2018年全国统一高考数学试卷(文科)(全国三卷)
2018年高考文科数学全国卷1(含详细答案)
数学试题 第1页(共22页)数学试题 第2页(共22页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15BCD .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共22页)数学试题 第4页(共22页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
2018年全国卷Ⅲ文数高考试题(含答案)
由茎
知m =
79 + 81 = 80 . 2
列联表如 超过 m 第一种生产方式 第二种生产方式
3 19. 12 15 5
超过 m
5 15
由于 K 2 =
40(15 × 15 − 5 × 5) 2 = 10 > 6.635 ,所 有 99%的把握认为两种生产方式的效率有差异. 20 × 20 × 20 × 20
工人,将他们随机 成两组, 组 20 人,第一组工人用第一种生产方式,第 min 绘制了如 茎
二组工人用第二种生产方式.根据工人完成生产任务的工作时间 单
1 根据茎 2 求 40
判断哪种生产方式的效率更高?并说明理由 工人完成生产任务所需时间的中 数 m ,并将完成生产任务所需时间超过 m 和 超过 m 的
tan x 的最小 周期为 1 + tan 2 x
A.
π 4
B.
π 2
C. π 关于直线 x = 1 对 的是 C. y = ln(1 + x )
D . 2π
7. 列函数中,其 A. y = ln(1 − x ) 8.直线 x + y + 2 = 0 值范围是 A. [2, 6]
函数 y = ln x 的 B. y = ln(2 − x )
2
19. 12 如 ,矩形 ABCD 所在 面
所在 半圆弧 CD
面垂直, M 是 CD
异
于 C , D 的点. 1 证明 面 AMD ⊥ 面 BMC 面 PBD ?说明理由.
2 在线段 AM
是否存在点 P ,使得 MC ∥
20. 12 知斜率为 k 的直线 l 椭圆 C
x2 y 2 + = 1 交于 A , B 两点.线段 AB 的中点为 M (1, m)( m > 0) . 4 3
专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)
专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。
2018年全国(三卷)高考数学(理)试题及答案
2018年全国(三卷)高考数学(理)试题及答案绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则A .B .C .D .{}|10A x x =-≥{}012B =,,AB ={}0{}1{}12,{}012,,A .10B .20C .40D .806.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A .B .C .D .7.函数的图像大致为8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,232⎡⎣2232⎡⎤⎣⎦422y xx =-++p X群体的10位成员中使用移动支付的人数,,,则A .0.7B .0.6C .0.4D .0.39.的内角的对边分别为,,,若的面积为,则A .B .C .D .10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A .B .C .D . 11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A B .2 C D2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC△2224a b c +-C =π2π3π4π6A B C D ,,,ABC △93D ABC -12318324354312F F ,22221x y C a b-=:00a b >>,O 2F C P 16PF OP=C 53212.设,,则A .B .C .D . 二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2018年全国卷3文科数学试题及参考答案
绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试文科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则AB =( )A .{}0B .{}1C .{}1,2D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴=【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos212sin 9αα=-= 【考点】余弦的二倍角公式5.某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.7 【答案】B【解析】10.450.150.4--= 【考点】互斥事件的概率俯视方向D.C. B.A.6.函数()2tan 1tan xf x x=+的最小正周期为( ) A .4π B .2πC .πD .2π 【答案】C【解析】()()2222tan tan cos 1sin cos sin 2221tan 1tan cos x x x f x x x x x k x x x ππ⨯⎛⎫====≠+ ⎪++⎝⎭,22T ππ==(定义域并没有影响到周期) 【考点】切化弦、二倍角、三角函数周期7.下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是A .()ln 1y x =-B .()ln 2y x =-C .()ln 1y x =+D .()ln 2y x =+ 【答案】B【解析】采用特殊值法,在ln y x =取一点()3,ln 3A ,则A 点关于直线1x =的对称点为()'1,ln3A -应该在所求函数上,排除A ,C ,D【考点】函数关于直线对称8.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=()2,P θθ,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数)9.422y x x =-++的图像大致为( )【答案】D【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛ ⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)10.已知双曲线的()2222:10,0x y C a b a b-=>>,则点()4,0到C 的渐近线的距离为AB .2 CD.【答案】DxxxxD.C.B.A.【解析】c e a b a ===∴渐近线为0x y -=故d ==【考点】双曲线的离心率、渐近线之间的互相转化11.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2π B .3π C .4π D .6π 【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理12.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A. B. C. D.【答案】B【解析】如图,O 为球心,F 为等边ABC ∆的重心, 易知OF ⊥底面ABC ,当,,D O F 三点共线, 即DF ⊥底面ABC 时,三棱锥D ABC -的高最大,体积也最大. 