AC '、BC ',证明AC CB AC C B '+<'+.请完成这个证明.(2)如果在A 、B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【解答】证明:(1)如图②,连接A C '',点A ,点A '关于l 对称,点C 在l 上,CA CA '∴=,AC BC A C BC A B ''∴+=+=,同理可得AC C B A C BC '''''+=+,A B A C C B ''''<+,AC BC AC C B ''∴+<+;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD DE EB++,(其中CD,BE都与圆相切)。

2020年江苏省南京市中考数学试题及参考答案(word解析版)

2020年江苏省南京市中考数学试题及参考答案(word解析版)

南京市2020年初中学业水平考试数学(满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.计算3﹣(﹣2)的结果是()A.﹣5 B.﹣1 C.1 D.52.3的平方根是()A.9 B.C.﹣D.±3.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a84.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)二、填空题(本大题共10小题,每小题2分,共20分)7.写出一个负数,使这个数的绝对值小于3:.8.若式子1﹣在实数范围内有意义,则x的取值范围是.9.纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.10.计算的结果是.11.已知x、y满足方程组,则x+y的值为.12.方程=的解是.13.将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是.14.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.15.如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC=.16.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.18.(7分)解方程:x2﹣2x﹣3=0.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1 8≤x<93 502 93≤x<178 1003 178≤x<263 344 263≤x<348 115 348≤x<433 16 433≤x<518 17 518≤x<603 28 603≤x<688 1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB <AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.计算3﹣(﹣2)的结果是()A.﹣5 B.﹣1 C.1 D.5【知识考点】有理数的减法.【思路分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解题过程】解:3﹣(﹣2)=3+2=5.故选:D.【总结归纳】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.2.3的平方根是()A.9 B.C.﹣D.±【知识考点】平方根.【思路分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.【解题过程】解:∵()2=3,∴3的平方根.故选:D.【总结归纳】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据幂的乘方、同底数幂的除法的计算法则进行计算即可.【解题过程】解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.【总结归纳】本题考查幂的乘方、同底数幂除法的计算法则,掌握计算法则是正确计算的前提.4.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务【知识考点】条形统计图.【思路分析】根据条形统计图中每年末贫困人口的数量,结合各选项逐一分析判断可得答案.【解题过程】解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.【总结归纳】本题主要考查条形统计图,解题的关键是根据条形统计图得出解题所需的具体数据.5.关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【知识考点】根的判别式;根与系数的关系.【思路分析】先把方程(x﹣1)(x+2)=p2化为x2+x﹣2﹣p2=0,再根据方程有两个不相等的实数根可得△=1+8+4p2>0,由﹣2﹣p2>0即可得出结论.【解题过程】解:∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为﹣2﹣p2<0,∴一个正根,一个负根,故选:C.【总结归纳】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.6.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【知识考点】坐标与图形性质;矩形的性质;切线的性质.【思路分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD 交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.【解题过程】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.【总结归纳】本题主要考查了正方形的性质,矩形的性质与判定,圆的切线的性质,垂径定理,勾股定理,关键是求出CG的长度.二、填空题(本大题共10小题,每小题2分,共20分)7.写出一个负数,使这个数的绝对值小于3:.【知识考点】正数和负数;15:绝对值.【思路分析】首先根据一个负数的绝对值小于3,可得这个负数大于﹣3且小于0;然后根据绝对值的含义和求法,求出这个数是多少即可.【解题过程】解:∵一个负数的绝对值小于3,∴这个负数大于﹣3且小于0,∴这个负数可能是﹣2、﹣1.5、﹣1、….故答案为:﹣1(答案不唯一).【总结归纳】此题主要考查了绝对值的含义和运用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.若式子1﹣在实数范围内有意义,则x的取值范围是.【知识考点】分式有意义的条件.【思路分析】直接利用分式有意义的条件分析得出答案.【解题过程】解:若式子1﹣在实数范围内有意义,则x﹣1≠0,解得:x≠1.故答案为:x≠1.【总结归纳】此题主要考查了分式有意义的条件,正确掌握相关定义是解题关键.9.纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.【知识考点】科学记数法—表示较小的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:20ns=20×10﹣9s=2×10﹣8s,故答案为:2×10﹣8.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.计算的结果是.【知识考点】分母有理化;二次根式的混合运算.【思路分析】直接利用二次根式的性质化简得出答案.【解题过程】解:原式===.故答案为:.【总结归纳】此题主要考查了二次根式的混合运算,正确化简各数是解题关键.11.已知x、y满足方程组,则x+y的值为.【知识考点】97:二元一次方程组的解;98:解二元一次方程组.【思路分析】求出方程组的解,代入求解即可.【解题过程】解:,①×2﹣②得:5y=﹣5,解得:y=﹣1,①﹣②×3得:﹣5x=﹣10,解得:x=2,则x+y=2﹣1=1,故答案为1.【总结归纳】本题考查了解二元一次方程组,整式的求值的应用,求得x、y的值是解此题的关键.12.方程=的解是.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:方程=,去分母得:x2+2x=x2﹣2x+1,解得:x=,经检验x=是分式方程的解.故答案为:x=.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是.【知识考点】一次函数图象与几何变换.【思路分析】利用直线与两坐标轴的交点坐标,求得旋转后的对应点坐标,然后根据待定系数法即可求得.【解题过程】解:在一次函数y=﹣2x+4中,令x=0,则y=4,令y=0,则x=2,∴直线y=﹣2x+4经过点(0,4),(2,0)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),(2,0)的对应点是(0,2)设对应的函数解析式为:y=kx+b,将点(﹣4,0)、(0,2)代入得,解得,∴旋转后对应的函数解析式为:y=x+2,故答案为y=x+2.【总结归纳】此题主要考查了一次函数图象与几何变换,正确把握互相垂直的两直线系数关系是解题关键.14.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.【知识考点】三角形的面积;正多边形和圆.【思路分析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.【解题过程】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠FAT=60°,∴BT=FT=AB•sin60°=,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=•EF•BF=×2×=2,故答案为2.【总结归纳】本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC=.【知识考点】线段垂直平分线的性质.【思路分析】解法一:过O作射线BP,根据线段的垂直平分线的性质得AO=OB=OC和∠BDO =∠BEO=90°,根据四边形的内角和为360°得∠DOE+∠ABC=180°,根据外角的性质得∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,相加可得结论.解法二:连接OB,同理得AO=OB=OC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE =∠COE,由平角的定义得∠BOD+∠BOE=141°,最后由周角的定义可得结论.【解题过程】解:解法一:过O作射线BP,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°;解法二:连接OB,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∵∠DOE+∠1=180°,∠1=39°,∴∠DOE=141°,即∠BOD+∠BOE=141°,∴∠AOD+∠COE=141°,∴∠AOC=360°﹣(∠BOD+∠BOE)﹣(∠AOD+∠COE)=78°;故答案为:78°.【总结归纳】本题主要考查线段的垂直平分线的性质,等腰三角形的性质,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换.【思路分析】利用二次函数的性质一一判断即可.【解题过程】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.【总结归纳】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.【知识考点】分式的混合运算.【思路分析】先计算括号内异分母分式的加法、将除式分子因式分解,再将除法转化为乘法,最后约分即可得.【解题过程】解:原式=(+)÷=•=.【总结归纳】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.18.(7分)解方程:x2﹣2x﹣3=0.【知识考点】解一元二次方程﹣因式分解法.【思路分析】通过观察方程形式,本题可用因式分解法进行解答.【解题过程】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.【总结归纳】熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【知识考点】全等三角形的判定与性质.【思路分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.【解题过程】证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴BD=CE.【总结归纳】考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题得出三角形全等后,再根据全等三角形的性质可得线段相等.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.【知识考点】在数轴上表示不等式的解集;反比例函数的图象;反比例函数图象上点的坐标特征.【思路分析】(1)把点(﹣2,﹣1)代入y=即可得到结论;(2)解不等式组即可得到结论.【解题过程】解:(1)∵反比例函数y=的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.【总结归纳】本题考查了反比例函数图象上点的坐标特征,解不等式组,在数轴上表示不等式的解集,正确的理解题意是解题的关键.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1 8≤x<93 502 93≤x<178 1003 178≤x<263 344 263≤x<348 115 348≤x<433 16 433≤x<518 17 518≤x<603 28 603≤x<688 1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.【知识考点】用样本估计总体;频数(率)分布表;中位数.【思路分析】(1)根据中位数的定义即可得到结论;(2)根据题意列式计算即可得到结论.【解题过程】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW•h的大约有7500户.【总结归纳】本题考查了中位数,用样本估计总体,频数(率)分布表,正确的理解题意是解题的关键.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.【知识考点】列表法与树状图法.【思路分析】(1)列举出甲选择的2个景点所有可能出现的结果情况,进而求出相应的概率;(2)用列表法表示所有可能出现的结果,再求出两个景点相同的概率.【解题过程】解:甲选择的2个景点所有可能出现的结果如下:(1)共有6种可能出现的结果,其中选择A、B的有2种,∴P(A、B)==;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中选择景点相同的有3种,∴P(景点相同)==.故答案为:.【总结归纳】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过点D作DH⊥AC于点H,根据锐角三角函数即可求出轮船航行的距离AD.【解题过程】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=,在Rt△DBH中,∠DBH=45°,∴BH=,∵BC=CH﹣BH,∴﹣=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=≈20.答:轮船航行的距离AD约为20km.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【知识考点】等腰三角形的判定与性质;平行四边形的判定与性质;圆周角定理.【思路分析】(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF=∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可;(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF=180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可.【解题过程】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.【总结归纳】本题考查了平行线的性质和判定,平行四边形的判定,圆内接四边形,等腰三角形的判定等知识点,能综合运用知识点进行推理是解此题的关键.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?【知识考点】二次函数的应用.【思路分析】(1)根据题意和函数解析式,可以计算出小丽出发时,小明离A地的距离;(2)根据题目中的函数解析式和题意,利用二次函数的性质,可以得到小丽出发至小明到达B 地这段时间内,两人何时相距最近,最近距离是多少.【解题过程】解:(1)∵y1=﹣180x+2250,y2=﹣10x2﹣100x+2000,∴当x=0时,y1=2250,y2=2000,∴小丽出发时,小明离A地的距离为2250﹣2000=250(m),故答案为:250;(2)设小丽出发第xmin时,两人相距sm,则s=(﹣180x+2250)﹣(﹣10x2﹣100x+2000)=10x2﹣80x+250=10(x﹣4)2+90,∴当x=4时,s取得最小值,此时s=90,答:小丽出发第4min时,两人相距最近,最近距离是90m.【总结归纳】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.【知识考点】相似三角形的判定.【思路分析】(1)根据两边成比例夹角相等两三角形相似证明即可.(2)过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.首先证明△CED∽△C′E′D′,推出∠CED=∠C′E′D′,再证明∠ACB=∠A′C′B′即可解决问题.【解题过程】(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C,∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=90°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′B′C′,∵=,∴△ABC∽△A′B′C′.【总结归纳】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB <AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【知识考点】四边形综合题.【思路分析】(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC=A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;(2)①由(1)的结论可求;②由(1)的结论可求解.【解题过程】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD++EB,(其中CD,BE都与圆相切)【总结归纳】本题是四边形综合题,考查了正方形的性质,圆的有关知识,轴对称的性质,三角形的三边关系,熟练运用这些性质解决问题是本题的关键.。

2020年江苏省南京市中考数学试题(word版,含解析)

2020年江苏省南京市中考数学试题(word版,含解析)

