控制轧制与控制冷却要点

合集下载

控制轧制与控制冷却培训

控制轧制与控制冷却培训

控制轧制与控制冷却培训一、轧制的基本原理和过程1. 轧制的概念和分类:介绍了轧制的定义和轧制根据加工方式和加工精度的不同可以分为粗轧和精轧。

2. 轧制的基本原理:介绍了轧制的原理,包括材料变形、变形力和摩擦力。

3. 操作技巧和注意事项:介绍了轧机的操作技巧和相关的注意事项,包括轧机的启动、停止和维护等内容。

二、控制轧制的关键参数1. 温度控制:介绍了轧制过程中温度的控制方法和关键参数。

2. 轧制力和轧制速度:介绍了轧制过程中轧辊的力和速度的控制方法和关键参数。

3. 压下量:介绍了轧制过程中的压下量的控制方法和关键参数。

三、冷却的基本原理和过程1. 冷却的概念和分类:介绍了冷却的定义和冷却方式的分类。

2. 冷却的基本原理:介绍了冷却的原理,包括热量传递和温度控制。

3. 操作技巧和注意事项:介绍了冷却设备的操作技巧和相关的注意事项,包括冷却水的供应和冷却温度的控制等内容。

四、控制冷却的关键参数1. 冷却水温度:介绍了冷却过程中冷却水温度的控制方法和关键参数。

2. 冷却水流量:介绍了冷却过程中冷却水流量的控制方法和关键参数。

3. 冷却时间:介绍了冷却过程中冷却时间的控制方法和关键参数。

五、轧制与冷却的协调控制1. 轧制和冷却的关联性:介绍了轧制和冷却之间的关联性,以及对产品性能和质量的影响。

2. 控制系统的应用:介绍了轧制和冷却中常用的控制系统,包括自动控制系统和人工控制系统等。

3. 故障处理和维护:介绍了轧制和冷却中常见的故障处理方法和设备维护技巧。

以上是本次控制轧制与控制冷却培训的主要内容概要,希望通过此次培训,能够提高操作工人对控制轧制与控制冷却的理解和技能,为公司的生产和产品质量提升贡献力量。

六、安全生产培训1. 轧制和冷却设备的安全操作规程:介绍了轧制和冷却设备的安全操作规程,包括设备启动、停止和紧急情况的处理等内容,以确保操作人员的安全。

2. 安全防护措施:介绍了轧制和冷却设备的安全防护措施,包括安全防护装置的使用和维护,以减少事故发生的可能性。

控制轧制及控制冷却技术在型钢生产中的应用

控制轧制及控制冷却技术在型钢生产中的应用

控制轧制及控制冷却技术在型钢生产中的应用一、引言型钢是一种重要的金属材料,在建筑、汽车制造、机械制造等领域具有广泛的应用。

为了提高型钢的质量和性能,控制轧制及控制冷却技术被广泛应用于型钢生产中。

这些技术通过精确控制轧制工艺参数和冷却过程,可以有效提高型钢的强度、塑性和表面质量,满足不同领域对型钢材料性能的需求。

二、控制轧制技术的应用1. 调整轧制温度和速度在型钢轧制中,通过调整轧制温度和轧制速度,可以控制晶粒的细化和晶格的取向,从而提高型钢的强度和塑性。

尤其是在热轧过程中,通过精确控制轧制温度和速度,可以有效控制晶粒生长,减少析出相的尺寸,使得型钢的晶粒细化,提高强度和硬度。

2. 控制轧制力和变形量通过精确控制轧制力和变形量,可以有效调整型钢的组织结构和力学性能。