此时:6ABC ABC AB S ∆∆⎫⎪⇒==等边,在等边ABC ∆中,233BF BE AB === 在Rt OFB ∆中,易知2OF =,6DF ∴=,故()max 163D ABC V -=⨯=【考点】外接球、椎体体积最值二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a =,()2,2b =-,()1,c λ=. 若()//2c a b +,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ= 【考点】向量平行的坐标运算14. 某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方式有简单随机抽样,分层抽样和系统抽样,则最适合的抽样方法是______. 【答案】分层抽样【解析】题干中说道“不同年龄段客户对其服务的评价有较大差异”,所以应该按照年龄进行分层抽样【考点】抽样方法的区别15.若变量,x y 满足约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,则13z x y =+的最大值是_________.【答案】3【解析】采用交点法:(1)(2)交点为()2,1-,(2)(3)交点为()2,3,(1)(3)交点为()2,7- 分别代入目标函数得到53-,3,13-,故最大值为3(为了严谨可以将最大值点()2,3代入方程(1)检验一下可行域的封闭性) 本题也可以用正常的画图去做【考点】线性规划 16. 已知函数())ln 1f x x =+,()4f a =,则()_______.f a -=【答案】2- 【解析】令())lng x x =,则())()lng x x g x -==-,()()14f a g a ∴=+=,而()()()112f a g a g a -=-+=-+=-【考点】对数型函数的奇偶性三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m .【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E <,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.【答案】(1)见解析;(2)P 为AM 中点【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容) (2)当P 为AM 的中点时,//MC 平面PBD . 证明如下连接BD ,AC 交于点O ,易知O 为AC 中点,取AM 中点P ,连接PO ,则//PO AC ,又MC ⊄平面PBD ,PO ⊂平面PBD ,所以//MC 平面PBDMBCDAPOMBCDA【考点】面面垂直的判定、线面垂直、存在性问题 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明2FP FA FB =+. 【答案】(1)见解析;(2)见解析【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得, ()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243n y y k x x n k +=++=+ 224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++=,20FP FM ∴+=,即()1,2P m -,214143m∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(椭圆的第二定义)(或者(122xFA x ==-代入椭圆方程消掉1y 同理222x FB =-,12432x x FA FB +∴+=-=) 而32FP =2FA FB FP ∴+=【考点】点差法、直线与椭圆联立求解、向量的坐标运算、利用椭圆方程消12,y y 21. (12分)已知函数()21xax x f x e+-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥. 【答案】(1)210x y --=;(2)见解析 【解析】(1)()()()2212','02xax a x f x f e-+-+==因此曲线()y f x =在点()0,1-处的切线方程为:210x y --=(2) 当1a ≥时,()()211x x f x e x x ee +-+≥+-+(利用不等式消参) 令()211x g x x x e +=+-+则()1'21x g x x e +=++,()1''20x g x e +=+>,()'g x ∴单调增,又()'10g -=,故当1x <-时,()'0g x <,()g x 单减;当1x >-时,()'0g x >,()g x 单增; 故()()10g x g ≥-=因此()0f x e +≥【考点】切线方程、导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44x y αππαα⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意; 当2πα≠时,设直线:l y kx =1d =<,即()(),11,k ∈-∞-+∞,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴== cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=⎪⎩即点P的轨迹的参数方程为232,,44x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5,【考点】零点分段求解析式、用函数图象解决恒成立问题x。
2019年全国统一高考数学试卷(文科)(新课标ⅲ)-含答案
2019年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合{1A =-,0,1,2},2{|1}B x x =…,则(A B =I ) A .{1-,0,1}B .{0,1}C .{1-,1}D .{0,1,2}2.(5分)若(1)2z i i +=,则(z = ) A .1i --B .1i -+C .1i -D .1i +3.(5分)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14 C .13D .124.(5分)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为( ) A .0.5B .0.6C .0.7D .0.85.(5分)函数()2sin sin 2f x x x =-在[0,2]π的零点个数为( ) A .2B .3C .4D .56.(5分)已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3(a =) A .16B .8C .4D .27.(5分)已知曲线x y ae xlnx =+在点(1,)ae 处的切线方程为2y x b =+,则( ) A .a e =,1b =-B .a e =,1b =C .1a e -=,1b =D .1a e -=,1b =-8.(5分)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM EN =,且直线BM ,EN 是相交直线B .BM EN ≠,且直线BM ,EN 是相交直线C .BM EN =,且直线BM ,EN 是异面直线D .BM EN ≠,且直线BM ,EN 是异面直线9.