铸造方法的类别
铝合金铸造实用技术(15%)

3、砂眼:铸件内部或表面包有砂粒、砂块,常 伴有夹砂、掉砂
• 性能、成分、组织不合格类缺陷:
1、机械性能不合格(抗拉强度、延伸率、硬 度等) 2、成分不合格:化学成分含量不符合要求 3、组织不合格(组织粗大不致密、白点、偏 析等)
十一、铸件缺陷的检验
• 铸件表面缺陷一般靠目视检验;需方有要
求时,用无损检测,如渗透检测,磁粉检 测等检验。 • 铸件内部缺陷主要靠无损检测,如水(气) 压试验、超声波检测、射线检测等检验方 法。
十、铸造缺陷的识别
• 多肉类缺陷:
1、飞边和毛刺:多产生在分型面、分芯面、芯 头、芯型裂缝处
2、胀箱、胀砂:分型面方向尺寸增大,有厚大飞边, 铸件表面局部胀大
3、冲砂、掉砂:砂子被金属液冲掉,砂型、砂 芯局部掉块
• 孔洞类缺陷:
1、气孔:产生在铸件内部或表面,形状呈圆形、 椭圆形,孤立或成群分布,内壁较光滑
3、 III类铸件:承受轻载荷,用于一般 部位的铸件。
铸件类别一般在图样中标示出或在技术 文件中规定,对于未注明类别的铸件,视 为III类铸件。图示标记包括:所用合金牌号 或代号、铸造方法、铸件供应状态、铸件 类别等。 例如: ZL104J/T6-Ⅱ(215-2) AS7G03Y33-Ⅰ(216-2) AS7G03Y23-Ⅰ(216-2)
4、表面缺陷:主要有夹砂(鼠尾、沟槽)、 皱皮和缩陷。 5、残缺类缺陷:主要有浇不足、未浇满、跑 火、型漏等 6、形状及重量差错类缺陷:主要有尺寸和重 量差错、变形、错型、错芯等 7、夹杂类缺陷:主要有金属冷豆、非金属夹 渣和砂眼等 8、性能、成分、组织不合格类缺陷:主要有 抗拉强度、延伸率、硬度、化学成分、组 织不致密、偏析等缺陷
铝合金铸造实用技术
不锈钢精密铸造工艺

不锈钢精密铸造工艺不锈钢精密铸造工艺随着不锈钢制品的广泛应用,不锈钢精密铸造工艺逐渐成为制造业中的一个热门话题。
不锈钢精密铸造工艺是一种高精度、高可靠性的制造工艺。
本文将从工艺流程、铸造类别和工艺优势三个方面阐述不锈钢精密铸造工艺。
工艺流程不锈钢精密铸造工艺的流程可以分为模具设计、铸造准备、浇注、冷却、取模和后处理等六个环节。
首先是模具设计环节,需要根据铸造件的形状、大小等特性制作出适合的模具。
铸造准备环节包括熔化不锈钢原料、铸造温度控制和熔液处理等。
浇注环节即将熔液倒入模具中,在模具中形成铸造件。
冷却环节是将铸造件从模具中取出后,需要对其进行冷却处理,使其达到所需的硬度和耐用性。
取模环节是将已冷却的铸造件从模具中取出。
最后是后处理环节,包括喷砂、抛光、酸洗等工序。
铸造类别不锈钢精密铸造工艺包括几种不同的铸造类别,如失重铸造、熔模铸造和精密铸造等。
失重铸造是一种基于物理原理的铸造方式,利用物体净重与液态金属重力相等的特点,对液态金属进行熔化及浇注方式进行设定,通过形成特定环境下的浇注形态,使得金属液在浇注过程中达到无重状态从而形成所需铸件。
熔模铸造是一种采用可熔性模具制作铸件的铸造工艺。
精密铸造是一种精密铸造工艺,它可以制造出复杂的零件,精度高,表面光洁度好,可以达到同等铸造工艺难以实现的高精度要求。
工艺优势不锈钢精密铸造工艺的最大优势在于其高精度和高可靠性。
在现代制造业中,高精度是非常重要的一项指标,尤其是在需要避免零件间间隙过大或夹杂物的情况下。
不锈钢精密铸造工艺可以生产出高精度的零件,同时可以避免表面张力、热影响和裂纹等问题,因此具有更高的可靠性。
此外,不锈钢精密铸造工艺还可以减少材料的浪费,提高材料的利用率,节约生产成本,降低环境污染等。
结语在制造业快速发展的今天,不锈钢精密铸造工艺将会有着巨大的应用前景。
铸造工艺的发展也将会推动制造业的快速发展,同时也为现代科技与技术的发展打下一定的基础。
金属加工类目

金属加工类目金属加工是一门重要的制造工艺,在工业生产和产品制造中扮演着重要的角色。
随着工业的不断发展和技术的不断创新,金属加工技术也不断地发展和完善。
金属加工类目,就是对金属材料的各种加工方式和工艺进行分类和归纳,以便于更好地掌握金属加工技术。
本文将对金属加工类目进行介绍。
一、铸造类铸造是将液态金属或半固态金属经过一定的工艺,借助于一定的模具或模型,在一定的条件下,铸造成所需形状及性能的零件或构件的一种制造方法。
铸造类别繁多,根据工艺的不同可以分为砂型铸造、失重铸造、压铸、挤压铸造、精密铸造等。
二、锻造类锻造是在温度较高的状态下,将金属放置于模具间压制,使金属在受力作用下形变并改变原有的物理形状和内部组织结构,所形成的金属加工工艺。
常见的锻造方式有自由锻、板锻、环锻、挤压锻、轧锻等。
三、成型类成型类加工是指将金属材料在机械加工的条件下,经过一定的拉伸、挤压等成型方法制成所需的零件或构件的一种加工方法。
成型类别繁多,有剪切成型、挤压成型、滚压成型、拉伸成型、旋转成型等。
四、焊接类焊接是指将两根或多根金属材料加热到一定温度,使其熔化融合,生成一个整体的金属连接方法。
常见的焊接方式有电弧焊、气体保护焊、激光焊等。
焊接的质量直接影响到金属制品的耐久性和安全性。
五、削铣类削铣是利用机床将工件表面逐层削去金属,以得到所需要的尺寸或形状的加工方法。
削铣类别很多,有普通铣削、立式铣削、卧式铣削、数控铣削等。
六、冲压类冲压是指利用模具在机械化设备上对金属材料进行挤压和剪裁,以制成所需形状和尺寸的零部件和构件的技术加工过程。
常见的冲压工艺有剪切、冲孔、弯曲、拉伸、成型等。
七、表面处理类表面处理是为了提高金属材料的防腐蚀性、耐磨性、美观度等性能效果的一种加工方法。
通常表面处理包括镀金属、镀非金属、喷涂、抛光等工艺。
热处理是指将金属材料在一定的温度、时间、压力等条件下进行热处理的技术。
热处理能够改变金属材料的硬度、强度、韧性等机械性能,晶界、晶粒结构等微观组织性能,从而提高其性能和使用寿命。
金属成型工艺的类别