在轧制过程中,通过监测轧辊力和变形量,可以实现对型钢的细微调整,达到提高型钢性能的目的。

在轧制高强度型钢时,通过增加轧制力和变形量,可以有效提高型钢的强度和硬度。

3. 控制轧制辊形状通过选择合适的轧辊形状,可以实现更加精确的型钢轧制。

不同形状的轧辊对型钢的变形和组织结构有着不同的影响,因此通过调整轧辊的形状,可以实现对型钢结构和性能的精细控制。

三、控制冷却技术的应用1. 控制冷却速度在型钢生产中,通过控制冷却速度,可以实现对型钢组织和性能的调整。

在快速冷却条件下,型钢的组织结构更加均匀,晶粒更加细小,从而提高了型钢的强度和韧性。

在慢速冷却条件下,型钢的组织结构更加致密,表面质量更好,适用于高表面质量要求的场合。

2. 控制冷却介质不同的冷却介质对型钢的冷却效果和组织结构有着不同的影响。

通过选择合适的冷却介质,可以实现对型钢组织和性能的精细调控。

对于高强度型钢,可以采用高效的水冷或气体冷却,快速降温,实现对型钢强度和硬度的提高。

3. 控制冷却方式在型钢生产中,采用不同的冷却方式,可以实现对型钢的细微调整。

采用直接水冷或间接水冷,可以分别实现快速和慢速的冷却效果,从而满足不同型钢的冷却需求。

钢材控制轧制和控制冷却技术

钢材控制轧制和控制冷却技术
④、总变形量和道次变形量要大。 总变形量和道次变形量要大。 1)总变形量应 ) ,可得F体晶粒 ( ~ 级 >45%,可得 体晶粒 < 5µm 12~13级)
2)一道次压下率越大,越易产生变形带,越易获得均匀组织。 )一道次压下率越大,越易产生变形带,越易获得均匀组织。 体晶粒尺寸( ) ⑤、未再结晶区材料强度由固溶强化( σ sh)和F体晶粒尺寸(d) 未再结晶区材料强度由固溶强化( 体晶粒尺寸 等决定。 等决定。
§2控轧控冷理论
3、变形条件对A 变形条件对A
→ P转变的影响
r1的影响
变形使P体转变加速,从而使钢的淬透性变坏。 (1)、变形使P体转变加速,从而使钢的淬透性变坏。 (2)、变形对A 变形对A
§2控轧控冷理论
4、铁素体的变形与再结晶 (1)F体热加工中的组织变化 ①、F体热加工应力—应变曲线 体热加工应力 应变曲线 ②、F体热加工软化方式 ③、亚晶尺寸d 亚晶尺寸d (2)F体在变形间隙时的组织变化 ①、F体发生静态回复和再结晶软化 1)静态再结晶有条件的: > ε s 静态再结晶有条件的: ε 为临界值) (ε s为临界值) 2)影响静态再结晶的因素 ②、F体再结晶晶粒大小
§2控轧控冷理论
(2)位错强化 加工硬化是位错强化的外部表现 (3)沉淀强化 低合金钢中加入微量Nb、 低合金钢中加入微量Nb、V、Ti等元素,可形成碳化物、氮化物或碳氮化 Nb Ti等元素,可形成碳化物、 等元素 物,在轧制时或轧后冷却时,它仍析出 在轧制时或轧后冷却时,它仍析出——第二相沉淀强化 第二相沉淀强化 (4)晶界强化 晶粒越细小,晶界相对越多,晶界对为错的运动的阻力越大。 晶粒越细小,晶界相对越多,晶界对为错的运动的阻力越大。 1 霍尔—佩奇公式: 霍尔 佩奇公式: σ s = σi + Ki D 佩奇公式