(5分)执行如图所示的程序框图,如果输入ò为0.01,则输出的s 值等于( )A .4122-B .5122-C .6122-D .7122-10.(5分)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为( )A .32B .52C .72D .9211.(5分)记不等式组6,20x y x y +⎧⎨-⎩……表示的平面区域为D .命题:(,)p x y D ∃∈,29x y +…;命题:(,)q x y D ∀∈,212x y +„.下面给出了四个命题 ①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝ 这四个命题中,所有真命题的编号是( ) A .①③B .①②C .②③D .③④12.(5分)设()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A .233231(log )(2)(2)4f f f -->> B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>二、填空题:本题共4小题,每小题5分,共20分。
2018年高考真题文数全国卷Ⅲ 含解析 精品
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。
详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。
2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。
........................故选D.点睛:本题主要考查复数的四则运算,属于基础题。
3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。
4. 若,则A. B. C. D.【答案】B【解析】分析:由公式可得。
详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。
5. 若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则因为所以故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
2018年数学高考真题
对应学生用书P105剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.在难度上会有一些差异,在试卷结构,命题方向上基本都是相同的.“稳定是高考的主旋律”.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低.“创新是高考的生命线”.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心理解归纳,是难以拿到高分的.在对数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.全国Ⅰ、Ⅱ、Ⅲ卷对必修4三角函数、三角恒等变换的考查,相对来说难度不大,综合性较低,但比去年难度有所提高,位置有所移后,其中,全国Ⅰ卷文科把三角函数放到第11题,略微有一点难度,是一个很明显的例子;但是对于平面向量的考查,全国Ⅰ、Ⅱ、Ⅲ卷通常放在填空题第1题或选择题中间的位置,难度相对于去年有所降低,2017年把基本平面向量放到第12题的位置,综合性较强.其他自主命题省市高考题对于三角函数、三角恒等变换的考查,难度都不大,而平面向量的考查难度各省市有较大区别,比如:天津卷、江苏卷、北京卷、浙江卷等较难,要求学生有较强的分析问题、转化问题的能力以及运算能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及各地区必修4所考查全部试题,请同学们根据所学必修4的知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学的内容的小综合试题,同学们可根据目前所学习的内容,有选择性的试做!)穿越自测一、选择题1.(2018·全国卷Ⅲ,文4)若sinα=13,则cos2α=()A.89B.79C.-79D.-89答案B解析cos2α=1-2sin2α=1-29=79.故选B.2.(2018·全国卷Ⅱ,文4理4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a。
2018年数学真题及解析_2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)
2018年云南省高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.76.(5.00分)函数f(x)=的最小正周期为()A.B.C.πD.2π7.(5.00分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)8.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.10.(5.00分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.211.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.12.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2018年高考全国卷1文科数学试题及含答案
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出の四个选项中,只有一项是符合题目要求の。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。
2018年全国新课标Ⅲ卷全国3卷高考文科数学试卷及参考答案与试题解析
2018年全国新课标Ⅲ卷全国3卷高考文科数学试卷及参考答案与试题解析2018年云南省高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3B.0.4C.0.6D.0.76.(5.00分)函数f(x)=的最小正周期为( )A. B. C.π D.2π7.(5.00分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是( )A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x)D.y=ln(2+x)8.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.10.(5.00分)已知双曲线C:-=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为( )A. B.2 C. D.211.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.12.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。
2018年高考新课标全国卷III文科数学(含答案)
8.直线 x y 2 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆 ( x 2) y 2 上,则 △ ABP 面积 的取值范围是 A. [2, 6]
4 2
B. [4,8]
C. [ 2,3 2]
D. [2 2,3 2]
9.函数 y x x 2 的图像大致为
8 9
4
tan x 的最小正周期为 1 tan 2 x B. 2
ቤተ መጻሕፍቲ ባይዱ
C.