金属成型工艺的类别
1. 塑性成型工艺,塑性成型工艺是指通过对金属材料施加压力,使其发生塑性变形,从而获得所需形状的工艺过程。
常见的塑性成
型工艺包括锻造、压铸、拉伸、挤压等。
2. 切削成型工艺,切削成型工艺是指通过切削金属材料的方法,将其加工成所需形状的工艺过程。
常见的切削成型工艺包括车削、
铣削、钻削、镗削等。
3. 焊接工艺,焊接工艺是指通过加热或施加压力,使金属材料
相互结合的工艺过程。
常见的焊接工艺包括电弧焊、气体保护焊、
激光焊等。
4. 粉末冶金工艺,粉末冶金工艺是指利用金属粉末或金属粉末
与非金属粉末混合后,通过压制和烧结等工艺形成零件的工艺过程。
5. 热处理工艺,热处理工艺是指通过加热、保温和冷却等方式,改变金属材料的组织结构和性能的工艺过程。
常见的热处理工艺包
括退火、正火、淬火、回火等。
以上是金属成型工艺的主要类别,不同的工艺类别在实际应用中往往会结合使用,以满足不同金属制品的加工需求。
希望以上回答能够全面地解答你的问题。
铸造的分类

劈箱造型
将模样和砂型分成几块分别造型,然后组装起来,使
造型、烘干、搬运、合箱、检验等工序操作方便,但
工装制造工作量大
成批的大型复杂铸件,如
机床床身
地坑造型
在车间的地坑中造型,不同砂箱或只用盖箱,操作较
麻烦,劳动量大,生产周期长
在无合适砂箱时单件生产
的中大型铸件
脱箱造型
造型后将砂箱取走,在无箱或加套箱的情况下浇
1~2件为宜
磁型铸造
用磁性材料(铁丸,钢丸)代替型
砂作造型材料,可重复使用,简化了
砂处理设备
铸件表面渗碳
钢铁合金为主
大批大量生产
中小型中等复杂
零件,生产率高
石墨型铸造
用石墨制成铸型,重力浇注成型,
铸型质脆,易碎
铸件尺寸精确,组
织致密
铜合金,钛合
金
成批生产不太
复杂的中小铸件
生产率高
石膏型铸造
用石膏加附加材料以浇灌法制成
铸型,可用熔模及拨模铸造
铸件表面粗糙度
低,尺寸精度高
以铝合金为主
批量生产的薄
壁复杂铸件
加
压
方
式
压力铸造
高压下液态金属高速充填金属型
并快速凝固。铸机、铸型投资高
铸件尺寸精度高,
组织细密
以铝合金,镁
合金,锌合金及
铜合金为主
大批、大量生
产中小型薄壁复
杂件,生产率很
高
挤压铸造
(冲压铸造)
先在铸型下浇入定量液态金
薄壁铸件
低压铸造
用金属型、石墨型,或砂型,在气
体压力下充型及结晶,设备简单
铸件致密,金属收
得率高
【免费下载】A356铸造铝合金生产工艺流程

A356铸造铝合金生产工艺流程目录第一章概述第一节铝合金的定义、性质和用途第二节铝合金的分类及表示方法第三节 A356合金的成分、组织和性能第四节 A356合金的生产设备第二章 A356合金的生产工艺第一节 A356合金的生产工艺流程第二节熔炼(1)铝熔体的特点(2)铝熔体的精炼与净化(3)熔炼工艺参数对铸锭质量的影响第三节铸造(1)铸造方法的分类(2)铸造原理(3)铸造工艺参数对铸锭质量的影响第四节熔铸工艺(1)配料工艺(2)熔炼工艺(3)铸造工艺(4)取样工艺第三章 A356合金常见缺陷及预防措施第一节化学成分第二节外观质量第三节低倍针孔度(1)针孔的定义与分类(2)针孔形成的原因(3)形成气孔的H2来源(4)预防针孔形成的工艺措施第一章概述第一节铝合金的定义、性质和用途所谓铝合金就是在工业纯铝中加入适量的其他元素,使铝的本质得到该善,以满足工业上和人们生活中的各种需要。
由于其比重小,比强度高,具有良好的综合性能,因此,被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器皿制造等方面。
第二节铝合金的分类及表示方法铝合金可分为两大类:变形铝合金和铸造铝合金,变形铝合金要先铸成锭,用于压延或拉伸,如:管、棒和板等;铸造铝合金,用于铸造固定铸件,如:活塞、汽缸和支架等。
变形铝合金牌号的表示方法大致有两种:1、国家标准用第一个字母L表示工业纯铝或铝合金,(取铝的汉语拼音第一个字母)。
第二个字母表示铝合金类别,下面几个字母分别表示:G——工业高纯铝 F——防锈铝合金 Y——硬铝合金C——超硬铝合金 D——锻造铝合金 T——特殊铝合金字母后面的数字表示该类合金的序号。
如LF3表示3号防锈铝合金;LD2表示2号锻造铝合金;LY12表示12号硬铝合金;LC4表示4号超硬铝合金;LT21表示21号特殊铝合金。
2、引用美国四位数铝合金牌号表示方法,作为国家标准第一位数字表示铝合金系列,如:1XXX表示纯铝2XXX表示AL-Cu系合金3XXX表示AL-Mn系合金4XXX表示AL-Si系合金5XXX表示AL-Mg系合金6XXX表示AL-Mg-Si系合金7XXX表示AL-Zn系合金8XXX表示AL和其它元素的合金9XXX表示尚未使用的系列最后两位数字表示某种具体的铝合金或铝的纯度,第二位数字表示对原来的合金或杂质范围的修改。
AMS 2175 铸件、分类及其检验规范