控轧控冷工艺基本原理

控轧控冷工艺基本原理

控轧控冷工艺基本原理控轧控冷工艺是一种通过控制轧制和冷却条件来调控钢材的组织和性能的加工工艺。

其基本原理是通过控制轧制温度、变形程度和冷却速度等参数,实现对钢材组织和性能的调控。

1. 控轧工艺原理控轧是指在钢材的轧制过程中,通过调整轧制温度和变形程度等参数,控制其组织和性能的加工工艺。

控轧工艺的基本原理是通过控制轧制温度和变形程度,调整钢材的晶粒度、相组成和形貌等因素,从而实现对钢材性能的调控。

在控轧过程中,调整轧制温度可以影响钢材的晶粒度和相组成。

通过控制轧制温度的高低,可以实现晶粒细化或粗化,进而影响钢材的力学性能和韧性。

同时,调整轧制温度还可以改变钢材中的相组成,如奥氏体、铁素体和贝氏体等的含量和分布,从而调节钢材的强度、硬度和耐腐蚀性能。

控轧过程中的变形程度也对钢材的组织和性能产生重要影响。

通过控制变形程度,可以实现钢材的晶粒细化、相变和组织调控。

在轧制过程中,钢材受到外力的变形,晶粒会发生形变和细化,从而提高钢材的强度和韧性。

同时,变形程度还可以引起钢材中的相变,如奥氏体向铁素体的相变,进一步改善钢材的性能。

2. 控冷工艺原理控冷是指在钢材的冷却过程中,通过调整冷却速度和冷却方式等参数,控制其组织和性能的加工工艺。

控冷工艺的基本原理是通过控制冷却速度,调整钢材的组织和性能。

在控冷过程中,调整冷却速度可以影响钢材的相组成和组织形貌。

通过控制冷却速度的快慢,可以实现钢材中相的相变和组织的调控。

当冷却速度较快时,钢材中的相变会受到限制,从而形成细小的相和均匀的组织。

相反,当冷却速度较慢时,钢材中的相变会较为充分,形成较大的相和不均匀的组织。

不同的冷却速度会影响钢材的强度、硬度和韧性等性能。

控冷过程中的冷却方式也会对钢材的组织和性能产生影响。

不同的冷却方式,如空冷、水冷、油冷等,具有不同的冷却速度和冷却效果。

通过选择合适的冷却方式,可以实现钢材组织的定向调控,从而达到钢材性能的要求。

3. 控轧控冷工艺的应用控轧控冷工艺广泛应用于钢材的生产和加工过程中。

控轧控冷1

控轧控冷1
LK L0 100%
L0
拉伸性能
❖ 断面收缩率ψ: ❖ 断面收缩率ψ是评定材料塑性的主要指标。
AK A0 100%
A0
低碳钢的工程应力一工程应变曲线
true strain-stress line
2.0
Stress / MPa
1.5
Pm
Pb
1.0
0.5
0.0
0.0
0.5
1.0
1.5
2.0
载荷P压入被测材料表面,保持一定时间后卸除载荷,测出压 痕直径d,求出压痕面积F计算出平均应力值,以此为布氏硬度 值的计量指标,并用符号HB表示。
标注:D/P/T如120HB/10/3000/10,即表示此硬度值120 在D=10mm,P=3000kgf,T=10秒的条件下得到的。
简单标注:200~230HB
布氏硬度测定主要适用于各种未经淬火的钢、退火、
正火状态的钢;结构钢调质件;铸铁、有色金属、质地 轻软的轴承合金等原材料。
布氏硬度试验只可用来测定小于450HB的金属材料,
②洛氏硬度(HR)
基本原理—洛氏硬度属压入法洛氏硬度测定时需 要先后施加二次载荷(予载荷P1和主载荷P2)预 加载荷的目的是使压头与试样表面接触良好以保 证测量结果准确。洛氏硬度就是以主载荷引起的
对微量塑性变形的抗力
E /e
拉伸性能
❖ 抗拉强度b: ❖ 定义为试件断裂前所能承受的最大工程应力,
以前称为强度极限。取拉伸图上的最大载荷,即 对应于b点的载荷除以试件的原始截面积,即得抗 拉强度之值,记σ为b=b Pmax/A0
拉伸性能
延伸率: 材料的塑性常用延伸率表示。测定方法如下:拉伸
试验前测定试件的标距L0,拉伸断裂后测得标距为Lk, 然而按下式算出延伸率

控制轧制和控制冷却工艺讲义

控制轧制和控制冷却工艺讲义

控制轧制和控制冷却工艺讲义控制轧制和冷却工艺讲义一、轧制工艺控制1. 轧制温度控制a. 在热轧过程中,轧机和钢坯之间的接触摩擦会产生高温,因此需要控制轧机温度,避免过热。