D. 2
7.下列函数中,其图像与函数 y ln x 的图像关于直线 x 1 对称的是
第 1 页
A. y ln(1 x )
B. y ln(2 x )
C. y ln(1 x )
D. y ln(2 x )
第 5 页
大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎 7 上的最多,关于茎 7 大 致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二 种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种 生产方式的效率更高.学科%网 以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知 m 列联表如下: 超过 m 第一种生产方式 第二种生产方式 (3)由于 K 2 19.(12 分) 解:(1)由题设知,平面 CMD⊥平面 ABCD,交线为 CD. 因为 BC⊥CD,BC 平面 ABCD,所以 BC⊥平面 CMD,故 BC⊥DM.
第 2 页
二、填空题:本题共 4 小题,每小题 5 分,共 20 分. 13.已知向量 a (1, 2) , b (2, 2) , c (1, ) .若 c
2018年高考真题北京卷文科数学Word版含解析
2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合A={(|||<2)},B={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:故选A.点睛:此题考查集合的运算,属于送分题.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限. 详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. 设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.详解:当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件故选B.点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.5. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.7. 在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O为始边,OP为终边,若,则P所在的圆弧是(A)AB(B)CD(C)EF(D)GH【答案】C【解析】分析:逐个分析A、B、C、D四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段为余弦线,有向线段为正弦线,有向线段为正切线.A选项:当点在上时,,,故A选项错误;B选项:当点在上时,,,,故B选项错误;C选项:当点在上时,,,,故C选项正确;D选项:点在上且在第三象限,,故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。
2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。
2018年高考真题——文科数学(全国卷Ⅲ)+解析版
2018年普通高等学校招生全国统一考试(新课标 III 卷)文 科 数 学 答 案一、选择题 1.答案:C解答:∵{|10}{|1}A x x x x =-≥=≥,{0,1,2}B =,∴{1,2}A B =.故选C.2.答案:D解答:2(1)(2)23i i i i i +-=+-=+,选D. 3.答案:A解答:根据题意,A 选项符号题意; 4.答案:B解答:227cos 212sin 199αα=-=-=.故选B. 5.答案:B解答:由题意10.450.150.4P =--=.故选B. 6.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C. 7.答案:B解答:()f x 关于1x =对称,则()(2)ln(2)f x f x x =-=-.故选B. 8.答案:A解答:由直线20x y ++=得(2,0),(0,2)A B --,∴||AB ==22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++==∴点P 到直线20x y ++=的距离的取值范围为d -≤≤d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.解答:当0x =时,2y =,可以排除A 、B 选项;又因为3424(22y x x x x x '=-+=-+-,则()0f x '>的解集为(,)(0,22-∞-U ,()f x 单调递增区间为(,2-∞-,(0,2;()0f x '<的解集为(,0)()22-+∞U ,()f x 单调递减区间为(2-,()2+∞.结合图象,可知D 选项正确.10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==故选D. 11.答案:C 解答:2222cos 1cos 442ABCa b c ab C S ab C ∆+-===,又1sin 2ABC S ab C ∆=,故tan 1C =,∴4C π=.