执行着色探伤、磁粉探伤或者射线检验的人员应当按照NAS 410进行资格认证。
3.4检验方法和验收标准:
3.4.1目测:目测检验的部位必须要有足够的照明灯光。环境灯光不得小于75英尺烛光(foot candle)。铸件应当没有外来杂质,且不应当包含裂纹、热裂、冷隔和不良焊缝(也叫低于平面以下的分型线)。另外,铸件应当符合工程图纸、规范或其他达成一致的观测标准(见8.4)。也应当采用以下标准:
8.4观测标准件:
目测检验的标准件包括带有已知不连续性的样本铸件。可以参考MSS SP-55和ASTM A 802获得更多的关于钢铸件的目测检验的验收标准。MSS SP-55包含一些参考照片说明了各种类型和程度的表面不连续性,而ASTM A 802(钢铸件,表面验收标准,目测检验)包含模拟实际不连续性和表面粗糙情况的样板。
3.4.1.1表面粗糙度:表面粗糙度应当符合工程图纸的要求。工程图纸上规定的粗糙度要求(也就是,63Ra,125RMS等)不能排除要求出现可接受的液体渗透或磁粉探伤的磁痕。可以使用目测和通过感觉与外购观测标准件比较的方法来确定是否符合规定的表面粗糙度要求。
3.4.1.2浇口、冒口和分型线凸起:如果工程图纸或者铸件(材料)规范上没有规定允许的浇口、冒口或者分型线凸起的范围,那么对浇口、冒口和分型线的最大范围应当按照表3。
1.3分类
按本标准检验的铸件要按类别和适用等级进行分类。类别(class)决定检验的频次(见3.1和4.3),级别(grade)控制铸件的验收标准(件3.1和3.4)。
1.3.1类别(classes):
a.1类关键铸件,其失效会影响操作人员的生命,或导致导弹,航行器或其它交通工具的损失。
b.2类重要铸件,其失效会导致重大的操作事故和处罚。如果是针对导弹、飞行器和其他交通工具,还包括主要部件的损耗,无意识的释放或者不能释放军火,或者军火部件的失效。
A356铸造铝合金生产工艺流程

A356铸造铝合金生产工艺流程目录第一章概述第一节铝合金的定义、性质和用途第二节铝合金的分类及表示方法第三节 A356合金的成分、组织和性能第四节 A356合金的生产设备第二章 A356合金的生产工艺第一节 A356合金的生产工艺流程第二节熔炼(1)铝熔体的特点(2)铝熔体的精炼与净化(3)熔炼工艺参数对铸锭质量的影响第三节铸造(1)铸造方法的分类(2)铸造原理(3)铸造工艺参数对铸锭质量的影响第四节熔铸工艺(1)配料工艺(2)熔炼工艺(3)铸造工艺(4)取样工艺第三章 A356合金常见缺陷及预防措施第一节化学成分第二节外观质量第三节低倍针孔度(1)针孔的定义与分类(2)针孔形成的原因(3)形成气孔的H2来源(4)预防针孔形成的工艺措施第一章概述第一节铝合金的定义、性质和用途所谓铝合金就是在工业纯铝中加入适量的其他元素,使铝的本质得到该善,以满足工业上和人们生活中的各种需要。
由于其比重小,比强度高,具有良好的综合性能,因此,被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器皿制造等方面。
第二节铝合金的分类及表示方法铝合金可分为两大类:变形铝合金和铸造铝合金,变形铝合金要先铸成锭,用于压延或拉伸,如:管、棒和板等;铸造铝合金,用于铸造固定铸件,如:活塞、汽缸和支架等。
变形铝合金牌号的表示方法大致有两种:1、国家标准用第一个字母L表示工业纯铝或铝合金,(取铝的汉语拼音第一个字母)。
第二个字母表示铝合金类别,下面几个字母分别表示:G——工业高纯铝 F——防锈铝合金 Y——硬铝合金C——超硬铝合金 D——锻造铝合金 T——特殊铝合金字母后面的数字表示该类合金的序号。
如LF3表示3号防锈铝合金;LD2表示2号锻造铝合金;LY12表示12号硬铝合金;LC4表示4号超硬铝合金;LT21表示21号特殊铝合金。
2、引用美国四位数铝合金牌号表示方法,作为国家标准第一位数字表示铝合金系列,如:1XXX 表示纯铝2XXX 表示AL-Cu系合金3XXX 表示AL-Mn系合金4XXX 表示AL-Si系合金5XXX 表示AL-Mg系合金6XXX 表示AL-Mg-Si系合金7XXX 表示AL-Zn系合金8XXX 表示AL和其它元素的合金9XXX 表示尚未使用的系列最后两位数字表示某种具体的铝合金或铝的纯度,第二位数字表示对原来的合金或杂质范围的修改。
铸造工艺原理和总结