2020年江苏省南京市中考数学试卷一、选择题:(本大题目共6小题.每小题2分.共12分.在每小题给出的四个选项中,只有一顶是符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上.)1. 计算3-(﹣2)的结果是( )A. ﹣5B. ﹣1C. 1D. 52. 3的平方根是( )A. 9B. 3C. 3-D. 3± 3. 计算()232aa ÷的结果是( ) A. 3a B. 4a C. 7a D. 8a4. 党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置. 根据国家统计局发布的数据,2012~2019年年末去哪国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( )A. 2019年末,农村贫困人口比上年末减少551万人B. 2012年末至2019年末,农村贫困人口累计减少超过9000万人C. 2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D. 为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5. 关于x 的方程()()212x x p -+=(p 为常数)的根的情况,下列结论中正确的是( ) A. 两个正根 B. 两个负根 C. 一个正根,一个负根 D. 无实数根6. 如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D. 若P 的半径为5,点A 的坐标是(0,8),则点D 的坐标是( )A. (9,2)B. (9,3)C. (10,2)D. (10,3)(第6题) (第14题) (第15题)二、填空题(本大题共10小题,每小题2分,共20分. 请把答案填写在答题卡相应位置上)7. 写出一个负数,使这个数的绝对值小于3: .8. 若式子111x --在实数范围内有意义,则x 的取值范围是 . 9. 纳秒(ns )是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20 ns ,用科学记数法表示20 ns 是 s.10. 3312+的结果是 . 11. 已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x +y 的值为 . 12. 方程112x x x x -=-+的解是 . 13. 将一次函数24y x =-+的图像绕原点O 逆时针旋转90°,所得到的的图像对应的函数表达式是 .14. 如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则△PEF 的面积为 cm 2.15. 如图,线段AB 、BC 的垂直平分线l 1,l 2相交于点O. 若∠1=39°,则∠AOC = °.16. 下列关于二次函数()221y x m m =--++(m 为常数)的结论:①该函数的图像与函数2y x =-的图像形状相同;②该函数的图像一经过点(0,1);③当x >0时,y 随x 的增大而减小;④该函数的图像的顶点在函数21y x =+的图像上. 其中所有正确结论的序号是 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17. (7分)计算212111a a a a a +⎛⎫-+÷ ⎪++⎝⎭.18. (7分)解方程:2230x x --=.19. (8分)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C. 求证:BD =CE.20. (8分)已知反比例函数k y x =的图像经过点(﹣2,﹣1). (1)求k 的值;(2)完成下面的解答. 解不等式组211x k x->⎧⎪⎨>⎪⎩①② 解:解不等式①,得 .根据函数k y x=的图像,的不等式②的解集 . 把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集 .21. (8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kw·h )进行调查,整理样本数据得到下面的频数分布表.根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内.(2)估计该地1万户居民六月份的用电量低于178kw·h的大约有多少户?22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C. 一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°,∠C=37°. 求轮船航行的距离AD.(参考数据:≈,tan370.75≈)≈,cos370.8≈,sin370.60≈,cos260.90≈,tan260.49sin260.4424. (8分)如图,在△ABC 中,AC =BC ,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于E ,过点D 作DF ∥BC ,交O 于点F. 求证:(1)四边形DBCF 是平行四边形;(2)AF =EF.25. (8分)小明和小丽先后从A 地出发沿同一直道去B 地. 设小丽出发第x min 时,小丽、小明离B 地的距离分别为y 1 m 、y 2 m. y 1与x 之间的函数表达式是11802250y x =-+,y 2与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 m ;(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少?26. (9分)如图,在△ABC 和△A ’B ’C ’中,D 、D ’分别是AB 、A ’B ’上一点,''''AD A D AB A B =.(1)当''''''CD AC AB C D A C A B ==时,求证:△ABC ∽△A ’B ’C ’. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当''''''CD AC BC C D A C B C ==时,判断△ABC 与△A ’B ’C ’是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A’,线段A’B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线l上另外任取一点C’,连接AC’、BC’,证明AC+CB<AC’+C’B. 请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域. 请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.。

2020年江苏省南京市中考数学精编试题附解析

2020年江苏省南京市中考数学精编试题附解析

2020年江苏省南京市中考数学精编试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在山坡上种树,已知∠A=30°,AC=3米,则相邻两株树的坡面距离AB=( ) A .6米B .3米C .23米D .22米2.下列图形中阴影部分面积相等的是( )A .①②B .②③C .①④D .③④ 3.圆心角为1000,弧长为20л的扇形的半径是 ( ) A .36B . 720C . 6D .24.下列所给的边长相同的正多边形的组合中,不能镶嵌平面的是( ) A .正三角形与正方形组合 B .正三角形与正六边形组合 C .正方形与正六边形组合D .正三角形、正方形、正六边形组合5.已知AABC 的三个内角度数比为2:3:4,则这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形6. 如果a<b<0,下列不等式中错误..的是( ) A . ab >0B . a+b<0C .ba<1 D . a-b<07.方程①2290x -=;②2110x x-=;③29xy x +=;④276x x +=中,是一元二次方程的个数有( ) A .1个 B .2个 C .3个 D .4个 8.要得到2()a b -,多项式23Z a ab b ++应加上( ) A .ab -B .3ab -C .5ab -D .7ab -9.计算|25|35+的值是( ) A .1B .-1C . 525-D .55二、填空题如图是一个正方体的展开图,如果正方体相对的面上标注的值,那么x=____,y=_______.11.已知Rt△ABC中,∠C=90°,∠A=60°,BC=5,BD是中线,则BD= .12.已知⊙O的半径为8 cm,OP=5cm,则在过点P的所有弦中,最短的弦长为,最长的弦长为 cm.13.如图,折叠直角梯形纸片的上底AD,点D落在底边BC上点F处,已知DC=8㎝,FC = 4㎝,则EC长㎝.14.将图1可以折成一个正方体形状的盒子,折好后与“迎”字相对的字是.15.若a、b、c为△ABC的三边,则a b ca b c---+0(填“>”、“=”或“<”) .16.如图,已知∠DBC=∠ACB,要说明△ABC≌△DCB.(1)若以“SAS”为依据,则需要添加的一个条件是;(2)若以“AAS”为依据,则需添加一个条件是;(3)若以“ASA”为依据,则需添加一个条件是.三、解答题17.如图,∠PAQ是直角,⊙0与AP相切于点T,与AQ交B、C两点.(1)BT是否平分么OBA?说明你的理由.(2)若已知AT=4,弦BC=6,试求⊙0的半径R.18.如图,圆锥的底面半径为1 ,母线长为 3,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线AB的轴截面上另一母线AC 的中点D. 问:沿怎样的路线爬行,路程最短?最短路程是多少?19.如图,菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,求∠EBF的度数.20.如图,在四边形ABCD中,AB∥CD,AD∥BC,点E,F在对角线AC上,且AE=CF,请你以 F为一端点,和图中已标字母的某点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结;(2)猜想: = ;(3)证明:21.国家规定“中小学生每天在校体育活动的时间不低于1 h”.为此,某市就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:0.5t<h; B组:0.51t≥ h≤< D组: 1.5h t hh t h≤< C组:1 1.5请根据上述信息解答下列问题:(1)C 组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该辖区约有24000名初中孚至确估计其中达到国家规定体育活动时间的人约有多少?22.如图,O 为∠PAQ 的角平分线上的一点,OB ⊥AP 于点B ,以O 为圆心OB 为半径作⊙O ,求证:AQ 与⊙O 相切.23.已知点P (2,2)在反比例函数xky =(0≠k )的图象上. (1)当3-=x 时,求y 的值; (2)当31<<x 时,求y 的取值范围.24.某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市前该瓜农随机摘下了l0个成熟的西瓜,称重如下: 西瓜质量(kg) 5.4 5.3 5.O 4.8 4.4 4.0 西瓜数量(个)1232111个西瓜质量的众数和中位数分别是 和 ;OQPBA(2)计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约为多少kg?25.在10个试验田中对甲、乙两个早稻品种作了对比试验,两个品种在试验田的亩产量如下(单位:kg):甲 802 808 802 800 795 801 798 797 798 799 乙810814804788785801795800769799(1)用计算器分别计算两种早稻的平均亩产量; (2)哪种早稻的产量较为稳定?(3)在高产、稳产方面,哪种早稻品种较为优良?26. 已知方程组351ax by x cy +=⎧⎨-=⎩,甲同学正确解得23x y =⎧⎨=⎩,而粗心的乙同学把c 给看错了,解得36x y =⎧⎨=⎩, 求a b c --的值.27.从“海上生明月”这幅画(如图)中,你能找到哪些几何图形?请自己选择一些简单的几何图形,如圆、三角形、直线等,设计一幅美丽的图案,并对这幅画写一句主题语.28.在下图所提供的汇率表中,汇 (钞 )卖价一栏表示银行卖出 100 外币元的人民币价 格;钞买价一栏表示银行买入 100 外币元的人民币价格.(1)求银行卖a 美元的人民币价格. 若银行买入1550 美元,需人民币多少元?(2)求银行买入 b 欧元现钞的人民币价格. 若用1250 欧元向银行兑换人民币,可得到人民币多少元?(3)若用 c美元向银行兑换欧元,可得到多少欧元?29.樱桃树下有 a个红樱桃,甲猴拿走15,又扔掉 1 个,乙猴拿走剩下的15,又扔掉2个,丙猴吃掉剩下的15,又扔掉3 个,试用代数式表示剩下的红樱桃.444[(1)2]3555a---30.如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点叫格点,以格点为顶点分别接下列要求画图形.(1)画一个面积为 4 的三角形(在图①中画一个即可).(2)画一个面积为 8 的正方形(在图②中画一个即可).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.A4.C5.A6.C7.B8.C9.A二、填空题10.4,10335 12. 39,1613.314.运;15.<16.(1)AC=DB ;(2)∠BAC=∠CDB ;(3)∠ABC=∠DCB三、解答题 17.(1)BT 平分∠OBA ,理由如下:连结0T ,则OT ⊥AP ,∵∠PAQ=90°,∠PAQ+∠OTA=180°,∴OT ∥AQ , ∴∠0TB=∠ABT ,又∠0TB=∠OBT ,∴∠ABT=∠OBT ,∴BT 平分∠OBA . (2)作OE ⊥BC 于E 点,则BE=3,∴四边形AEOT 是矩形,∴OE=AT=4,∴R=53422=+.18.如展开图.∵∠BAB ′=120°,AC 是∠BAB ′的角平分线.∴∠BAD=60°,1122AD AB AC == ∴∠ABD=30°,2233 1.52BD =-=19.60°20.略21.(1)120人 (2)C (3)14400人画OD ⊥AQ ,垂足为D ,证明△OBA ≌△ODA 得OD=OB .23.解 (1)∵点P (2,2)在反比例函数xk y =的图象上,∴22k=.即4=k .∴反比例函数的解析式为xy 4=. ∴当3-=x 时,34-=y . (2)∵当1=x 时,4=y ;当3=x 时,34=y , 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y . 24.(1)5. 0 kg ,5.0 kg (2)4. 9 kg ,2940 kg25.(1)800x =甲kg ,796.5x =乙kg ;(2)甲的产量较为稳定;(3)甲种早稻较为优良26.127.一个圆、两个三角形、三条直线,设计图形略28.(1) 8.2896a 元,12733.405 元;(2)9.O438b 元,11304.75元 (3)8.2151821519.148891488c c=欧元. 29.444[(1)2]3555a ---30. 略。

2020南京中考数学试卷

2020南京中考数学试卷

2020南京中考数学试卷2020南京中考数学试卷一、试题分析2020年南京市中考数学试卷题目难度适中,整体出题风格稳定且契合教育部要求的素质教育方向,注重考察学生的综合能力和对数学知识的理解。

试卷整体分为五大部分:选填题、选择题、填空题、解答题和应用题。

二、试题评价1. 选填题选填题共计4道,题目难度适中,考察学生对数学知识点的掌握情况,能够产品生活中的亲身体验和优化实践,考查了学生的解决问题的能力及数学启发思维能力。

2. 选择题选择题共计10道,题目难度适中,主要考察学生对数学基础知识的掌握水平,同时能够让学生在选项中区分信息,培养学生准确判断的能力,在考察数学知识点的同时注重学生的逻辑思维能力。