故选C.12.答案:B解答:如图,ABC ∆为等边三角形,点O 为A ,B ,C ,D 外接球的球心,G 为ABC ∆的重心,由ABC S ∆=,得6AB =,取BC 的中点H ,∴sin 60AH AB =⋅︒=23AG AH ==,∴球心O 到面ABC 的距离为2d ==,∴三棱锥D ABC -体积最大值1(24)3D ABC V -=⨯+=.13.答案:12解答:2(4,2)a b +=,∵//(2)c a b +,∴1240λ⨯-⨯=,解得12λ=. 14.答案:分层抽样解答:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法. 15.答案:3解答:由图可知在直线240x y -+=和2x =的交点(2,3)处取得最大值,故12333z =+⨯=.16.答案:2-解答:())ln1()f x x x R -=+∈,()())1)1f x f x x x +-=+++22ln(1)22x x =+-+=,∴()()2f a f a +-=,∴()2f a -=-.三、解答题17.答案:(1)12n n a -=或1(2)n n a -=-;(2)6.解答:(1)设数列{}n a 的公比为q ,∴2534a q a ==,∴2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112n nn S -==--或1(2)1[1(2)]123n n n S +-==--+, ∴2163m m S =-=或1[1(2)]633mm S =--=(舍),18.答案:见解析 解答:(1)第一种生产方式的平均数为184x =,第二种生产方式平均数为274.7x =,∴12x x >,所以第一种生产方式完成任务的平均时间大于第二种,∴第二种生产方式的效率更高.(2)由茎叶图数据得到80m =,∴列联表为(3)222()40(151555)10 6.635()()()()20202020n ad bc K a b c d a c b d -⨯-⨯===>++++⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.答案:见解答解答:(1)∵正方形ABCD ⊥半圆面CMD , ∴AD ⊥半圆面CMD ,∴AD ⊥平面MCD .∵CM 在平面MCD 内,∴AD CM ⊥,又∵M 是半圆弧CD 上异于,C D 的点,∴CM MD ⊥.又∵AD DM D =I ,∴CM ⊥平面ADM ,∵CM 在平面BCM 内,∴平面BCM ⊥平面ADM .(2)线段AM 上存在点P 且P 为AM 中点,证明如下:连接,BD AC 交于点O ,连接,,PD PB PO ;在矩形ABCD 中,O 是AC 中点,P 是AM 的中点;∴//OP MC ,∵OP 在平面PDB 内,MC 不在平面PDB 内,∴//MC 平面PDB.20.答案:见解答:(1)设直线l 方程为y kx t =+,设11(,)A x y ,22(,)B x y ,22143y kx t x y =+⎧⎪⎨+=⎪⎩联立消y 得222(43)84120k x ktx t +++-=, 则2222644(412)(34)0k t t k ∆=--+>,得2243k t +>…①,且1228234kt x x k -+==+,121226()2234ty y k x x t m k +=++==+, ∵0m >,∴0t >且0k <.且2344k t k+=-…②.由①②得2222(34)4316k k k ++>,∴12k >或12k <-.∵0k <,∴12k <-.(2)0FP FA FB ++=uu r uu r uu r r ,20FP FM +=uu r uuu r r ,∵(1,)M m ,(1,0)F ,∴P 的坐标为(1,2)m -.由于P 在椭圆上,∴214143m +=,∴34m =,3(1,)2M -,又2211143x y +=,2222143x y +=,两式相减可得1212121234y y x x x x y y -+=-⋅-+, 又122x x +=,1232y y +=,∴1k =-,直线l 方程为3(1)4y x -=--, 即74y x =-+,∴2274143y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消去y 得2285610x x -+=,1,21414x ±=,||||3FA FB +==uu r uu r,3||2FP ==uu r ,∴||||2||FA FB FP +=.21.答案:详见解析解答:(1)由题意:()21xax x f x e +-=得222(21)(1)22()()x x x xax e ax x e ax ax x f x e e +-+--+-+'==,∴2(0)21f '==,即曲线()y f x =在点()0,1-处的切线斜率为2,∴(1)2(0)y x --=-,即210x y --=;(2)证明:由题意:原不等式等价于:1210x eax x +++-≥恒成立;令12()1x g x e ax x +=++-,∴1()21x g x eax +'=++,1()2x g x e a +''=+,∵1a ≥,∴()0g x ''>恒成立,∴()g x '在(,)-∞+∞上单调递增,∴()g x '在(,)-∞+∞上存在唯一0x 使0()0g x '=,∴010210x e ax +++=,即01021x e ax +=--,且()g x 在0(,)x -∞上单调递减,在0(,)x +∞上单调递增,∴0()()g x g x ≥.