铸造工艺原理和总结一、实质、特点及应用1.铸造定义是指熔炼金属、制造铸型、并将熔融金属浇注入铸型内、凝固后获得一定形状和性能铸件的成形方法。
铸造实质:是利用熔融金属的流动性能实现成形。
铸件:用铸造方法得到的金属零件。
铸型:形成铸件形状的工艺装置。
2.铸造的特点1)成形方便、适应性强•尺寸、形状不受限制长度从几mm-20m;厚度从0.5-500mm;重量从几克-几百吨;•材料的种类和零件形状不受限制。
2)生产成本较低(与锻造比)•设备费用低;•减少加工余量,节省材料;•原材料来源广泛。
3)组织性能较差•晶粒粗大、不均匀;•力学性能差;-工序繁多、易产生铸造缺陷。
4)工作条件差、劳动强度大。
3、铸造的应用1)形状复杂、特别是具有复杂内腔的零件:箱体、缸体和壳体;2)尺寸大、质量大的零件,如床身、重型机械零件;3)力学性能要求不高,或主要承受压应力作用的零件,如底座、支架;4)特殊性能要求的零件,如球磨机的磨球、拖拉机的链轨。
4、铸造成形的基本工序二、金属的铸造性能——是指金属材料铸造成形的难易程度。
评价指标:流动性和收缩性。
(一)流动性——是指熔融金属有流动能力1、表示方法螺旋试样长度L,如L铸钢=20mm,L铸铁=1800mm,铸铁的流动性比铸钢好。
2、影响流动性的因素1)化学成分:共晶合金最好,纯金属差;2)浇注温度:T浇愈高,保温时间愈长,流动性愈好,但收缩性大和浇毁铸型。
经验:“高温出炉,低温浇注”。
3)铸型类别影响铸型蓄热能力和透气性;如、干砂型〉湿砂型>金属型。
4)铸型结构简单、壁厚的铸型〉复杂、壁薄的铸型。
3、流动性对铸件质量的影响流动性好:铸件形状完整、轮廓清晰;利于气体和夹杂物上浮排出和补偿;流动性不好:产生浇不到和冷隔、气孔和夹杂等缺陷。
4、防止流动性不好缺陷方法调整化学成分、提高浇注温度和改善铸型条件。
(二)收缩性——指浇注后熔融金属逐渐冷却至室温时总伴随着体积和尺寸缩小的特性。
简述铸造成型的工艺特点

简述铸造成型的工艺特点铸造成型是一种重要的制造工艺,采用这种工艺可以制造出大量高质量的零部件和组件。
不同的铸造成型工艺有着各自独特的特点,本文将按照工艺类别对其各自的特点进行简述。
一、砂型铸造砂型铸造是应用最广泛的一种铸造成型工艺。
其工艺特点主要有以下几个方面:1. 砂型制作灵活,能够适应各种形状、大小、结构的铸件制作。
2. 砂型材料便宜,易得,能够降低成本,提高生产效率。
3. 砂型铸造适用于各种铸造材料,包括铸铁、铸钢、铝合金等材料。
4. 砂型铸造的表面质量较差,需要进行后续处理和加工,才能达到要求。
二、压铸工艺压铸是另一种常见的铸造成型工艺,其工艺特点主要有以下几个方面:1. 压铸制品表面质量高,尺寸精度高,能够生产出复杂、高精度的零部件和组件。
2. 压铸工艺节约原材料,减少成本,提高生产效率。
3. 压铸同时还能够进行镁合金、铝合金、铜合金等各种工程材料铸造,可满足不同领域的需要。
三、熔模铸造熔模铸造是一种相对高级的工艺,其工艺特点主要有以下几个方面:1. 熔模铸造制品的表面质量和尺寸精度都非常高,能够铸造出复杂形状和高精度的铸件,适用于生产高质量的小批量铸件。
2. 熔模铸造适用于铸造高熔点,难加工的合金,如钨合金等。
3. 熔模铸造的模具寿命长,可反复使用,具有较高的经济效益,但是模具的制造成本也较高。
四、连铸工艺连铸是大型铸造工艺中的一种,其工艺特点主要有以下几个方面:1. 连铸生产效率高,适用于大规模、长期稳定的铸造生产。
2. 连铸制品表面质量好,尺寸精度高,适用于生产大量定尺的铸件。
3. 连铸适用于各种合金的铸造生产,包括铝合金、铜合金、钢等。
总体而言,铸造成型是一种非常常用的制造工艺。
不同的工艺具有各自的优缺点,工程师和制造商需要根据铸件特点和生产需要综合选择具体的铸造成型工艺,以平衡成本、质量和生产效率等因素。
各种模具分类方法

各种模具分类方法模具是工业产品的重要组成部分,广泛应用于汽车、电子、家电、建材等领域。
根据不同的分类标准,可以将模具分为多个不同的类别。
本文将介绍常见的模具分类方法,并对每个分类方法进行详细解析。
一、按用途分类1.压铸模具:用于压铸工艺,将熔化的金属注入到模腔中,冷却后形成所需的铸件。
压铸模具一般分为合金铸造模具、塑料模具和橡胶模具。
2.塑料模具:用于塑料制品的注塑成型,广泛应用于塑料制品行业,如塑料包装盒、塑料管道等。
3.铸造模具:用于金属铸造工艺,包括砂铸模具、金属型模具等。
砂铸模具广泛用于铸造行业,金属型模具则适用于高温金属铸造。
4.冲压模具:用于金属板材的冲压工艺,将板材按一定形状冲压成型,常用于制造汽车零部件、家电外壳等。
5.剪切模具:用于金属板材的剪切工艺,将板材按一定尺寸剪切成型,常用于金属加工行业。
二、按制造方法分类1.铸造模具:包括砂型、金属型等,通过铸造方法制造。
2.加工模具:包括车削、铣削、磨削等,通过加工方法制造。
3.特殊模具:包括电火花、线切割等,借助特殊的加工设备制造。
三、按结构分类1.单一模具:为一次加工过程制造的模具,形状简单,制造成本低,常见的有冲压模具。
2.组合模具:由多个模具组合而成,可实现多道工序连续加工,适合复杂零件的生产。
3.成套模具:包含多种类型的模具组合,适用于多种工件的生产,如汽车模具、家电模具等。
四、按材料分类1.金属模具:制造模具主体材料为金属,如铝合金、钢材等。
金属模具具有高强度、耐磨、耐腐蚀等优点。
2.非金属模具:制造模具主体材料为非金属材料,如陶瓷、塑料等。
非金属模具具有重量轻、耐温高等特点。
五、按形状分类1.平面模具:用于制造平面零件,如零件盖板等。
2.空心模具:用于制造中空零件,如管道、容器等。
3.弯曲模具:用于制造弯曲形状的零件,如曲轴等。
4.复杂模具:用于制造复杂形状的零件,如汽车车身等。
六、按制造精度分类1.普通模具:制造精度要求较低的模具,适用于一般工业产品的制造。
工艺制造体系二级分类