填空题共计5道,难度适中,注重考察学生对于数学知识的理解,尤其是在计算过程中的准确性和细节控制方面。

该部分注重基本技能的训练,同时考查学生的作答规范和数据运算的技能。

4. 解答题解答题共计6道,难度较大,注重考察学生对数学知识的深入理解及其应用能力。

该部分突出解题思路和形式的理解及应用,尤其涉及到面积、体积、概率等知识点,需要学生对各个知识点的连贯和逻辑性有较深刻的认识。

5. 应用题应用题共计5道,难度适中,考察学生对于数学知识点的整体应用能力。

该部分需要学生将多个知识点融合在一起,形成完整和有机的解题思路,考查学生的数字分析和数据处理的综合推理能力。

三、试卷总体评价整体来看,2020年南京市中考数学试卷难度适中,注重学生的应用能力和解题思路的培养,考察了学生对于数学知识的理解及计算能力,并注重其实践应用。

试卷整体分布合理,难度适中,是一份很好的考总之,2020年南京市中考数学试卷在注重学生综合素质和能力培养的同时,考察了学生对基本数学知识的掌握,全面考查了学生的数学能力和应用能力,体现了素质教育的教育思想和方针。

江苏南京2020年中考数学试卷及解析

江苏南京2020年中考数学试卷及解析
B、2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;
C、9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;
2.3的平方根是()
A.9B. C. D.
【答案】D
【解析】
【分析】
直接根据平方根的概念即可求解.
【详解】∵
∴3的平方根是 .
故选:D.
【点睛】本题主要考查了平方根的概念,解决本题的关键是熟记平方根的定义.
3.计算 的结果是()
A. B. C. D.
【答案】B
【解析】
【分析】
先计算幂的乘方,再计算同底数幂的除法,从而可得答案.
∴AD=AE(全等三角形的对应边相等),
∴AB-AD=AC-AE,
即:BD=CE.
20.已知反比例函数 的图象经过点
(1)求 的值
(2)完成下面的解答
解不等式组
解:解不等式①,得.
根据函数 的图象,得不等式②得解集.
把不等式①和②的解集在数轴上表示出来
从中可以找出两个不等式解集的公共部分,得不等式组的解集.
三、解答题:解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答
17.计算:
【答案】
【解析】
【分析】
先把括号里通分,再把除法转化为乘法,然后约分化简即可.

2020年江苏省南京市中考数学全真试卷附解析

2020年江苏省南京市中考数学全真试卷附解析

2020年江苏省南京市中考数学全真试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,AB 是⊙O的直径,弦 AC、BD 相交于点P,CDAB等于()A.sin∠BPC B.cos∠BPC C.tan∠BPC D.cot∠BPC2.二次函数y=x2-2x+1与坐标轴轴的交点个数是()A. 0 B. 1 C. 2 D. 33.过⊙O内一点M的最长的弦长为4cm,最短的弦长为2cm ,则OM 的长为()A.3cm B.2cm C . 1cm D. 3cm4.桌子上放了一个lO0 N 的物体,则桌面受到的压强 P(Pa)与物体和桌子的接触面的面积 S (m2)的函数图象大致是()A.B.C.D.5.某地区A医院获得2008年10月在该院出生的20名初生婴儿的体重数据.现在要了解这20名初生婴儿的体重分布情况,需考察哪一个特征数()A.极差B.平均数C.方差D.频数6.若x为任意实数时,二次三项式26x x c-+的值都不小于0,则常数c满足的条件是()A.c≥0B.c≥9C.c>0 D.c>97.如图,射线l甲、l乙分别表示甲、乙两名运动员在竞走比赛中所走路程s(km)与时间t(h)的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙速度相同D.不能确定8.已知22222()3()40a b a b +-+-=,则22a b +=( ) A .-lB .4C .4或-lD .任意实数 9.如图所示,把直线1l 沿箭头方向平移2.5 cm ,得直线2l , 则这两条直线之间的距离是( )A .等于 2.5 cmB .小于2.5 cmC .大于2.5 cmD . 以上都不对10.若x 满足2310x x ++=,则代数式221x x+的值是( ) A .37B .3C .949D .711.如图所示的图形由四个相同的正方形组成,通过旋转不可能得到的图形是( •)12.计算器按键顺序为的相应算式是( )A .22545⨯-÷B .2(2.54)5-÷C .242.5()5-D .242.55-13.任何有理数的平方的末位数,不可能是( ) A . 1,4,9,0B . 2,3,7,8C .4,5,6,1D .1,5,6,914.如图是条跳棋棋盘.其中格点上的黑色为棋子.剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行.跳行一次称为一步.已知点A 为乙方一枚棋子.欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为 ( )A .2步B .3步C .4步D .5步二、填空题15.圆O 可以看成是到定点 的距离等于半径的所有点组成的图形.16.如图,E 、F 是□ABCD 对角线BD 上的两点,请你添加一个条件: ,使四边形AECF 是平行四边形.17.已知□ABCD 的周长为60 cm ,对角线AC ,BD 相交于点O),△AOB 的周长比△DCA 的周长长5 cm ,则AB= cm ,BC= cm .18. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac - 0)19.如图,在直角坐标平面内,线段AB 垂直于y 轴,垂足为B ,且AB=2,如果将线段AB 沿y 轴翻折,点A 落在点C 处,那么点C 的横坐标是 .20.如图,梯形AOCD 中,AD ∥0C ,AD=3,点;A 到x 轴的距离为4,到y 轴的距离为3,则点D 的坐标为 .21.在下列各式从左到右的变形中,有三种情况:(A)整式乘法,(B)分解因式,(C)既非整式乘法又非分解因式;在括号里填上所属的情况代号. (1)224(23)(23)49a a a +-=- ( ) (2)25(2)(1)3m m m m --=-+- ( ) (3)4422()()()x y x y x y x y -=+-+ ( ) (4)22211()2()x x xx+=++ ( ) (5)22()a a b ab a a ab b --+=-+- ( )三、解答题22.如图所示,一 个猎人在站在土丘上寻找猎物,A 处有一小白兔,一旦被猎人发现一定会被猎取,聪明的小免躲在什么范围内能逃过猎人的视线?请画图说明.23.如图所示的两组图形中,各有两个三角形相似,求图中 x 、y 的值.24.不画图象,说出抛物线24y x =-和214y x =的对称轴、顶点坐标和开口方向.25.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为 130元时,每天可销售70件,当每件商品售价高于130元时,每涨价 1 元,日销售量就减少 1件. 据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利额是多 少? (2)在上述条件不变、商品销售正常的情况下,每件商品的销售价定为多少元时,商场日 盈利可达到1600元(提示:盈利=售价-进价)?26.已知直角梯形ABCD 中,AB ∥DC ,∠DAB=90°,AD=DC=21AB ,E 是AB 的中点. (1)求证:四边形AECD 是正方形. (2)求∠B 的度数.27.如图,已知AB ⊥BD 于点B ,ED ⊥BD 于点D ,且AB=CD ,BC=DE ,那么AC 与CE 有什么关系?写出你的猜想,并说明理由.28.已知 Rt△ABC中,∠B=90°.(1)根据要求作图(尺规作图,仅留作图痕迹,不写画法):①作∠BAC的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连接ED;(2)在(1)的基础上写出一对全等三角形:△≌△,并说明理由.29.△ABC是等边三角形,D是BC上一点,△ABD经过旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?30.在飞机飞行时,飞行方向是用飞行路线与实际的南或北方向线的夹角大小来表示的,如图,夹角作为飞行方向角,从A到B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D的飞行方向角为145°.试求AB与AC之间的夹角为多少度?AD与AC之间的夹角为多少度?并画出从A飞出且方向角为105°的飞行线.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.D5.D6.B7.B8.B9.B10.D11.CD13.B14.B二、填空题 15. O16.BE =DF 等,(答案不惟一)17.352,25218.242b b aca-±-,≥19.-220.(6,4)21.(1)A ;(2);(3)B ;(4)C ;(5)B三、解答题 22.如图所示,小兔躲在 BC 区域内能逃过猎人的视线.23.302820x =,42x =. 152535y=,21y =.24y x =-的对称抽是 y 轴,顶点坐标(0,0),开口方向向下.214y x =的对称轴是y 轴,顶点坐标(0,0),开口方向向上. 25. (1)30件,1500元 (2)160元26.(1)证明:∵E 是AB 的中点,∴AE=21AB=DC∵AB ∥CD ,∴AE ∥DC ,∴四边形AECD 是平行四边形,90DAE ∠=,∴四边形AECD 是矩形,∵AD=DC ,∴矩形AECD 是正方形. (2)四边形AECD 是正方形,45CAE ∴∠=,CE 垂直平分AB ,CA CB ∴=,45B CAE ∴∠=∠=.27.AC ⊥CE 且AC=CE ,证△ABC ≌△CDE ,再证∠ACE=∠B=90°28.略29.(1)A 点,(2)60度,(3)AC 的中点.30.AB 与AC 之间夹角为25°,AD 与AC 之间夹角为85°,图略。