又01220000000()1(12)2(1)(2)x g x eax x ax a x ax x +=++-=+--=+-,111()1a g e a -'-=-,∵1a ≥,∴11011a e e -≤-<-,∴01x a≤-,∴0()0g x ≥,得证.综上所述:当1a ≥时,()0f x e +≥. 22.答案:见解析解答:(1)O e 的参数方程为cos sin x y θθ=⎧⎨=⎩,∴O e 的普通方程为221x y +=,当90α=︒时,直线::0l x =与O e 有两个交点,当90α≠︒时,设直线l 的方程为tan y x α=-线l 与O e1<,得2tan 1α>,∴tan 1α>或tan 1α<-,∴4590α︒<<︒或90135α︒<<︒,综上(45,135)α∈︒︒.(2)点P 坐标为(,)x y ,当90α=︒时,点P 坐标为(0,0),当90α≠︒时,设直线l 的方程为y kx =-1122(,),(,)A x y B x y,∴221x y y kx ⎧+=⎪⎨=-⎪⎩①②有22(1x kx +-=,整理得22(1)10k x +-+=,∴1221x x k +=+,1221y y k -+=+,∴2211x k y k ⎧=⎪⎪+⎨⎪=⎪+⎩③④得x k y=-代入④得220x y ++=.当点(0,0)P时满足方程220x y ++=,∴AB 中点的P的轨迹方程是220x y ++=,即221(22x y ++=,由图可知,,)22A -,(,)22B --,则02y -<<,故点P的参数方程为2sin 22x y ββ⎧=⎪⎪⎨⎪=-+⎪⎩(β为参数,0βπ<<).23.答案:见解答 解答:(1)13,21()2,123,1x x f x x x x x ⎧-≤-⎪⎪⎪=+-<<⎨⎪≥⎪⎪⎩,如下图:(2)由(1)中可得:3a ≥,2b ≥, 当3a =,2b =时,a b +取最小值, ∴a b +的最小值为5.。
2018年全国统一高考数学试题(文)(Word版,含答案解析)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年高考文科数学全国卷3(含答案与解析)
2018年高考文科数学全国卷3(含答案与解析)2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|x-1\geq0\}$,$B=\{0,1,2\}$,则$AB=$A。
$\emptyset$ B。
$\{1\}$ C。
$\{1,2\}$ D。
$\{0,1,2\}$2.$(1+i)(2-i)=$A。
$-3-i$ B。
$-3+i$ C。
$3-i$ D。
$3+i$3.中国古建筑借助榫卯将木构件连接起来。
构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4.若$\sin\alpha=\frac{1}{3}$,则$\cos2\alpha=$A。
$\frac{8}{9}$ B。
$\frac{7}{99}$ C。
$-\frac{7}{9}$ D。
$-\frac{8}{9}$5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A。
0.3 B。
0.4 C。
0.6 D。
0.76.函数$f(x)=\frac{\tan x}{1+\tan^2x}$的最小正周期为A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{2}$ C。
$\pi$ D。
$2\pi$7.下列函数中,其图象与函数$y=\ln x$的图象关于直线$x=1$对称的是A。
$y=\ln(1-x)$ B。
$y=\ln(2-x)$ C。
$y=\ln(1+x)$ D。
$y=\ln(2+x)$成任务的时间,得到以下数据:第一组:12.15.13.14.16.18.17.14.16.15.13.12.14.15.13.16.17.14.15.13第二组:16.17.14.18.15.16.13.14.15.16.17.15.14.16.15.17.15.16.18.141)分别计算两组工人完成任务的平均时间和标准差;2)根据以上数据,判断两种生产方式哪一种更有效,并说明理由.19.(12分)已知函数f(x)在区间[0,1]上连续,且f(0)=f(1)=0.证明:对于任意正整数n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国统一咼考数学试卷(文科)
(新课标m )
项中,只有一项是符合题目要求的。
(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹
进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与 某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以
现金支付的概率为0.15,贝U 不用现金支付的概率为( 、选择题:本题共12小题,每小题5分,
共60分。
在每小题给出的四个选
2. (5分)已知集合A={x|x — 1 >0}, A . {0}
B . {1}
(5分)(1+i ) (2— i )=( )
A .— 3 — i
B .— 3+i
B={0, C. C.