工艺制造体系二级分类一、概述工艺制造体系是指在特定工艺条件下,通过一定的生产流程和技术手段,将原材料转化为成品的过程。
其目的是为了提高生产效率、降低成本、提高产品质量和增加附加值。
本文将从二级分类层面介绍工艺制造体系的相关内容。
二、机械制造1.铸造工艺铸造工艺是通过熔化金属或合金,在模具中进行浇注,使其凝固成型的一种工艺。
其主要分为砂型铸造、压力铸造、精密铸造等多个子类别。
2.锻造工艺锻造工艺是通过对金属材料进行加热,并在模具中施加压力,使其发生塑性变形,从而获得所需形状和尺寸的一种工艺。
其主要分为自由锻造、模锻等多个子类别。
3.剪切冲压工艺剪切冲压是通过将金属板材放置于冲床上,并利用冲床上的模具对其进行切割、冲孔等操作,从而获得所需形状和尺寸的一种工艺。
其主要分为冲压、剪切、弯曲等多个子类别。
三、电子制造1.印制电路板工艺印制电路板工艺是通过将导电材料印刷到基板上,并在其表面进行化学腐蚀和电镀等操作,从而形成所需的线路和元器件安装位置的一种工艺。
其主要分为单面板、双面板、多层板等多个子类别。
2.表面贴装工艺表面贴装工艺是通过将元器件直接贴在PCB表面,并利用焊接技术进行连接,从而实现电路功能的一种工艺。
其主要分为手工贴片、自动化贴片等多个子类别。
3.封装测试工艺封装测试工艺是通过将芯片封装成模块,并进行功能测试和可靠性测试,从而保证产品品质的一种工艺。
其主要分为晶圆封装、模块封装等多个子类别。
四、化学制造1.化学反应合成工艺化学反应合成工艺是通过在特定条件下,将原材料进行化学反应,从而得到所需产物的一种工艺。
其主要分为有机合成、无机合成等多个子类别。
2.表面处理工艺表面处理工艺是通过在材料表面进行化学处理,从而改变其表面性质和外观的一种工艺。
其主要分为电镀、喷涂、氧化等多个子类别。
3.高分子材料制造工艺高分子材料制造工艺是通过将单体进行聚合反应,从而得到所需的高分子材料的一种工艺。
其主要分为聚合、共聚等多个子类别。
铸造知识(全)