2020年江苏省南京市中考数学试卷和答案解析

2020年江苏省南京市中考数学试卷和答案解析

2020年江苏省南京市中考数学试卷和答案解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.5解析:根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.参考答案:解:3﹣(﹣2)=3+2=5.故选:D.点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.2.(2分)3的平方根是()A.9B.C.﹣D.±解析:如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.参考答案:解:∵()2=3,∴3的平方根.故选:D.点拨:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8解析:根据幂的乘方、同底数幂的除法的计算法则进行计算即可.参考答案:解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.点拨:本题考查幂的乘方、同底数幂除法的计算法则,掌握计算法则是正确计算的前提.4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务解析:根据条形统计图中每年末贫困人口的数量,结合各选项逐一分析判断可得答案.参考答案:解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.点拨:本题主要考查条形统计图,解题的关键是根据条形统计图得出解题所需的具体数据.5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根解析:先把方程(x﹣1)(x+2)=p2化为x2+x﹣2﹣p2=0,再根据方程有两个不相等的实数根可得△=1+8+4p2>0,由﹣2﹣p2>0即可得出结论.参考答案:解:∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为﹣2﹣p2<0,∴一个正根,一个负根,故选:C.点拨:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.6.(2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x 轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)解析:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.参考答案:解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.点拨:本题主要考查了正方形的性质,矩形的性质与判定,圆的切线的性质,垂径定理,勾股定理,关键是求出CG的长度.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3:﹣1(答案不唯一).解析:首先根据一个负数的绝对值小于3,可得这个负数大于﹣3且小于0;然后根据绝对值的含义和求法,求出这个数是多少即可.参考答案:解:∵一个负数的绝对值小于3,∴这个负数大于﹣3且小于0,∴这个负数可能是﹣2、﹣1.5、﹣1、….故答案为:﹣1(答案不唯一).点拨:此题主要考查了绝对值的含义和运用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.(2分)若式子1﹣在实数范围内有意义,则x的取值范围是x ≠1.解析:直接利用分式有意义的条件分析得出答案.参考答案:解:若式子1﹣在实数范围内有意义,则x﹣1≠0,解得:x≠1.故答案为:x≠1.点拨:此题主要考查了分式有意义的条件,正确掌握相关定义是解题关键.9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是2×10﹣8s.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:20ns=20×10﹣9s=2×10﹣8s,故答案为:2×10﹣8.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(2分)计算的结果是.解析:直接利用二次根式的性质化简得出答案.参考答案:解:原式===.故答案为:.点拨:此题主要考查了二次根式的混合运算,正确化简各数是解题关键.11.(2分)已知x、y满足方程组,则x+y的值为1.解析:求出方程组的解,代入求解即可.参考答案:解:,①×2﹣②得:5y=﹣5,解得:y=﹣1,①﹣②×3得:﹣5x=﹣10,解得:x=2,则x+y=2﹣1=1,故答案为1.点拨:本题考查了解二元一次方程组,整式的求值的应用,求得x、y的值是解此题的关键.12.(2分)方程=的解是x=.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.参考答案:解:方程=,去分母得:x2+2x=x2﹣2x+1,解得:x=,经检验x=是分式方程的解.故答案为:x=.点拨:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(2分)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是y=x+2.解析:利用直线与两坐标轴的交点坐标,求得旋转后的对应点坐标,然后根据待定系数法即可求得.参考答案:解:在一次函数y=﹣2x+4中,令x=0,则y=4,令y=0,则x=2,∴直线y=﹣2x+4经过点(0,4),(2,0)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),(2,0)的对应点是(0,2)设对应的函数解析式为:y=kx+b,将点(﹣4,0)、(0,2)代入得,解得,∴旋转后对应的函数解析式为:y=x+2,故答案为y=x+2.点拨:此题主要考查了一次函数图象与几何变换,正确把握互相垂直的两直线系数关系是解题关键.14.(2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为2cm2.解析:连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.参考答案:解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠FAT=60°,∴BT=FT=AB•sin60°=,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S △PEF=S△BEF=•EF•BF=×2×=2,故答案为2.点拨:本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.(2分)如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC=78°.解析:解法一:过O作射线BP,根据线段的垂直平分线的性质得AO=OB=OC和∠BDO=∠BEO=90°,根据四边形的内角和为360°得∠DOE+∠ABC=180°,根据外角的性质得∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,相加可得结论.解法二:连接OB,同理得AO=OB=OC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE=∠COE,由平角的定义得∠BOD+∠BOE=141°,最后由周角的定义可得结论.参考答案:解:解法一:过O作射线BP,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°;解法二:连接OB,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∵∠DOE+∠1=180°,∠1=39°,∴∠DOE=141°,即∠BOD+∠BOE=141°,∴∠AOD+∠COE=141°,∴∠AOC=360°﹣(∠BOD+∠BOE)﹣(∠AOD+∠COE)=78°;故答案为:78°.点拨:本题主要考查线段的垂直平分线的性质,等腰三角形的性质,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是①②④.解析:利用二次函数的性质一一判断即可.参考答案:解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.点拨:本题考查二次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.解析:先计算括号内异分母分式的加法、将除式分子因式分解,再将除法转化为乘法,最后约分即可得.参考答案:解:原式=(+)÷=•=.点拨:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.18.(7分)解方程:x2﹣2x﹣3=0.解析:通过观察方程形式,本题可用因式分解法进行解答.参考答案:解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.点拨:熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.解析:要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.参考答案:证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴BD=CE.点拨:考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题得出三角形全等后,再根据全等三角形的性质可得线段相等.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集0<x<1.解析:(1)把点(﹣2,﹣1)代入y=即可得到结论;(2)解不等式组即可得到结论.参考答案:解:(1)∵反比例函数y=的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.点拨:本题考查了反比例函数图象上点的坐标特征,解不等式组,在数轴上表示不等式的解集,正确的理解题意是解题的关键.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第2组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.解析:(1)根据中位数的定义即可得到结论;(2)根据题意列式计算即可得到结论.参考答案:解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW•h的大约有7500户.点拨:本题考查了中位数,用样本估计总体,频数(率)分布表,正确的理解题意是解题的关键.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.解析:(1)列举出甲选择的2个景点所有可能出现的结果情况,进而求出相应的概率;(2)用列表法表示所有可能出现的结果,再求出两个景点相同的概率.参考答案:解:甲选择的2个景点所有可能出现的结果如下:(1)共有6种可能出现的结果,其中选择A、B的有2种,∴P(A、B)==;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中选择景点相同的有3种,∴P(景点相同)==.故答案为:.点拨:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)解析:过点D作DH⊥AC于点H,根据锐角三角函数即可求出轮船航行的距离AD.参考答案:解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=,在Rt△DBH中,∠DBH=45°,∴BH=,∵BC=CH﹣BH,∴﹣=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=≈20.答:轮船航行的距离AD约为20km.点拨:本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.解析:(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF=∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可;(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF =180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可.参考答案:证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.点拨:本题考查了平行线的性质和判定,平行四边形的判定,圆内接四边形,等腰三角形的判定等知识点,能综合运用知识点进行推理是解此题的关键.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为250m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?解析:(1)根据题意和函数解析式,可以计算出小丽出发时,小明离A地的距离;(2)根据题目中的函数解析式和题意,利用二次函数的性质,可以得到小丽出发至小明到达B地这段时间内,两人何时相距最近,最近距离是多少.参考答案:解:(1)∵y1=﹣180x+2250,y2=﹣10x2﹣100x+2000,∴当x=0时,y1=2250,y2=2000,∴小丽出发时,小明离A地的距离为2250﹣2000=250(m),故答案为:250;(2)设小丽出发第xmin时,两人相距sm,则s=(﹣180x+2250)﹣(﹣10x2﹣100x+2000)=10x2﹣80x+250=10(x﹣4)2+90,∴当x=4时,s取得最小值,此时s=90,答:小丽出发第4min时,两人相距最近,最近距离是90m.点拨:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.解析:(1)根据两边成比例夹角相等两三角形相似证明即可.(2)过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.首先证明△CED∽△C′E′D′,推出∠CED=∠C′E′D′,再证明∠ACB=∠A′C′B′即可解决问题.参考答案:(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C,∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC 于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=90°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′B′C′,∵=,∴△ABC∽△A′B′C′.点拨:本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l 同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.解析:(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC =A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;(2)①由(1)的结论可求;②由(1)的结论可求解.参考答案:证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD++EB,(其中CD,BE都与圆相切)点拨:本题是四边形综合题,考查了正方形的性质,圆的有关知识,轴对称的性质,三角形的三边关系,熟练运用这些性质解决问题是本题的关键.。

2020年江苏省南京市中考数学试卷(含解析)

2020年江苏省南京市中考数学试卷(含解析)

2020年江苏省南京市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本大题共6小题,每小题2分,共12分)1.计算3﹣(﹣2)的结果是()A.﹣5 B.﹣1 C.1 D.52.3的平方根是()A.9 B.C.﹣D.±3.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a84.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)二、填空题(本大题共10小题,每小题2分,共20分)7.写出一个负数,使这个数的绝对值小于3:.8.若式子1﹣在实数范围内有意义,则x的取值范围是.9.纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.10.计算的结果是.11.已知x、y满足方程组,则x+y的值为.12.方程=的解是.13.将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是.14.如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.15.如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC=.16.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分)17.(7分)计算(a﹣1+)÷.18.(7分)解方程:x2﹣2x﹣3=0.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1 8≤x<93 502 93≤x<178 1003 178≤x<263 344 263≤x<348 115 348≤x<433 16 433≤x<518 17 518≤x<603 28 603≤x<688 1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作DF ∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.参考答案与试题解析一、选择题1.【解答】解:3﹣(﹣2)=3+2=5.故选:D.2.【解答】解:∵()2=3,∴3的平方根.故选:D.3.【解答】解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.4.【解答】解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.5.【解答】解:∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,∵两个的积为﹣2﹣p2,∴一个正根,一个负根,故选:C.6.【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=OF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.二、填空题7.【解答】解:∵一个负数的绝对值小于3,∴这个负数大于﹣3且小于0,∴这个负数可能是﹣2、﹣1.5、﹣1、….故答案为:﹣1(答案不唯一).8.【解答】解:若式子1﹣在实数范围内有意义,则x﹣1≠0,解得:x≠1.故答案为:x≠1.9.【解答】解:20ns=20×10﹣9s=2×10﹣8s,故答案为:2×10﹣8.10.【解答】解:原式===.故答案为:.11.【解答】解:,①×2﹣②得:5y=﹣5,解得:y=﹣1,①﹣②×3得:﹣5x=﹣10,解得:x=2,则x+y=2﹣1=1,故答案为1.12.【解答】解:方程=,去分母得:x2+2x=x2﹣2x+1,解得:x=,经检验x=是分式方程的解.故答案为:x=.13.【解答】解:在一次函数y=﹣2x+4中,令x=0,则y=4,∴直线y=﹣2x+4经过点(0,4),将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),旋转后得到的图象与原图象垂直,则对应的函数解析式为:y=x+b,将点(﹣4,0)代入得,+b=0,解得b=2,∴旋转后对应的函数解析式为:y=x+2,故答案为y=x+2.14.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠FAT=60°,∴BT=FT=AB•sin60°=,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=•EF•BF=×2×=2,故答案为2.15.【解答】解:过O作射线BP,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°,故答案为:78°.16.【解答】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.三、解答题17.【解答】解:原式=(+)÷=•=.18.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.19.【解答】证明:在△ABE与△ACD中,∴△ABE≌△ACD.∴AD=AE.∴BD=CE.20.【解答】解:(1)∵反比例函数y=的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.21.【解答】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW•h的大约有7500户.22.【解答】解:甲选择的2个景点所有可能出现的结果如下:(1)共有6种可能出现的结果,其中选择A、B的有2种,∴P(A、B)==;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中选择景点相同的有3种,∴P(景点相同)==.故答案为:.23.【解答】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=,在Rt△DBH中,∠DBH=45°,∴BH=,∵BC=CH﹣BH,∴﹣=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=≈20.答:轮船航行的距离AD约为20km.24.【解答】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AE=EF.25.【解答】解:(1)∵y1=﹣180x+2250,y2=﹣10x2﹣100x+2000,∴当x=0时,y1=2250,y2=2000,∴小丽出发时,小明离A地的距离为2250﹣2000=250(m),故答案为:250;(2)设小丽出发第xmin时,两人相距sm,则s=(﹣180x+2250)﹣(﹣10x2﹣100x+2000)=10x2﹣80x+250=10(x﹣4)2+90,∴当x=4时,s取得最小值,此时s=90,答:小丽出发第4min时,两人相距最近,最近距离是90m.26.【解答】(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C,∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=90°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′B′C′,∵=,∴△ABC∽△A′B′C′.27.【解答】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD++EB,(其中CD,BE都与圆相切)。

2020年江苏省南京中考数学试卷附答案解析版

2020年江苏省南京中考数学试卷附答案解析版

(第 19 题)
20.(8 分)已知反比例函数 y k 的图象经过点2, 1 .
x
1 求 k 的值.
2 完成下面的解答.
2 x>1,

解不等式组
k x
>1.

解:解不等式①,得

根据函数 y k 的图象,得不等式②得解集

x
把不等式①和②的解集在数轴上表示出来.
从图中可以找出两个不等式解集的公共部分,得不等式组的解集
()
A. 5
B. 1
C.1
D.5
答 2.3 的平方根是 A.9
B. 3
C. 3
() D. 3
3.计算 a3 2 a2 的结果是


A. a3
B. a4
C. a7
D. a8
4.党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数

据,2012~2019 年年末全国农村贫困人口的情况如图所示.
定位置,在其他位置答题一律无效.
4. 作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分。在每小题所给出的四

个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填
涂在答.题.卡.相.应.位.置.上.)
1.计算3 2 的结果是
m.
2 小丽出发至小明达到B 地这段时间内,两人何时相距最近?最近距离是多少?
26(. 9 分)如图,在△ABC 和 △ABC 中,D 、D 分别是 AB 、AB 上一点, ADAD . AB AB
27.(9 分)如图①,要在一条笔直的路边l 上建一个燃气站,向 l 同侧的 A 、B 两个城镇 分别发铺设管道输送燃气,试确定燃气站的位置,使铺设管道的路线最短.