1, 2},则 A n B=( {1, 2}
D . D . {0, 1, 2}
3+i
3. A .
「■ ■ ■ 4 ■ T
4 1
__ ______________ ■
C.
4. (5分)若sin A .
C.
D .
5. (5分)若某群体中的成员只用现金支付的概率为 0.45, 既用现金支付也用非
6. B . 0.4
(5 分)函数 f (x ) = . 1-bta n x
7T T
A . 0.3
C. 0.6
的最小正周期为(
A .
B . C. n
D . 0.7
D . 2n
是( )
俯视方向
7 .
(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是(
)
A . y=ln (1 - x)
B . y=ln (2 —x) C. y=ln (1+x) D. y=ln (2+x)
8.(5分)直线x+y+2=0分别与x轴,y轴交于A, B两点,点P在圆(x-2)
2+y2=2 上,则△ ABP面积的取值范围是()
A . [2,6]
B . [4,8]
C .[二,3 ::]
D . [2 :■:,3「]
12 . (5分)设A,B,C, D是同一个半径为4的球的球面上四点,△ ABC为等边
三角形且面积为9 一「;,则三棱锥D-ABC体积的最大值为()二、填空10 . (5分)已知双曲线C:
2 2
务-耳=1 (a>0, b>0)的离心率为血,则点(4, a2 b2 0)到C的渐近线的距离为(
A . :■:
B . 2 D . 2 ■:
11. (5 分)△ ABC的内角A,B,C的对边分别为a,b,c.若厶ABC的面积为
7T
C.
则C=( )
题:本题共4小题,每小题5分,共20分。
C. 24 :;
13. (5 分)已知向量& (1 , 2), b = (2,—2), c = (1, R •若$//(姑恳), 贝卩入. 14(5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异. 为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是_____________ .
[
2x+y+3^0
,J则z=gy的最大值是_____ .
1_2^0
16. (5 分)已知函数f (x) =ln ( •.「—x) +1, f (a) =4,则f ( —a) = __ .
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17〜21
题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17. (12分)等比数列{a n}中,a1=1, a5=4a3.
(1)求{a n}的通项公式;
(2)记s n为{a n}的前n项和.若Sn=63,求m.
18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产
任务的两种新的生产方式•为比较两种生产方式的效率,选取40名工人,将
他们随机分成两组,每组20人•第一组工人用第一种生产方式,第二组工人用第
二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎
叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
超过m 不超过m 第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附.K2= 飞肘b無+盯&十孑(b+d),
P (K2>k)0.050 0.010 0.001
k 3.841 6.635 10.828
19. (12分)如图,矩形ABCD所在平面与半圆弧」所在平面垂直,M是二|上异于
C, D的点.
(1)证明:平面AMD丄平面BMC;
(2)在线段AM上是否存在点P,使得MC//平面PBD?说明理由.
AB 的中点为M (1, m) (m> 0).
(1) 证明:kv-寺;
,.| -- " --- ' ---- -- *■--- ► --- b- -- (2) 设F为C的右焦点,P为C上一点,且「+*+ =「,证明:2| |=| |+| IJ .
21. (12 分)已知函数f (x)="[-.
e
(1)求曲线y=f (x)在点(0,- 1)处的切线方程;
(2)证明:当a> 1 时,f (x) +e>0.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,20. (12分)已知斜率为k的直线I与椭圆C: =1交于A, B两点,线段
则按所做的第一题计分。
[选修4-4:坐标系与参数方程](10分)22. (10分)在平面直角坐标系xOy中,。
O的参数方程为一厂, (B为参
[y=sin 9 数),过点(0,-血)且倾斜角为a的直线I与。
O交于A, B两点. (1)求a的取值范围;
(2)求AB中点P的轨迹的参数方程.
[选修4-5 :不等式选讲](10分)
23. 设函数f (x)=| 2x+1|+| x- 1| .
(1)画出y=f (x)的图象;
(2)当x€ [0, +x)时,f(x)<ax+b,求a+b 的最小值.。