第一章铸造工艺基础§1 液态合金的充型充型: 液态合金填充铸型的过程.充型能力: 液态合金充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力充型能力不足:易产生: 浇不足: 不能得到完整的零件.冷隔:没完整融合缝隙或凹坑, 机械性能下降.一合金的流动性液态金属本身的流动性----合金流动性1 流动性对铸件质量影响1) 流动性好,易于浇出轮廓清晰,薄而复杂的铸件.2) 流动性好,有利于液态金属中的非金属夹杂物和气体上浮,排除.3) 流动性好,易于对液态金属在凝固中产生的收缩进行补缩.2 测定流动性的方法:以螺旋形试件的长度来测定: 如灰口铁:浇铸温度1300℃试件长1800mm.铸钢: 1600℃100mm3 影响流动性的因素主要是化学成分:1) 纯金属流动性好:一定温度下结晶,凝固层表面平滑,对液流阻力小2) 共晶成分流动性好:恒温凝固,固体层表面光滑,且熔点低,过热度大.3) 非共晶成分流动性差: 结晶在一定温度范围内进行,初生数枝状晶阻碍液流二浇注条件1 浇注温度: t↑合金粘度下降,过热度高. 合金在铸件中保持流动的时间长,∴t↑提高充型能力. 但过高,易产生缩孔,粘砂,气孔等,故不宜过高2 充型压力: 液态合金在流动方向上所受的压力↑充型能力↑如砂形铸造---直浇道,静压力. 压力铸造,离心铸造等充型压力高.三铸型条件1 铸型结构: 若不合理,如壁厚小, 直浇口低, 浇口小等充↓2 铸型导热能力: 导热↑金属降温快,充↓如金属型3 铸型温度: t↑充↑如金属型预热4 铸型中气体: 排气能力↑充↑减少气体来源,提高透气性, 少量气体在铸型与金属液之间形成一层气膜,减少流动阻力,有利于充型.§2 铸件的凝固和收缩铸件的凝固过程如果没有合理的控制,铸件易产生缩孔,缩松一铸件的凝固1 凝固方式:铸件凝固过程中,其断面上一般分为三个区: 1—固相区2—凝固区3—液相区对凝固区影响较大的是凝固区的宽窄,依此划分凝固方式.1) 逐层凝固:纯金属,共晶成分合金在凝固过程中没有凝固区,断面液,固两相由一条界限清楚分开,随温度下降,固相层不断增加,液相层不断减少,直达中心.2) 糊状凝固合金结晶温度范围很宽,在凝固某段时间内,铸件表面不存在固体层,凝固区贯穿整个断面,先糊状,后固化.3) 中间凝固大多数合金的凝固介于逐层凝固和糊状凝固之间.2 影响铸件凝固方式的因素1) 合金的结晶温度范围范围小: 凝固区窄,愈倾向于逐层凝固如: 砂型铸造, 低碳钢逐层凝固, 高碳钢糊状凝固2) 铸件的温度梯度合金结晶温度范围一定时,凝固区宽度取决于铸件内外层的温度梯度.温度梯度愈小,凝固区愈宽.(内外温差大,冷却快,凝固区窄)二合金的收缩液态合金从浇注温度至凝固冷却到室温的过程中,体积和尺寸减少的现象---.是铸件许多缺陷(缩孔,缩松,裂纹,变形,残余应力)产生的基本原因.1 收缩的几个阶段1) 液态收缩: 从金属液浇入铸型到开始凝固之前. 液态收缩减少的体积与浇注温度质开始凝固的温度的温差成正比.2) 凝固收缩: 从凝固开始到凝固完毕. 同一类合金,凝固温度范围大者,凝固体积收缩率大.如: 35钢,体积收缩率3.0%, 45钢 4.3%3) 固态收缩: 凝固以后到常温. 固态收缩影响铸件尺寸,故用线收缩表示.2 影响收缩的因素1) 化学成分: 铸铁中促进石墨形成的元素增加,收缩减少. 如: 灰口铁C, Si↑,收↓,S↑收↑.因石墨比容大,体积膨胀,抵销部分凝固收缩.2) 浇注温度: 温度↑液态收缩↑3) 铸件结构与铸型条件铸件在铸型中收缩会受铸型和型芯的阻碍.实际收缩小于自由收缩.∴铸型要有好的退让性.3 缩孔形成在铸件最后凝固的地方出现一些空洞,集中—缩孔. 纯金属,共晶成分易产生缩孔*产生缩孔的基本原因: 铸件在凝固冷却期间,金属的液态及凝固受缩之和远远大于固态收缩.4 影响缩孔容积的因素(补充)1) 液态收缩,凝固收缩↑缩孔容积↑2) 凝固期间,固态收缩↑,缩孔容积↓3) 浇注速度↓缩孔容积↓4) 浇注速度↑液态收缩↑易产生缩孔5 缩松的形成由于铸件最后凝固区域的收缩未能得到补足,或者,因合金呈糊状凝固,被树枝状晶体分隔开的小液体区难以得到补缩所至.1) 宏观缩松肉眼可见,往往出现在缩孔附近,或铸件截面的中心.非共晶成分,结晶范围愈宽,愈易形成缩松.2) 微观缩松凝固过程中,晶粒之间形成微小孔洞---凝固区,先形成的枝晶把金属液分割成许多微小孤立部分,冷凝时收缩,形成晶间微小孔洞. 凝固区愈宽,愈易形成微观缩松,对铸件危害不大,故不列为缺陷,但对气密性,机械性能等要求较高的铸件,则必须设法减少.(先凝固的收缩比后凝固的小,因后凝固的有液,凝,固三个收缩,先凝固的有凝,固二个收缩区----这也是形成微观缩松的基本原因.与缩孔形成基本原因类似)6 缩孔,缩松的防止办法基本原则: 制定合理工艺—补缩, 缩松转化成缩孔.顺序凝固: 冒口—补缩同时凝固: 冷铁—厚处. 减小热应力,但心部缩松,故用于收缩小的合金.l 安置冒口,实行顺序凝固,可有效的防止缩孔,但冒口浪费金属,浪费工时,是铸件成本增加.而且,铸件内应力加大,易于产生变形和裂纹.∴主要用于凝固收缩大,结晶间隔小的合金.l 非共晶成分合金,先结晶树枝晶,阻碍金属流动,冒口作用甚小.l 对于结晶温度范围甚宽的合金,由于倾向于糊状凝固,结晶开始之后,发达的树枝状骨状布满整个截面,使冒口补缩道路受阻,因而难避免显微缩松的产生.显然,选用近共晶成分和结晶范围较窄的合金生产铸件是适宜的.§3 铸造内应力,变形和裂纹凝固之后的继续冷却过程中,其固态收缩若受到阻碍,铸件内部就发生内应力,内应力是铸件产生变形和裂纹的基本原因.(有时相变膨胀受阻,负收缩)一内应力形成1 热应力: 铸件厚度不均,冷速不同,收缩不一致产生.塑性状态: 金属在高于再结晶温度以上的固态冷却阶段,受力变形,产生加工硬化,同时发生的再结晶降硬化抵消,内应力自行消失.(简单说,处于屈服状态,受力—变形无应力)弹性状态: 低于再结晶温度,外力作用下,金属发生弹性变形,变形后应力继续存在.举例: a) 凝固开始,粗细处都为塑性状态,无内应力∵两杆冷速不同,细杆快,收缩大,∵受粗杆限制,不能自由收缩,相对被拉长,粗杆相对被压缩,结果两杆等量收缩.b) 细杆冷速大,先进如弹性阶段,而粗杆仍为塑性阶段,随细杆收缩发生塑性收缩,无应力.c) 细杆收缩先停止,粗杆继续收缩,压迫细杆,而细杆又阻止粗杆的收缩,至室温, 粗杆受拉应力(+),(-) 由此可见,各部分的温差越大,热应力也越大,冷却较慢的部分形成拉应力,冷却较快的部分形成压应力.预防方法: 1 壁厚均匀2 同时凝固—薄处设浇口,厚处放冷铁优点: 省冒口,省工,省料缺点: 心部易出现缩孔或缩松,应用于灰铁锡青铜,因灰铁缩孔、缩松倾向小,锡青铜糊状凝固,用顺序凝固也难以有效地消除其显微缩松。
AnyCasting总体介绍