2020年江苏省南京市中考数学联考试题附解析

2020年江苏省南京市中考数学联考试题附解析

2020年江苏省南京市中考数学联考试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,A 、B 、C 是⊙O 上的三点,若∠BOC=2∠BOA ,则∠CAB 是∠ACB 的( )A .2 倍B .4 倍C .12 D . 1倍2.如图,A 、C 是函数2y x=的图象上任意两点,过A 作x 轴的垂线,垂足为 B ,过C 作x 轴的垂线,垂足为 D ,如果设Rt △AOB 的面积为 S 1,Rt △COD 的面积为S 2,那么( )A .S 1>S 2B .S 1<S 2C . S 1 =S 2D .大小无法确定 3.如果1x =-是方程2240x mx +-=的一个根,那么方程的另一个根是( )A .2-B .1-或2C .2D .1 4.下列各式,是完全平方式的为( )①2244a ab b -+;②2242025x xy y ++;③4224816x x y y --;④42212a a a ++. A .①、③ B . ②、④ C . ①、② D .③、④5.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是( )A .线段BE 的长度B .线段EC 的长度C .线段BC 的长度D .线段EF 的长度6.方程 3x+2(3x-1)-4(x-1)= 0,去括号正确的是( )A .3x+6x-2-4x+1=0B .3x+ 6x+2-4x-4=0C .3x+6x+2+4x+4=0D .3x+6x-2-4x+4=07.用四舍五入法对60340取近似数,保留两个有效数字,结果为( )A .6.03×104B .6.0×104C .6×104D .6.0×1038.已知|2006||2007|0x y -++=,则x 与y 的大小关系是( ) A .x y < B .x y > C .0x y <-< D .0x y >->二、填空题9.如图,P 是α 的边上一点,且 P 点坐标为(3,4),则tan α = .10.在阳光下,同一时刻两个物体高度之比等于其对应的 之比. 11. 两个等圆⊙O 1和⊙O 2相交于 A .B 两点,⊙O 1 经过点02, 则∠ O 1AB 的度教是 .12.已知直线32x y =+与两个坐标轴交于A 、B 两点,把二次函数24x y =-的图象先左右、后上下作两次平移后,使它通过A 、B ,那么平移后的图象的顶点坐标是 .解答题13. 如图,反比例函数y =5x的图象与直线y =kx(k>0)相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.14.用适当的不等号填空:||a a ;21x + 0.15.分解因式:=-a a 3 .16.已知ax=by+2008的一个解是⎩⎨⎧-==11y x ,则a+b= . 17.如图所示,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这种做法的根据是 .18.某校对七年级500名学生数学考试成绩作了一次统计,各个分数段的情况如图所示,则:分数段的人数最多; 分数段的人数最少; 分数段的人数接近整体的13;在96~108分之间的有 人.三、解答题19.为了利用太阳光线或其他方法测量一棵大树的高度,准备了如下测量工具:•①镜子;②皮尺;③长为2m 的标杆;④高为1.5m 的测角仪,请你根据你所设计的测量方案,回答下列问题:(1)在你的设计方案中,选用的测量工具是(用工具序号填写)_______________.(2)在图中画出你的方案示意图.(3)你需要测量示意图中哪些数据,并用a 、b 、c 表示测得的数据__________.(4)写出求树高的算式,AB=___________m .20.铁道口的栏杆如图,短臂OD 长1.25 m ,长臂OE 长 16.5 m ,当短臂端点下降0.85m (AD 长) 时,求长臂端点升高多少m (BE 的长)? (不计杆的高度)21.如图,一个圆柱体的高为6cm ,底面半径为8cm ,在圆柱体下底面A 点有一只蚂蚁,想吃到上底面B 点的一粒砂糖(A ,B 是圆柱体上、下底面相对的两点),则这只蚂蚁从A 出点沿着圆柱表面爬到B 点的最短路线是多长?O DA E B22.观察下列各图,填写表格:一边上的小圆圈数12345小圆圈的总数1361015(2)如果用 n 表示等边三角形一边上的小圆圈数,用 m表示这个三角形中小圆圈的总数,那么m和n 的关系是什么?是哪种函数关系?23.为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1) 指出这个问题中的总体.(2) 求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.24.一池塘内有水2000 m3,现用抽水机抽水,每小时可抽水200 m3.(1)求池塘中余水量y(m3)与抽水时间x(h)之间的函数解析式;(2)求自变量x的取值范围;(3)画出它的图象.25.用总长为20 m 的篱笆围成一长方形场地.(1)写出长方形面积S(m 2)与一边x(m)之间的函数解析式和自变量X 的取值范围;(2)分别求当x=2,5,8时,函数S 的值.26.如图所示,∠B 与哪个角是内错角?∠C 与哪个角是内错角?∠C 与哪个角是同旁内角?它们分别是由哪两条直线被哪一条直线截得的?27.计算:(1)(10x 2y -5xy 2)÷5xy (2)x x -1·x 2-1x 228.已知 n 为正整数,试判断233n n +-能否被24 整除.29.当2x =-时,多项式31ax bx ++的值是 6. 求当2x =时,代数式31ax bx ++的值.30. 观察下面一列数,探索其规律:1,12-,13,14-,15,16-,… (1)请问第8个数是什么?第 2003 个数又是什么?(2)如果这一列数无限排列下去,与哪个数越来越接近?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.C5.A6.D7.B8.B二、填空题9.410.3影长11.30°12.(—2,4)13.1014.≥,>15.)1)(1(-+aaa16.200817.三角形的稳定性18.72~96;108~120;96~108;150三、解答题19.方案一:(1)①②;(2)测量方案示意图如图1;(3)CA=a,CD=b,DE(眼睛到地面的高)=c;(4)AB=acbm;(1) (2)方案二:(1)②③;(2)测量方案示意图如图2:(其中BC为太阳光线);(3)AC=a,CD=b,ED=c=2(m);(4)AB=acb=2ab(m).20.∵∠DAO=∠EBO=90°,∠AOD=∠BOE,∴△AOD∽△BOE.∴DO AD EO BE =,即1.250.8516.5BE=, ∴BE=11.22.答:长臂端点升高 11.22 m .21.解:把圆柱侧面展开,展开图如右图所示,点A ,B•的最短距离为线段AB•的长, BC=6cm ,AC 为底面半圆弧长,AC=8π·π=8,所以AB=2286+=10(cm ). 22.(1)第 6 个图形中应有 21 个小圆圈(2)123m n =++++,即(1)2n n m +=,是二次函数关系. 23.解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩.(2)15150.256912151860==++++ 答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3)9200030069121518⨯=++++. 答:估计全校约有300人获得奖励 24.(1)y=2000-200x ;(2)0≤x ≤10;(3)图略25.(1)210S x x =-+(0<x<10);(2)16,25,1626.∠B 与∠DAB 成内错角,由DE 、BC 被AB 所截;∠C 与∠EAC 成内错角,由DE 、BC 被AC 所截;∠C 与∠BAC 成同旁内角,由BA 、BC 被AC 所截;∠C 与∠B 成同旁内角,由AB 、AC 被BC 所截;∠C 与∠DAC 成同旁内角,由DE 、BC 被AC 所截27.(1)y x -2;(2)xx 1+. 28.能被 24 整29.把2x =-代入多项式,得318216ax bx a b ++=--+=,由此可得825a b +=-,把2x=代入多项式,得31821514ax bx a b++=++=-+=-30.(1)18-;12003(2)与零越来越接近。

2020年江苏省南京市中考数学综合测试试卷附解析

2020年江苏省南京市中考数学综合测试试卷附解析

2020年江苏省南京市中考数学综合测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知△OCD 和△OAB 是位似三角形,则位似中心是( )A . 点AB .点C C .点OD . 点B2.下列语句是命题的为( )A .试判断下列语句是否是命题B .作∠A 的平分线ABC .异号两数相加和为0D .请不要选择D3. 将方程2440y y ++=的左边配成完全平方后得( )A .2(4)0y +=B .2(4)0y -=C .2(2)0y +=D .2(2)0y -=4.主视图为下列图形的( )5.若2212m n n xy --与13218m m x y --是同类项,则2m n +值为( ) A . -4 B . 163- C .-2 D .103- 6. 如图所示,1ABC S ∆=,若BDE DEC ACE S s S ∆∆∆==,则ADE S ∆等于( )A .16B .17C .18D .197.在a 2□4a □4的空格□中,任意填上“+”或“-”,在所有得到的代数式中,能构成完全平方式的概率是( )A .1B .12C .13D .14 8.一个0型血的病人急需输血,现有两个 0型血的人,三个A 型血的人,两个B 型血的人和一个 AB 型血的人,现在医生从中任意挑选两人恰为 0型血的概率为( )A .14 B .128 C .156 D .1649.如果一个数的立方根就等于这个数的本身,那么这个数是( )A .0B .0 或1C .0 或-1D .0 或1±10.下列说法正确的是( )A .100 的平方根是 10B .任何数都有平方根C .非负数一定有平方根D .0. 001 的平方根是0.01±二、填空题11.如果一个立体图形的主视图为矩形,则这个立体图形可能是 (•只需填上一个立体图形).12.如图,AB 是半圆的直径,O 是圆心,C 是半圆上一点,E 是弧AC 的中点,OE 交弦AC 于D .若AC=8cm ,DE=2cm ,则OD 的长为 .13.一个扇形的弧长为4π,将它卷成一个圆锥,该圆锥的底面是圆,则圆的半径为 .14.如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 .15.如图,在□ABCD 中,对角线AC 和BD 相交于点O ,OE ⊥AB ,E 为垂足,已知AC=8cm ,∠CAB=30°,则OE= cm.16.给出以下四个命题:①线段中垂线上的点到线段两端的距离相等;②到线段两端的距离相等的点在这条线段的中垂线上;③不在线段垂直平分线上的点,到这条线段两端的距离不相等;④到线段两端距离不相等的点,不在这条线段的中垂线上.其中真命题有: .17.如图,∠2 = 130°,∠3= 50°,则∠1= , ∥ ,理由是 .18.角的对称轴是这个角的____________所在的直线.19.三角形中线将三角形的平分.20.30瓶饮料有1瓶已过了保质期,从30瓶饮料中任取1瓶,取到已过保质期的饮料的概率是.21.如图是一个长方形,分别取线段AB、BC、CD、DA的中点 E、F、G、H并顺次连接成四条线段.通过度量可以得到:①EF= AC,②GH= AC,③FG= BD,④EH= BD.22.如图,0C⊥AB于点0,OC平分∠DOE,若∠1=63°,则∠3= .23.某校对七年级500名学生数学考试成绩作了一次统计,各个分数段的情况如图所示,则:分数段的人数最多;分数段的人数最少;分数段的人数接近整体的13;在96~108分之间的有人.24.某商品的进货价每件2元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降价后再让利40元销售,仍可获利10%(相对于进价),则x= 元.三、解答题25.一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)26.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:实验次数 20 40 60 80 100 120 140 160 180 2003的倍数的频数 513 17 26 32 36 39 49 55 61 3的倍数的频率(1)完成上表;(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?27.如图,对角线是宽的两倍的同样大小的两个矩形拼成L 型图案.求∠AFH ,∠DCH ,∠FHD 的度数.28.计算:(1)(6m 2n -6m 2n 2-3m 2)÷(-3m 2) (2) 2(3)(2)(1)x x x -+-+(3) ()()223131x x +-B C D A29.如图所示,草原上两个居民点A,B在河流l的同旁,一汽车从A出发到B,途中需到河边加水,汽车在哪一点加水可使行驶的路程最短?在图中画出该点.30.一个圆柱体的体积是60立方米,底面圆的直径与圆柱的高相等,求这个圆柱的底面圆半径( 取 3.14,结果精确到 0.01 米).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.B5.A6.A7.B8.B9.D10.C二、填空题11.答案不唯一如:长方体、圆柱等12.313.214.4.9米15.216.①②③④17.50°;a,b,∠1=∠3,同位角相等,两直线平行18.角平分线19.面积20.30121.1 2,12,12,1222.27°23.72~96;108~120;96~108;15024.700三、解答题25.解:过C作AB的垂线,交直线AB于点D,得到Rt△ACD与Rt△BCD.设BD=x海里,在Rt △BCD 中,tan ∠CBD =CD BD ,∴CD =x ·tan63.5°. 在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CD AD , ∴CD =( 60+x ) ·tan21.3°.∴x·tan63.5°=(60+x)·tan21.3°,即 ()22605x x =+. 解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近 26.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31; (2)0.31;(3)0.31;(4)0.327.∠AFH=45°,∠DCH=15°,∠FHD=105°28.(1)-2n+2n 2+1,(2)-3x-7,(3)81x 4-18x 2+1. 29.作点A 关于直线l 的对称点A ′,连结A ′B 交直线l 于点P ,则点P 即是要找的那一点 30.2.12≈(米)。

