九年级上数学《第24章圆》复习课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∟
O.
∴ OA⊥ l
A
l
切线长定理:
从圆外一点引圆的两条切线,它们 的切线长相等;这点与圆心的连线平分 这两条切线的夹角。
.A
. O . B
∵PA、PB为⊙O的切线 ∴PA=PB, P ∠APO= ∠BPO
1.在Rt△ABC中,∠B=90°,∠A的平分线交 BC于D,以D为圆心,DB长为半径作⊙D. 试说明:AC是⊙D的切线.
做直线与这个圆相切. (3) 相交: 一条直线与一个圆有两个公共点,叫
做直线与这个圆相交.
直线与圆位置关系的识别:
r.
r.
r.
∟
∟ ∟
O d
dO
dO
l
l
l
wk.baidu.com
设圆的半径为r,圆心到直线的距离为d,则:
(1)当直线与圆相离时d>r; (2)当直线与圆相切时d =r; (3)当直线与圆相交时d<r.
1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半
1.圆的定义:到定点的距离等于定长的点的 集合叫做圆. 2.有关概念: (1)弦、直径(圆中最长的弦)
(2)弧、优弧、劣弧、等弧
. (3)弦心距
O
二. 圆的基本性质
1.圆的对称性: (1)圆是轴对称图形,经过圆心的每一条直 线都是它的对称轴.圆有无数条对称轴. (2)圆是中心对称图形,并且绕圆心旋转 任何一个角度都能与自身重合,即圆具 有旋转不变性.
.
2.垂径定理:
垂直于弦的直径平分这条弦,并且 平分弦所对的两条弧.
C
∵CD是圆O的直
径,CD⊥AB
A
.
P
B ∴A︵︵APD=B=P,︵︵BD
AC = BC
D
3.同圆或等圆中圆心角、弧、弦之间的关系:
(1)在同圆或等圆中,如果圆心角相等,那么它所 对的弧相等,所对的弦相等. (2)在圆中,如果弧相等,那么它所对的圆心角相 等,所对的弦相等. (3)在一个圆中,如果弦相等,那么它所对的弧相 等,所对的圆心角相等.
D
A
B
C
C
O
反思:在⊙ O中,若⊙ O的半径r、 A
B
圆心到弦的距离d、弦长a中,
任意知道两个量,可根据 垂径 定理D求出第三个量:
3、如图,P为⊙O的弦BA延长线上一点,PA= AB=2,PO=5,求⊙O的半径。
关于弦的问题,常常需 B
MA
要过圆心作弦的垂线段,
P
这是一条非常重要的辅
O
助线。
圆心到弦的距离、半径、
F O
△ABC属于哪一类三角形,
并说明理由.(05宜昌)
B
D
C
3.如图在比赛中,甲带球向对方球门 PQ进攻,当他带球冲到A点时,同伴乙 已经助攻冲到B点,此时甲是直接射门 好,还是将球传给乙,让乙射门好?为什 么?
P
Q
·
A
B
三.与圆有关的位置关系:
1.点和圆的位置关系
(1)点在圆内 (2)点在圆上 (3)点在圆外
弦长构成直角三角形,
便将问题转化为直角三
角形的问题。
4.圆周角:
定义:顶点在圆周上,两边和圆相交的 角,叫做圆周角. 性质:(1)在同一个圆中,同弧所对的圆周 角等于它所对的圆心角的一半.
A O
C
∠BAC=
1 ∠BOC
2
B
圆周角的性质(2)
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
(2)AB、AC与⊙B的位置关系如何?
B D
C
E·
A
2.如图,OA是⊙O的半径,已知AB=OA,试探 索当∠OAB的大小如何变化时点B在圆内?
点B在圆上?点B在圆外?
O•
A
B
2.直线和圆的位置关系:
.
.
.
O
O
O
l
l
l (1) 相离: 一条直线与一个圆没有公共点,叫做
直线与这个圆相离. (2) 相切: 一条直线与一个圆只有一个公共点,叫
过D点作DF ^AC
于F点,然后证明
F
DF等于圆D的半
径BD
如图,AB在⊙O的直径,点D在AB的延长 线上,且BD=OB,点C在⊙O上,∠CAB=30°.
(1)CD是⊙O的切线吗?说明你的理由; (2)AC=_____,请给出合理的解释.
C
只要连接OC, A 而后证明OC
O
B
D
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
圆周角的性质:
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角). 性质4: 900的圆周角所对的弦是圆的直径.
∵AB是⊙O的直径
C
∴ ∠ACB=900
A
O
B
15
3.6
作圆的直径与找90度的圆周 角也是圆里常用的辅助线
︵ ︵ D ∵ ∠COD =∠AOB
O
∴ AB = CD
C ∴AB=CD
A
B
1、如图,已知⊙O的半径OA长 为5,弦AB的长8,OCA⊥C=ABBC于C, 则OC的长为 ___3____.
A
O
半径 弦心距
C 半弦长 B
E
2:如图,圆O的弦AB=8 ㎝ , DC=2㎝,直径CE⊥AB于D,
直径求M半N径⊥OACB的,长垂。足为E,交弦CD于点F. O
径的直线是圆的切线。 3.经过半径的外端且垂直于这条
半径的直线是圆的切线。
∟
.
O A
∵OA是半径,OA⊥ l l ∴直线l是⊙O的切线.
切线的性质: (1)圆的切线垂直于经过切点的半径. (2)经过圆心垂直于切线的直线必经过切点. (3)经过切点垂直于切线的直线必经过圆心.
.
∵直线l是⊙O的切线,切 点为A
如果规定点与圆心的距离为d,圆的半径 为r,则d与r的大小关系为:
点与圆的位置关系 d与r的关系
.A. 点在圆内
d<r
.
点在圆上
d=r
C
. 点在圆外
d>r
B
7.在Rt△ ABC中,∠C=90°,BC=3cm,AC=4cm,D 为AB的中点,E为AC的中点,以B为圆心,BC为
半径作⊙B, 问:(1)A、C、D、E与⊙B的位置关系如何?
第24章圆知识体系复习
本章知识结构图
圆的基本性质
圆的对称性 弧、弦圆心角之间的关系
同弧上的圆周角与圆心角的关系
点和圆的位置关系 三角形的外接圆
与圆有关的位置关系
直线和圆的位置关系 切线 三角形内切圆
圆和圆的位置关系
圆
正多边形和圆
等分圆
有关圆的计算
弧长 扇形的面积 圆锥的侧面积和全面积
一.圆的基本概念:
A
B
•
O C
D
1. 在⊙O中,弦AB所对的圆心角∠AOB=100°,则
弦AB所对的圆周角为__5__0_0或___1_3_0_0_.(05年上海)
2.如图,AB是⊙O的直径,BD是
⊙O的弦,延长BD到点C,使
DC=BD,连接AC交⊙O与点F.
(1)AB与AC的大小有什么关
A
系?为什么? (2)按角的大小分类, 请你判断