概率模数预测缩孔尺寸 基于数据库中的合金属性
循环铸造
设置工艺参数: 第几个循环 , 计算类型, 开模, 取件时间, 模具闭合等 设置冷却管道 & 喷射冷却条件
有效收缩模型
外部收缩:重力收缩模式 内部收缩 & 缩孔: Niyama(G/R1/2), 有效补缩判据(G/V), 剩余熔体模数判据 冒口模数的设计计算
冷却 & 加热管道
设置介质,开关时间,流量,温度等 高级模块自动设定热传导系数 真实条件设定:高压铸造/低压铸造/金属型铸造
压射头 & 局部挤压模块
压室充填, 压射头运动 & 整个模具分析 局部挤压改变缩孔尺寸
▶ 模具冷却水路分析
anyPOST AnyCasting的最后一步
完全三维图形系统
基于Open GL, 多文档界面(MDI) 任意方向,任意截面,任意拖动 加速技术:图形和文件存取
微观结构预测
晶粒尺寸,二次枝晶间距等 抗拉强度, 屈服强度, 硬度, 延伸率估算
把您的经验存储在您自己的数据库 里面!!!
材料数据库
黑色金属: KS JIS ASTM AISI DIN BS ANFOR UNI SIS 铸钢,铸铁,铬/镍基
有色金属: KS AA ASTM JIS UNS SAE ISO DIN 铝,镁,铜,锌等
装配操作
合并, 替代 & 删除组件 分类 流道,浇口, 铸件, 渣包等
快速网格生成算法
表面矢量跟踪法 分割多边形正交矢量算法 网格生成速度大于106 网格每秒
▶ 指定网格&任一方向上自动过渡
高质量视图 & 分析
任意拖动截面 快速比较几何模型和产生的网格 精确的测量(长度,体积等) 强大的任意角度截面视图
铸铁的基本类别、特征及控制要点

三、铸铁的基本特征
四、铸铁(灰、球、蠕)的控制要点
1)化学成分的控制要点 2)孕育处理的控制要点 3)球化处理的控制要点 4)蠕化处理的控制要点
四、铸铁的控制要点
2)孕育处理的控制
➢ 什么是孕育处理: 孕育处理就是在铁液进入铸件型腔前,把称为孕育剂 的附加物加入到铁液中以改变铁液的冶金状态;从而改 善铸铁的结晶特征、显微组织和性能,而这些性能的改 善产不能用由于加入孕育剂后铁液化学成分的变化来解 释。 ➢ 孕育处理的目的: 促进石墨化,减小白口倾向,改善断面均匀性,减少 过冷石墨,细化组织改善力学性能
四、铸铁的控制要点
1-1)灰铸铁化学成分的控制
a、常规5大元素的作用
➢碳和硅:碳是形成石墨的元素,也是促进石墨化的元素。碳含量 越高,析出的石墨就越多。越粗大,但这种可能性还取决于硅的 含量 ,其实就是看碳当量。硅也是强烈促进石墨化的元素。当CE =4.3%时,为共晶铸铁 CE值高,组织中石墨粗大,强度降低,缩松倾向减小 CE值低,组织中石墨变细,强度增加,缩松倾向增大,铸造性 能下降,硬度增大不易加工 在不改变CE值的前提下提高Si/C比,可提高铸件强度(在低CE 时成立,CE较高则不成立),高Si可增强铸件高温时的耐氧化性
白口铸铁 铸铁
(按C存在的形式 分)
我司主要铸件 材质类型
灰口铸铁
麻口铸铁
二、铸铁的分类
2)铸铁的分类
石墨的存在形式及状态对铸铁性能有重要影响。因此,重点对 第二种分类进行分析: ➢ 白口铸铁 概念:所含碳除极少量溶于铁素体 外,全部以渗碳体形式存在,断 口呈银白色,故而称为白口铸 铁。
铸造基础知识(第1节何为铸造)

中国古代三大铸造技术
• 泥范铸造
• 失蜡铸造 • 金属型铸造
古青铜器主要制作法
青铜器的铸造,主要采用泥范铸造和失蜡铸造。 中国的青铜器铸造以泥范为主,并在近代兴起砂型 铸造之前的三千多年时间内,泥范分范合铸一直是 最主要的铸造成形方法,春秋中期以前几乎是唯一 的方法。这和美索不达米亚、埃及等地以失蜡铸造 为主的情况截然不问,是中国独有的技术道路。
司 母 戊 鼎
毛公鼎
(迄今为止铭文最长的青铜器) 毛公鼎是台北故宫的镇馆之 宝,高53.8厘米,口径 47.9 厘 米,是西周青铜器中赫赫有名 的重器之一,作于西周晚期的 宣王时期。
内壁铸有多达498字的长篇铭文。 其内容是周王为中兴周室,革 除积弊,策命重臣毛公,要他 忠心辅佐周王,以免遭丧国之 祸,并赐给他大量物品,毛公 为感谢周王,特铸鼎记其事。 其书法是成熟的西周金文风格, 结构匀称准确,线条遒劲稳健, 布局妥贴,充满了理性色彩, 显示出金文已发展到极其成熟 的境地。
青铜器—鼎
史鼎
杜岭方鼎
商代早期
商代晚期(公元前13世纪-前11世纪)
你知道哪些有 “鼎”的词语? 人声鼎沸、一言九鼎 …… 你知道什么是 “鼎”吗?
大克鼎,铸造于西周孝王 (公元前10世纪末)时期, 清光绪中期在陕西扶风法 门寺任村出土
三国鼎立、大名鼎鼎、
青铜铸鼎
“鼎”是古代贵族烹饪祭祀 用的器具,一般为圆形,多为 三足两耳,也有四足两耳。西 周时,以所用鼎的大小及多少 代表贵族的身份等级。《公羊 传》何休注云:“天子九鼎, 诸侯七,大夫五,元士三。”
泥范铸造的基本流程
泥料选取与加工 制 铸 型 塑制模样 翻制范、芯 铸型组合 熔 炼 筑炉及选料 配料及熔炼 浇 注 ( 浑 铸 或 分 铸 )
特种铸造的分类依据