2020年江苏省南京市中考数学测评试卷附解析

2020年江苏省南京市中考数学测评试卷附解析

2020年江苏省南京市中考数学测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,点 D.E、F分别是△ABC(AB>AC)各边的中点,下列说法中,错误..的是()A.AD 平分∠BAC B.EF=12BCC.EF 与 AD 互相平分D.△DFE 是△ABC 的位似图形2.如图,AB、CD 是⊙O的两条直径,∠1≠∠2,则图中相等的弧(半圆除外)共有()A.8对B.6 对C.4对D.2 对3.抛物线222y x x=-+的顶点坐标是()A.(1,1)B.R(一1,1)C.(一 1,一1)D.(1,一1)4.如图,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC,若这个梯形的周长为30,则AB的长是()A.4 B.5 C.6 D.75.下列图形中,是中心对称图形的是()A.等腰三角形B.直角三角形C.正五边形D.平行四边形6.下列命题是假命题的有()①两边及其夹角对应相等的两个三角形全等.②两条直线被第三条直线所截,同位角相等.③如果a>b,b>0,那么a>0.④若两个三角形周长相等,则它们全等.A.1个B.2个C.3个D.4个7.根据下列条件,不能判定四边形ABCD是平行四边形的是()A.∠A:∠B:∠C:∠D=1:2:l:2B.∠A+∠B=180°,∠B+∠C=180°C.∠A+∠C=180°,∠B+∠D=180°D.∠A=∠C=45°,∠B=∠D=135°8.如图,点A 的坐标是(2,0),若点B在y轴上,且△ABO是等腰三角形,则点B的坐标是()A.(-2,0)B.(0,-2)C.(0,2)D.(0,-2)或(0,2)9.某牛奶厂家接到 170万箱牛奶的订购单,预计每天加工完 10万箱,正好能按时完成,后因客户要求提前3天交货,设每天应多加工x万箱,则可列方程()A.17017031010x+=+B.17017031010x-=+C.17017031010x-=+D.17017031010x+=+10.如图是羽毛球单打场地按比例缩小的示意图,已知羽毛球场的宽为5.18 m,那么它的长约为()A.12~13 m B.13~14 m C.14~15 m D.15~16 m11.在3,227,9,π,2.121121112111122中,无理数有()A.1个B.2个C.3个D.4个12.如图,以 A.B两点为其中两个顶点作位置不同的正方形,一共可以作()A.1 个B.2 个C.3 个D.4 个二、填空题13.“太阳每天从东方升起”,这是一个事件(填“确定”或“不确定”).14.若连续两次掷一枚骰子分别得到的点数为m、n,则 m+n的最小值为,最大值为.15.已知函数①21y x=-;②22+5y x x=-,函数 (填序号)有最小值,当x 时,该函数最小值是.16.在直角坐标系中,△ABC的三个顶点的位置如图所示.(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标.17.若|21||5|0-+++-=,则x= , y= .x y x y18.计算:()·3ab2 = 9ab5;-12a3 bc÷()= 4a2 b;(4x2y- 8x 3)÷4x 2 =_.19.若两个同类项的系数互为相反数,则合并同类项后,结果是.三、解答题20.已知△ABC 的三边比为a:b:c=5:4:6,三边上的高为 h a、h b、hc,求:ha:hb:hc.21.若函数比例函数23y m x--=-是关于x的反反比例函数.(2)m m(1)求 m 的值并写出其函数解析式;(2)求当3y=时,x 的值.22.汶川地震牵动着全国亿万人民的心,某校为地震灾区开展了“献出我们的爱” 赈灾捐款活动.八年级(1)班50名同学积极参加了这次赈灾捐款活动,下表是小明对全班捐款情况的统计表:捐款(元)1015305060人数3611136因不慎两处被墨水污染,已无法看清,但已知全班平均每人捐款38元.(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?23.一个零件的三视图如图所示(单位:cm),这个零件的体积和表面积各为多少?24.解下列方程:(1)()22116x -= (2)390x x -=25.化简并求值:22222244x y x y x y x xy y --÷-+++,其中23x =+,23y =-.26.如图所示是视力表中的一部分.以第一个图形为基本图形.请分析后三个图形可以根据基本图形作怎样的变换得到.27.如图是一位病人的体温记录折线图,看图回答下面的问题: (1)护士每隔多久给病人量一次体温? (2)这位病人的体温最高是多少?最低是多少? (3)他在4月8日12时的体温是多少?(4)他的体温在哪段时间里下降得最快?哪段时间里比较稳定? (5)图中的横虚线表示什么?(6)从体温图看,这位病人的病情是在恶化还是好转?28.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10 t 前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品;因包装限制,每辆汽车满载时能装香菇l .5 t 或茶叶2 t .问装运香菇、茶叶的汽车各需多少辆?29.把下列各数按从小到大的顺序用“<”号连结起来. 5()6--,|0.83|-,-83. 3%,8||10-,[(83)]---. 5[(83)]83.3%0.8|0.83|()6---<-<-<-<--30.如图,过圆上两点AB 作一直线,点M 在圆上,点P 在圆外,且点M ,P•在AB 同侧,∠AMB=50°,设∠APB=x ,当点P 移动时,求x 的变化范围,并说明理由,当点P 移至圆内时,x 有什么变化?(直接写出结果)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.A4.C5.D6.B7.C8.D9.A10.B11.BC二、填空题 13. 确定14.2,1215.①, 一 116.(1)图略;(2)A ′(2,3),B ′(3,1),C ′(-1,-2)17.3,218.3b 3 ,-3ac , y-2x19.三、解答题 20.设a= 5x ,则 b= 4x ,c=6x ,∵111222ABC a h C s ah bh ch ∆===,∴a b c ah bh ch ==, 546a b c xh xh xh ==,即546a b C h h h ==,∴::12:15:10a b c h h h =21.(1)由22031m m m -≠⎧⎨--=-⎩,得m=-1,∴3y x-=;(2)当y =x ==22.解:(1) 被污染处的人数为11人.设被污染处的捐款数为x 元,则 11x +1460=50×38 ,解得 x =40 答:(1)被污染处的人数为11人,被污染处的捐款数为40元. (2)捐款金额的中位数是40元,捐款金额的众数是50元.体积为l800cm 3 ,表面积为900cm 224.(1)1253,22x x ==- ,(2)1230,3,3x x x ===- 25.xx y -+,26.略27.(1)6 h (2)39.5℃;36.8℃ (3)37.5℃ (4)4月7日6时至4月7日12时里下降得最快,在4月8日18时至4月9日18时里比较稳定;(5)正常体温 (6)好转28.装运香菇、茶叶的汽车分别需要 4辆、2辆.29.5[(83)]83.3%0.8|0.83|()6---<-<-<-<--30.解:设BP 交⊙O 于C ,连接AC ,∵∠ACB>∠P ,∠ACB=∠AMB ,∴∠AMB>∠P , ∴50°>x ,∴0°<x<50°, 当点P 移至圆内时,50°<x<180°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年南京中考数学试卷评析能力立意凸显核心素养的考查张爱平(江苏省特级教师、南京市金陵汇文学校)2018年南京市中考数学试卷延续历年风格,信度、效度、梯度合理,考查知识覆盖面广,呈现方式鲜活灵动,富有新意,彰显能力立意的特色,较好的关注了学生的数学学科核心素养。

突出能力立意考查方式新颖全卷试题突出能力立意,从“知识技能、概念理解、运用规则、解决问题”四个维度对学生的学习力进行考查。

设计上大多“宽进严出”、解法多样,不同解法繁简不同,体现了学生不同的能力水平。

如第4题以排球比赛场上换人为背景,考查数据分析观念。

学生对平均数、方差的理解程度不同,采用的解法也会不同,既可以通过计算作出解答,更可以“直观”感受数据特征作出判断。

如第18题,以数轴为载体,考查不等式,第(2)问既可以通过取值的方法“猜”出答案,也可以根据字母的取值范围作答,甚至还可以由数想形进行判断,三种思考方式代表了学生不同的思维水平。

联系现实生活解决实际问题试题引导学生关注问题解决的价值意义,发展学生的应用意识。

如第8题以热点话题生态文明建设为背景,考查用科学记数法表示实际生活中的大数,具有鲜明的时代气息,弘扬主旋律。

第19、21题的背景及数据来源于真实的生活,数据本身内涵丰富,体现了数学在生活中的应用。

第21题开放性的方案设计,考查学生选择合适的样本平均数刻画数据的集中趋势,培养学生数据分析观念。

第23题是限制工具的测量问题,主要考查学生运用锐角三角函数建立模型、解决实际问题的能力。

第25题基于对行程问题中速度、路程与时间内在联系的分析,分别建构速度与时间、路程与时间之间的函数关系,旨在引导学生从不同角度看“对应”,用两种不同的方式讲同一个“故事”,考查学生对函数本质的理解水平。

重视核心素养渗透思想方法试题注重运算能力的考查。

既有对基本运算能力的考查,如第1、2、10、17题等;也有对估算能力的考查,如第3题;还考查了学生根据式子的结构特征选择最优化的方法进行运算的能力,如第24题。

试卷注重逻辑推理能力的考查。

第26题从正方形开始,构图自然、妥帖,又为学生所熟悉,从定性分析到定量刻画,考查学生对基本图形的识别和逻辑推理能力。

第27题以三角形内切圆为载体,对学生几何推理和代数推理的能力要求都比较高。

试卷对初中阶段几种主要思想方法的考查比较全面。

第13、18、24题以数形结合立意,第19、23、25题主要考查对方程和函数模型的理解与应用水平。

第15、24题注重转化思想的考查。

注重问题解决关注解题反思试题注重对问题解决的考查。

如第27题,以小颖对一道题目的解答开始,对于学生解题后的反思进行了范式引领,给出了具有一般意义的三个方向:“问题一般化”“倒过来思考”“条件变式”,考法新颖,贴合学生已有的经验,利于激发兴趣,让学习过程充满探究与思考,不啻于给学生奉献了一节韵味悠长的数学探究课。

注重基础稳中求新新而不难叶旭山(江苏省特级教师、南师附中新城初中怡康街分校)南京市2018年中考数学试卷依据考试说明要求,基于教材,贴近教学,考查内容覆盖初中阶段“数与代数”“图形与几何”“统计与概率”三个内容领域的大部分知识点。

试题考查注重基础、稳中求新、新而不难。

全面考查基础与往年一样,今年数学试卷注重考查基础知识、基本技能和基本方法。

试卷中基础题占的比重较大,约为总量的70%。

如,第1-3小题,第7-14小题,第17小题等,对算术平方根、幂的运算、科学记数法、分式的运算等基本知识点的考查,考法直接,容易得分。

很多试题着力引导学生发现数学的内部结构特征,一旦找到切入点,大多数时候都能做到“不算而得”,看看就知道答案。

试题在不增加难度的前提条件下,努力追求设问角度的创新,有利于学生把握数学的本质。

如,第18小题,以数轴为载体考查不等式,具有一定的新意,在“形”与“数”之间不断转换,充分体现了“形”与“数”的有机融合、和谐统一。

题目难度不大,但考法让大家眼前一亮。

源于真实生活试卷中所有实际问题的背景材料都源于现实生活情境。

第8小题,以“生态文明建设”为主要话题,弘扬时代主旋律。

第4、19、21、23、25小题,分别以排球比赛场上换人、超市大米打折销售、统计分析理发店一周的营业额、用标杆测量物体的高度、行程问题等为背景,考查学生用数学的眼光观察世界、用数学的语言表达世界、用数学的思维思考世界的能力。

材料鲜活,背景为学生所熟悉,便于理解,容易上手。

注重学习过程数学学习过程是学生在特定的数学目标的指引下,进行数学探究和发现活动的过程。

如,第27小题,以“这仅仅是巧合吗”开题,激发学生强烈的探索欲望,以“可以一般化吗”“倒过来思考呢”“改变一下条件”顺次连接出一个完整的学习过程,符合学生已有学习经验,公平合理地考查学生的即时学习能力,利于引导学生不但要学会解题,还要学会解题后的反思,形成丰富的解题经验,脱离“题海”。

第4小题,学生凭借数学直觉,很容易感受到平均数和方差的变化,从而作出判断,并不需要动手进行繁琐的运算。

第6小题,取材于教材,用一个平面去截正方体,考查学生对截面的形状的判断,利于学生空间想象能力的形成。

2019-2020学年数学中考模拟试卷一、选择题1.下列说法正确的是( )A .“打开电视机,正在播放《达州新闻》”是必然事件B .天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C .甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S 2=0.3,S 2=0.4,则甲的成绩更稳定D .数据6,6,7,7,8的中位数与众数均为72.小明把一副45,30的直角三角板如图摆放,其中00090,45,30C F A D ∠=∠=∠=∠=,则αβ∠+∠等于 ( )A .0180B .0210C .0360D .0270 3.已知直线a ∥b ,将一块含45o 角的直角三角板(∠C=90o )按如图所示的位置摆放,若∠1=55o ,则∠2 的度数为( )A .85oB .70oC .80oD .75o4.甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S 甲2=27,S 乙2=19.6,S 丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选( )A .甲团B .乙团C .丙团D .甲或乙团5.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,△ABC 的三边所围成的区域面积记为S 1,黑色部分面积记为S 2,其余部分面积记为S 3,则( )A.S 1=S 2B.S 1=S 3C.S 2=S 3D.S 1=S 2+S 36.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别为(1,1)A ,(4,3)B ,(4,1)C ,如果将Rt ABC ∆绕点C 按顺时针方向旋转90︒得到''Rt A B C ∆,那么点A 的对应点'A 的坐标是( )A.(3,3)B.(3,4)C.(4,3)D.(4,4)7.如图,△ABC中,G、E分别为AB、AC边上的点,GE∥BC,BD∥CE交EG延长线于D,BE与CD相交于点F,则下列结论一定正确的是( )A.AEEC=GEBCB.AGAB=AEDBC.CFCD=CECAD.DGBC=BGBA8.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为489.如图,从一个直径为4的圆形铁皮中剪下一个圆心角为60°的扇形ABC,将剪下来的扇形围成一个圆锥,则圆锥的底面半径为()A.23B3C23D.310.在平面直角坐标系中,将A(﹣1,5)绕原点逆时针旋转90°得到A′,则点A′的坐标是( ) A.(﹣1,5) B.(5,﹣1) C.(﹣1,﹣5) D.(﹣5,﹣1)11.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.12.如图是直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为()A.30°B.45°C.60°D.90°二、填空题13.如图,在∆ABC中,AB=AC=10,E,D分别是AB,AC上的点,BE=4,CD=2,且BD=CE,则BD=________________.14.如图,在矩形ABCD中,AB=6,AD=23,E是AB边上一点,AE=2,F是直线CD上一动点,将△AEF沿直线EF折叠,点A的对应点为点A′,当点E,A′,C三点在一条直线上时,DF的长为_____.15.因式分解:1﹣4a2=_____.16.在实数范围内分解因式4m4﹣16=_____.17.若在平行四边形ABCD中,∠A=30°,AB=9,AD=8,则S四边形ABCD=_____.18.关于x的方程123(2)(3)x x x ax x x x++-=-+-+的解为非正数,则a的取值范围为_____.三、解答题19.甲,乙两人沿湖边环形道上匀速跑步,他们开启了微信运动﹣﹣微信上实时统计每天步数的软件.已知乙的步距比甲的步距少0.4m(步距是指每一步的距离),且每2分钟甲比乙多跑25步,两人各跑3周后到达同一地点,跑3圈前后的时刻和步数如下:出发时刻出发时微信运动中显示的步数结束时刻结束时微信运动中显示的步数甲9:30 2158 9:40 4158乙 a 1308 9:40 4308(1)求甲,乙的步距和环形道的周长;(2)求表中a的值;(3)若两人于9:40开始反向跑,问:此后,当微运动中显示的步数相差50步时,他们相遇了几次?20.如图,在▱ABCD中,E,F分别是边AB,CD的中点,求证:AF=CE.21.观察猜想:(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC 上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明:(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸:(3)如图③,在△ABC中,AB=AC,∠BAC=a,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=a,连接BF,则BE+BF的值是多少?请用含有n,a的式子直接写出结论.22.线段AB在由边长为1的小正方形组成的网格中,端点A、B为格点(即网格线的交点).(1)线段AB的长度为________;(2)在网格中找出一个格点C,使得△ABC是以AB为直角边的等腰直角三角形,请画出△ABC;(3)在网格中找出一个格点D,使得△ABD是以AB为斜边的等腰直角三角形,请画出△ABD.23.已知点A(﹣1,4)在反比例函数y=kx的图象上,B(﹣4,n)在正比例函数y=12x的图象上(1)写出反比例函数y=kx的解析式;(2)求出点B的坐标.24.为了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展有奖问卷调查活动,并用得到的数据绘制了如下条形统计图(得分为整数,满分为10分,最低分为6分).请根据图中信息,解答下列问题:(Ⅰ)本次调查一共抽取了______名居民;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)如果对该小区的800名居民全面开展这项有奖问答活动,得10分者设为一等奖,请你根据调查结果,帮社区工作人员估计需准备多少份一等奖奖品.25.问题发现:如图1,△ABC 是等边三角形,点D 是边AD 上的一点,过点D 作DE ∥BC 交AC 于E ,则线段BD 与CE 有何数量关系?拓展探究:如图2,将△ADE 绕点A 逆时针旋转角α(0°<α<360°),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明.问题解决:如果△ABC 的边长等于23,AD =2,直接写出当△ADE 旋转到DE 与AC 所在的直线垂直时BD 的长.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B C C A D D A B DB B二、填空题13.1314.627-627+15.(1﹣2a )(1+2a ).16.4(m 2+2)(m+2)(m 2)17.3618.:a≤3且a≠﹣12.三、解答题19.(1)甲的步距为1.2m,乙的步距为0.8m,环形道的周长为800m;(2)9:24;(3)反向跑当微运动中显示的步数相差50步时,他们相遇了1次.【解析】【分析】(1)由于两人各跑3周后到达同一地点,可分别用甲和乙跑的总步数乘以各自的步距,列方程可得步距,从而求出环形道德周长;(2)先由甲跑的总步数除以甲所用的时间,得出甲每分钟跑的步数,再根据每2分钟甲比乙多跑25步,得出乙每2分钟乙跑多少步,从而用乙的总步数除以乙每2分钟乙跑的步数,再乘以2,即可得乙所用的时间,从而可知a的值;(3)由每2分钟甲比乙多跑25步,因此反向跑当微运动中显示的步数相差50步时,他们各跑了4分钟,从而求解.【详解】(1)设乙的步距为xm,由于乙的步距比甲的步距少0.4m,则甲的步距少为(x+0.4)m,根据表格列方程得:(4158﹣2158)(x+0.4)=(4308﹣1308)x,∴2000x+800=3000x,∴x=0.8,0.8+0.4=1.2,∴环形道的周长为:3000×0.8÷3=800m.故甲的步距为1.2m,乙的步距为0.8m,环形道的周长为800m.(2)由表格知,甲10分钟跑了2000步,则甲每分钟跑200步,每2分钟跑400步,∵每2分钟甲比乙多跑25步,∴每2分钟乙跑375步,∴3000÷375=8,2×8=16分钟,∴a为9:24.故答案为:9:24.(3)每2分钟甲比乙多跑25步,因此反向跑当微运动中显示的步数相差50步时,他们各跑了4分钟,∴1.2×200×4+0.8×300016×4=1560m800<1560<800×2∴反向跑当微运动中显示的步数相差50步时,他们相遇了1次.【点睛】本题是环形跑道的行程问题,需根据速度乘以时间等于路程等基本关系来求解,其中也考查了相遇问题,题目内容比较贴近生活,显示了数学与生活实际的联系.20.见解析.【解析】【分析】方法一:先根据平行四边形的性质及中点的定义得出AE=FC,AE∥FC,再根据一组对边平行且相等的四边形是平行四边形证出四边形AECF 是平行四边形,然后根据平行四边形的对边相等得出AF=CE ; 方法二:先利用“边角边”证明△ADF ≌△CBE ,再根据全等三角形的对应边相等得出AF=CE .【详解】证明:(证法一):∵四边形ABCD 为平行四边形,∴AB ∥CD ,AB =CD ,又∵E 、F 是AB 、CD 的中点,∴AE =12AB ,CF =12CD , ∴AE =CF ,AE ∥CF ,∴四边形AECF 是平行四边形,∴AF =CE .(证法二):∵四边形ABCD 为平行四边形,∴AB =CD ,AD =BC ,∠B =∠D ,又∵E 、F 是AB 、CD 的中点,∴BE =12AB ,DF =12CD , ∴BE =DF ,∴△ADF ≌△CBE (SAS ),∴AF =CE .【点睛】本题考查了证明两条线段相等的方法,一般来说,可以证明这两条线段是一个平行四边形的一组对边,也可以证明这两条线段所在的三角形全等.注意根据题目的已知条件,选择合理的判断方法.21.观察猜想:(1)BF ⊥BE ,BC ;探究证明:(2)BF ⊥BE ,BF+BE =,见解析;拓展延伸:(3)BF+BE =2sin2n α•.【解析】【分析】(1)只要证明△BAF ≌△CAE ,即可解决问题;(2)如图②中,作DH ∥AC 交BC 于H .利用(1)中结论即可解决问题;(3)如图③中,作DH ∥AC 交BC 的延长线于H ,作DM ⊥BC 于M .只要证明△BDF ≌△HDE ,可证BF+BE =BH ,即可解决问题.【详解】(1)如图①中,∵∠EAF=∠BAC=90°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为:BF⊥BE,BC;(2)如图②中,作DH∥AC交BC于H,∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=22,∴BF+BE=BH=22;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M,∵AC∥DH,∴∠ACH=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH =∠H ,∴DB =DH ,∵∠EDF =∠BDH =α,∴∠BDF =∠HDE ,∵DF =DE ,DB =DH ,∴△BDF ≌△HDE ,∴BF =EH ,∴BF+BE =EH+BE =BH ,∵DB =DH ,DM ⊥BH ,∴BM =MH ,∠BDM =∠HDM ,∴BM =MH =BD•sin 2α. ∴BF+BE =BH =2n•sin2α.【点睛】 本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.22.(1)25;(2)见解析(答案不唯一);(3)见解析(答案不唯一).【解析】【分析】(1)直接利用勾股定理进而得出答案;(2)直接利用网格结合勾股定理得出符合题意的图形;(3)直接利用网格结合勾股定理和圆周角定理得出符合题意的图形.【详解】解:(1)如图所示:AB=2224+=25(2)如图,△ABC 就是所要求的等腰直角三角形(答案不唯一);(3)如图,△ABD 就是所要求的等腰直角三角形(答案不唯一).【点睛】此题主要考查了应用设计与作图,正确应用勾股定理和圆周角定理是解题关键.23.(1)4yx=;(2)点B的坐标为:(﹣4,﹣2).【解析】【分析】(1)把A(﹣1,4)代入反比例函数y=kx即可求解;(2) 把B(﹣4,n)代入正比例函数y=12x即可求解.