特种铸造的分类依据一、材料分类特种铸造根据铸件的材料可以分为铁、钢、铝合金、铜合金等不同类别。
不同材料具有不同的物理和化学性质,因此在铸造过程中需要采用不同的工艺和设备。
铁的铸造工艺比较成熟,应用广泛;钢的铸造需要更高的温度和压力,工艺要求较高;铝合金和铜合金的铸造具有良好的流动性和耐腐蚀性,常用于制造航空航天和汽车等高要求的零件。
二、工艺分类特种铸造根据铸造工艺的不同可以分为砂型铸造、金属型铸造、压铸等几个主要类别。
砂型铸造是最常见的铸造方法,它利用砂模来制造铸件的空腔。
金属型铸造是通过制造金属型来制造铸件,可以获得更高的精度和表面质量。
压铸是利用金属型的压力将熔融金属注入型腔中,适用于生产大批量、高精度的铸件。
三、形状分类特种铸造根据铸件的形状可以分为块铸件、管件、盘件、环件等不同类别。
块铸件是最常见的铸件形状,常用于制造机械零件和工程结构件。
管件是具有空心结构的铸件,常用于制造管道和容器等。
盘件是具有平面或弯曲结构的铸件,常用于制造齿轮和飞轮等。
环件是具有环形结构的铸件,常用于制造轴承和密封件等。
四、用途分类特种铸造根据铸件的用途可以分为汽车零件、航空航天零件、机械零件、建筑结构件等不同类别。
汽车零件是特种铸造的主要应用领域之一,包括发动机缸体、曲轴箱等。
航空航天零件需要具有轻量化和高强度的特点,常用于制造发动机叶片和飞机结构件等。
机械零件是特种铸造的传统应用领域,包括各种轴承、齿轮和连接件等。
建筑结构件是近年来特种铸造的新兴应用领域,包括桥梁支座和建筑构件等。
总结起来,特种铸造是根据材料、工艺、形状和用途等不同的分类依据对铸件进行分类的方法。
不同的分类具有不同的特点和应用,可以满足各种不同行业的需求。
特种铸造在现代工业中起着重要的作用,为各行各业提供了高质量的铸件产品。
随着科技的不断进步,特种铸造技术也在不断发展,将为更多领域的发展提供支持和保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铸造方法的类别
铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。
铸造毛胚因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代机械制造工业的基础工艺之一。
铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。
②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。
铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。
铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。
铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。
金属熔炼不仅仅是单纯的熔化,还包括冶炼过程,使浇进铸型的金属,在温度、化学成分和纯净度方面都符合预期要求。
为此,在熔炼过程中要进行以控制质量为目的的各种检查测试,液态金属在达到各项规定指标后方能允许浇注。
有时,为了达到更高要求,金属液在出炉后还要经炉外处理,如脱硫、真空脱气、炉外精炼、孕育或变质处理等。
熔炼金属常用的设备有冲天炉、电弧炉、感应炉、电阻炉、反射炉等。
不同的铸造方法有不同的铸型准备内容。
以应用最广泛的砂型铸造为例,铸型准备包括造型材料准备和造型造芯两大项工作。
砂型铸造中用来造型造芯的各种原材料,如铸造砂、型砂粘结剂和其他辅料,以及由它们配制成的型砂、芯砂、涂料等统称为造型材料造型材料准备的任务是按照铸件的要求、金属的性质,选择合适的原砂、粘结剂和辅料,然后按一定的比例把它们混合成具有一定性能的型砂和芯砂。
常用的混砂设备有碾轮式混砂机、逆流式混砂机和叶片沟槽式混砂机。
后者是专为混合化学自硬砂设计的,连续混合,速度快。
造型造芯是根据铸造工艺要求,在确定好造型方法,准备好造型材料的基础上进行的。
铸件的精度和全部生产过程的经济效果,主要取决于这道工序。
在很多现代化的铸造车间里,造型造芯都实现了机械化或自动化。
常用的砂型造型造芯设备有高、中、低压造型机、抛砂机、无箱射压造型机、射芯机、冷和热芯盒机等。
铸件自浇注冷却的铸型中取出后,有浇口、冒口及金属毛刺披缝,砂型铸造的铸件还粘附着砂子,因此必须经过清理工序。
进行这种工作的设备有抛丸机、浇口冒口切割机等。
砂型铸件落砂清理是劳动条件较差的一道工序,所以在选择造型方法时,应尽量考虑到为落砂清理创造方便条件。
有些铸件因特殊要求,还要经铸件后处理,如热处理、整形、防锈处理、粗加工等。
铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。
如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。
有些难以切削的零件,如燃汽轮机的镍基合金零件不用铸造方法无法成形。
另外,铸造的零件尺寸和重量的适应范围很宽,金属种类几乎不受限制;零件在具有一般机械性能的同时,还具有耐磨、耐腐蚀、吸震等综合性能,是其他金属成形方法如锻、轧、焊、
冲等所做不到的。
因此在机器制造业中用铸造方法生产的毛坯零件,在数量和吨位上迄今仍是最多的。
铸造生产经常要用的材料有各种金属、焦炭、木材、塑料、气体和液体燃料、造型材料等。
所需设备有冶炼金属用的各种炉子,有混砂用的各种混砂机,有造型造芯用的各种造型机、造芯机,有清理铸件用的落砂机、抛丸机等。
还有供特种铸造用的机器和设备以及许多运输和物料处理的设备。
铸造生产有与其他工艺不同的特点,主要是适应性广、需用材料和设备多、污染环境。
铸造生产会产生粉尘、有害气体和噪声对环境的污染,比起其他机械制造工艺来更为严重,需要采取措施进行控制。
铸造产品发展的趋势是要求铸件有更好的综合性能,更高的精度,更少的余量和更光洁的表面。
此外,节能的要求和社会对恢复自然环境的呼声也越来越高。
为适应这些要求,新的铸造合金将得到开发,冶炼新工艺和新设备将相应出现。
铸造生产的机械化自动化程度在不断提高的同时,将更多地向柔性生产方面发展,以扩大对不同批量和多品种生产的适应性。
节约能源和原材料的新技术将会得到优先发展,少产生或不产生污染的新工艺新设备将首先受到重视。
质量控制技术在各道工序的检测和无损探伤、应力测定方面,将有新的发展。