【详解】解:(1)∵点A(﹣1,4)在反比例函数y=kx的图象上,∴k=(﹣1)×4=﹣4,∴反比例函数的解析式为:4yx =.(2)∵B(﹣4,n)在正比例函数y=12x的图象上,∴12×(-4)=n,∴n=﹣2,即点B的坐标为:(﹣4,﹣2).【点睛】本题考查的是反比例函数和正比例函数,熟练掌握两者是解题的关键.24.(Ⅰ)50;(Ⅱ)平均数为8.26,众数为8,中位数为8;(Ⅲ)160份.【解析】【分析】(Ⅰ)根据总数等于个体数量的和计算即可;(Ⅱ)根据平均数、众数、中位数的定义计算即可;(Ⅲ)根据样本估计总体的思想,用800乘以10分的人所占百分比即可得答案.【详解】(Ⅰ)4+10+15+11+10=50(名).故答案为:50(Ⅱ)∵4610715811910108.26410151110x⨯+⨯+⨯+⨯+⨯==++++.∴这组数据的平均数为8.26.∵在这组数据中,8出现了15此,出现的次数最多,∴这组数据的众数为8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是8,∴这组数据的中位数为8.(Ⅲ)估计需准备一等奖奖品为1080016050⨯=(份).【点睛】本题考查条形统计图,用样本估计整体及平均数、众数、中位数的定义,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.25.问题发现:BD=CE;拓展探究:结论仍然成立,见解析;问题解决:BD的长为2和27.【解析】【分析】问题发现:如图1,由平行线分线段成比例定理可得BD=CE;拓展探究:如图2,证明△BAD≌△CAE,可得BD=CE;问题解决:分两种情况:①如图3,在直角三角形中,根据30°角所对的直角边等于斜边的一半求出DG =1,由勾股定理求出AG=3,得出BG,从而计算出BD的长.②如图4,求EF的长和CF的长,根据勾股定理在Rt△EFC中求EC的长,所以BD=EC=27.【详解】解: 问题发现:如图1,BD=CE,理由是∵△ABC是等边三角形,∴AB=AC,∵DE∥BC,∴BD=CE,拓展探究:结论仍然成立,如图2,由图1得,△ADE是等边三角形,∴AD=AE,由旋转得∠BAD=∠CAE,△BAD≌△CAE,(旋转的性质)∴BD=CE,问题解决:当△ADE旋转到DE与AC所在的直线垂直时,设垂足为点F,此时有两种情况:①如图3,∵△ADE是等边三角形,AF⊥DE,∴∠DAF=∠EAF=30°,∴∠BAD=30°,过D作DG⊥AB,垂足为G,∵AD=2,∴3∵3∴3∴BD=2(勾股定理),②如图4,同理得△BAD≌△CAE, ∴BD=CE,∵△ADE是等边三角形, ∴∠ADE=60°,∵AD=AE,DE⊥AC,∴∠DAF=∠EAF=30°,∴EF=FD=12AD=1,∴3∴333,在Rt△EFC中22221(33)2827EF FC+=+==∴7综上所述,BD的长为2和7【点睛】本题是几何变换的综合题,考查了等边三角形、全等三角形的性质与判定;在几何证明中,如果出现等边三角形,它所得出的结论比较多,要准确把握需要利用哪些结论进行证明;此类题的解题思路为:证明两个三角形全等或利用勾股定理求边长;如果有平行的关系,可以考虑利用平行相似来证明.2019-2020学年数学中考模拟试卷一、选择题1.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A. B. C. D. 2.今年春节,我区某主题公园共接待游客77800人次,将77800用科学记数法表示为( ) A. B. C. D.3.下列运算正确的是( ) A. B. C. D.4.下面是某同学在一次作业中的计算摘录:①325a b ab +=;②33345m n mn m n -=-;③()325426x x x ⋅-=-;④()32422a b a b a ÷-=-;⑤()235a a =;⑥32()()a a a -÷-=-其中正确的个数有( )A .1个B .2个C .3个D .4个5.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c >6.计算(﹣2x 2)3的结果是( )A .﹣6x 5B .6x 5C .8x 6D .﹣8x 67.如图,小明从二次函数y =ax 2+bx+c 图象中看出这样四条结论:①a >0; ②b >0; ③c >0; ④b 2﹣4ac >0;其中正确的是( )A .①②④B .②④C .①②③D .①②③④8.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )A .中位数B .平均数C .众数D .方差9.已知a ,b ,c 为三角形的三边,则关于代数式a 2﹣2ab+b 2﹣c 2的值,下列判断正确的是( )A .大于0B .等于0C .小于0D .以上均有可能10.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=36°,那么∠2=( )A .54°B .56°C .44°D .46°11.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A.0个B.1个C.2个D.3个12.我国古代伟大的数学家刘微将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.后人借助这种分割方法所得的图形证明了勾股定理,如图所示若a =3,b =4,则该三角形的面积为( )A .10B .12C .998D .534二、填空题 13.如图,在菱形ABCD 中,AB =5,tanD =34,点E 在BC 上运动(不与B ,C 重合),将四边形AECD 沿直线AE 翻折后,点C 落在C′处,点D′落在D 处,C′D′与AB 交于点F ,当C′D'⊥AB 时,CE 长为_____.14.如图,在每个小正方形的边长为1的网格中,OAB ∆的顶点,,O A B 均在格点上,点E 在OA 上,且点E 也在格点上.(Ⅰ)OEOB的值为_____________;(Ⅱ)DE是以点O为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE',旋转角为,连接E A',E B',当23E A E B+''的值最小时,请用无刻度的直尺画出点E',并简要说明点E'的位置是如何找到的(不要求证明)______.15.如图,在直角△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tanB=53,则tan∠CAD的值________.16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧蹑地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m)17.如图,已知正方形ABCD的边长为4,现有一动点P从点B出发,沿着B→C→D→A的路径以每秒1个单位长度的速度运动,则S△PAB与运动时间t(秒)之间的函数关系图象是()A. B.C. D.18.不等式组的解集是__________.三、解答题 19.已知:如图,延长⊙O 的直径AB 到点C ,过点C 作⊙O 的切线CE 与⊙O 相切于点D ,AE ⊥EC 交⊙O 于点F ,垂足为点E ,连接AD .(1)若CD =2,CB =1,求⊙O 直径AB 的长;(2)求证:AD 2=AC•AF.20.如图,正例函数y =kx (k >0)的图象与反比例函数y =m x (m >0,x >0)的图象交于点A ,过A 作AB ⊥x 轴于点B .已知点B 的坐标为(2,0),平移直线y =kx ,使其经过点B ,并与y 轴交于点C (0,﹣3)(1)求k 和m 的值(2)点M 是线段OA 上一点,过点M 作MN ∥AB ,交反比例函数y =m x (m >0,x >0)的图象交于点N ,若MN =52,求点M 的坐标21.阅读下列材料,解决问题:12345678987654321这个数有这样一个特点:各数位上的数字从左到右逐渐增大(由1到9,是连续的自然数),到数9时,达到顶峰,以后又逐渐减小(由9到1),它活像一只橄榄,我们不妨称它为橄榄数.记第一个橄榄数为a 1=1,第二个橄榄数为a 2=121,第三个橄榄数为a 3=12321……有趣的是橄榄数还是一个平方数,如1=12,121=112,12321=1112,1234321=11112……而且,橄榄数可以变形成如下对称式: 1111⨯= 2222121121⨯=++3333331232112321⨯=++++…… 根据以上材料,回答下列问题(1)11111112= ;将123454321变形为对称式:123454321= .(2)一个两位数(十位大于个位),交换其十位与个位上的数字,得到一个新的两位数,将原数和新数相加,就能得到橄榄数121,求这个两位数.(3)证明任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除(m =1,2…9,n =1,2…9,m >n )22.民俗村的开发和建设带动了旅游业的发展,某市有A 、B 、C 、D 、E 五个民俗旅游村及“其它”景点,该市旅游部门绘制了2018年“五•一”长假期间民俗村旅游情况统计图如下:根据以上信息解答:(1)2018年“五•一”期间,该市五个旅游村及“其它”景点共接待游客 万人,扇形统计图中D 民俗村所对应的圆心角的度数是 ,并补全条形统计图;(2)根裾近几年到该市旅游人数增长趋势,预计2019年“五•一”节将有70万游客选择该市旅游,请估计有多少万人会选择去E 民俗村旅游?(3)甲、乙两个旅行团在A 、C 、D 三个民俗村中,同时选择去同一个民俗村的概率是多少?请用画树状图或列表法加以说明.23.计算:|﹣3|+3tan30°﹣12﹣(2019﹣π)024.已知:如图,在矩形ABCD 中,点E 在边AD 上,点F 在边BC 上,且AE=CF ,作EG ∥FH ,分别与对角线BD 交于点G 、H ,连接EH ,FG .(1)求证:△BFH ≌△DEG ;(2)连接DF ,若BF=DF ,则四边形EGFH 是什么特殊四边形?证明你的结论.25.如图,PA 与⊙O 相切于点A ,过点A 作AB ⊥OP ,垂足为C ,交⊙O 于点B .连接PB ,AO ,并延长AO 交⊙O 于点D ,与PB 的延长线交于点E .(1)求证:PB 是⊙O 的切线;(2)若OC=3,AC=4,求sin∠PAB的值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C B A D D A A C A B B 二、填空题13.10 714.(Ⅰ)23(Ⅱ)取格点,M N,连接MN,交OB于点F;连接AF,交DE于点'E,点'E即为所求.15.1 516.117.A18.三、解答题19.(1)3;(2)见解析【解析】【分析】(1)根据切割线定理可以求出AC的长,从而求出AB的长;(2)可以通过证明△AFD∽△ADC得出AD2=AC×AF.【详解】(1)∵CD与⊙O相切,∴CD2=CB•CA=CB•(CB+AB),又∵CD=2,CB=1,∴4=1•(1+AB),∴AB=3;(2)如图,连接FD、OD,在△AFD和△ADC中,∵EC与⊙O相切于点D,∴OD⊥EC,∠1=∠ADC①又∵AE⊥EC,∴AE∥OD,∴∠4=∠2,而∠2=∠3,∴∠3=∠4 ②由①、②可知△AFD∽△ADC,∴AD AF AC AD=,∴AD2=AC•AF..【点睛】本题综合考查了切线的性质,相似三角形的判定和性质,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.20.(1)k=32,m=6(2)(43,2)【解析】【分析】(1)设平移后的直线解析式为y=kx+b,待定系数法求出k,A在32y x=,求出A点坐标;又由A在反比例函数上,求出m;(2)设点36M a,a,N a,2a⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,根据635MN aa22=-=求出M点坐标,结合a的取值范围0<a<2,确定符合条件的M.【详解】解:(1)设平移后的直线解析式为y=kx+b,∵点B的坐标为(2,0),点C(0,﹣3)代入,得023k bb=+⎧⎨-=⎩,∴3k2b3⎧=⎪⎨⎪=-⎩,∴3y=x32-,∴32y x =,∵A点横坐标为2,∴A点纵坐标为3,∴A(2,3),∵A在反比例函数myx=(m>0,x>0)的图象上,∴m=6,∴k=32,m=6;(2)设点M(a,32a),N(a,6a),635 MN aa22∴=-=,∴3a2+5a﹣12=0,∴a=﹣3或a=43,∵M在线段OA之间,∴0<a<2,∴a=43,∴M(43,2);【点睛】本题考查一次函数与反比例函数的图象及解析式,能够利用待定系数法求解析式是解题的必要方法,根据两点间的距离建立方程式求解点坐标的关键.21.(1)55555555551234567654321,123454321⨯++++++++;(2)65,74,83,92;(3)任意两个橄榄数a m,a n的各数位之和的差能被m﹣n整除.【解析】【分析】(1)根据题中给出的定义,直接可得:(2)设十位数字是x,个位数字是y,根据题意得到x+y=11,进而确定两位数;(3)根据数的规律求得a m的各数位之和m2,a n的各数位之和n2,然后因式分解证明结论. 【详解】(1)根据题中给出的定义,直接可得:11111112=1234567654321,123454321=⨯++++++++5555555555 123454321;(2)设十位数字是x,个位数字是y,x>y,10x+y+10y+x=11(x+y)=121,∴x+y=11,。

相关文档
最新文档