b. 实时监测轧机温度,根据温度变化调整轧制速度和冷却水量,确保温度适中。

c. 使用专用液体和冷却器进行在线冷却,防止轧机过热引起事故。

2. 轧制力控制a. 测量轧机产生的轧制力,确保轧机施加的压力适中。

b. 监控轧制力的变化,根据钢坯的变形情况调整轧制力,使钢坯的形状和尺寸满足要求。

c. 根据轧制力的大小调整轧制速度,保持稳定的轧制负荷。

3. 轧制速度控制a. 根据不同钢材的特性和规格,调整轧制速度,确保成品钢材的质量和尺寸满足要求。

b. 控制轧制速度的稳定性,避免过快或过慢的轧制速度导致钢材质量不达标。

4. 轧辊调整控制a. 定期检查和调整轧辊的位置和间距,确保钢坯能够顺利通过轧机,避免产生不均匀的轧制力和过度变形。

b. 根据车间实际情况和轧制工艺要求,调整轧辊的工作方式和参数,使轧制过程更加稳定和高效。

二、冷却工艺控制1. 冷却水量控制a. 根据钢材的材质和规格,调整冷却水的流量和压力,确保钢材迅速冷却到所需温度。

b. 监测冷却水流量和温度,根据实时数据调整冷却水量,确保冷却效果和成品钢材的质量。

2. 冷却速度控制a. 根据不同的冷却工艺要求,调整冷却速度,使钢材的组织和性能满足要求。

b. 监控冷却速度的变化,根据实时数据调整冷却速度,确保成品钢材的质量和性能稳定。

3. 冷却方法控制a. 根据钢材的特性和要求,选择合适的冷却方法,如水冷、风冷等。

b. 根据不同冷却方法的特点和效果,调整冷却工艺参数,使冷却效果和成品钢材的质量最优化。

4. 冷却设备维护a. 定期检查和维护冷却设备,确保设备的正常运行和效果良好。

b. 清洗和更换冷却设备中的阻塞、损坏部件,保证冷却水的流量和质量。

以上是对控制轧制和控制冷却工艺的讲义,通过合理的工艺控制和设备维护,能够提高轧制和冷却过程的效率和质量,满足钢材的要求。

控轧控冷

控轧控冷

六十年代初:英国斯温顿研究所提出,铁素体珠光体钢中显 微组织与性能之间的定量关系。
著名的Petch关系式明确表明了热轧时晶粒细
化的重要性。
六十年代中期:英国钢铁研究会进行了一系列
研究:降碳改善塑性和焊接性能,利用Nb、V 获得高强度,Nb对奥氏体再结晶的抑制作用以 及细化奥氏体晶粒的各种途径。
六十年代后期:美国采用控制轧制工艺生产出σs> 422MPa的含Nb钢板,用来制造大口径输油钢管。日 本用控制轧制工艺生产出强度高,低温韧性好的钢板, 并开发出一系列新的控制轧制工艺,提出了相应的控 制轧制理论。这期间人们重视奥氏体再结晶行为的研 究,开始认识到未再结晶区轧制的重要性。 七十年代:完成了控轧三阶段,Nb、V、Ti应用逐步 完善。
1.再结晶热轧
2.板材加速冷却
水——钢的最有效的合金化添加剂
1. 控轧工艺分哪几类?控轧实践中最常用的
是哪种工艺?分别画出示意图。 2.Ⅰ型控轧与Ⅱ型控轧相比,哪种工艺轧材 的性能更好些?为什么?
3.如何理解“水是最有效的合金化添加剂”这
句话.
4. 对结构钢的要求有哪些要素?
2.钢的热加工金属学基础
工程应力 ζ=P/A0
工程应变 ε=(l-l0)/l0
A’: 比例极限
A:弹性极限
B:屈服强度
C:抗拉强度
7
6
7 8
真应变:e=lnl/l0
ε=(l-l0)/l0=l/l0-1
l/l0 =ε+1
e= lnl/l0= ln (ε+1)
从上式看出: ε较小时, e≈ ε,随ε↑,其
差别显著 e<ε
Nb钢的晶粒比Si-Mn钢要细,见图2--34.
3.初始晶粒直径
r0↓,再结晶晶粒也越小

控轧控冷1

控轧控冷1

• 变形带也是提供相变时的形核地点,因而相变后的铁素体晶粒更 加细小均匀。
• 5 .4在(y+a)两相区的控轧 • Y相由于变形而继续伸长并在晶内形成变形带,在a晶粒内形成 大量的位错,在高温下形戎亚晶,因而强度有所提高,脆性转变 温度降低。(r+a)相轧后形成较强的织构,故在断口上平行于轧制 面出现层状撕裂裂口。
5控轧和控冷工艺在中厚板和带钢生 产中的应用
• 5. 1板钢控轧类型 • 根据轧制过程中再结晶状态和相变机制不同可分为:奥氏体再结 晶型控轧、奥氏体未再结晶型控轧、(r+a)两相区控轧。 • 5. 2再结晶型控轧 • 轧件变形温度较高,一般在功1000℃以上,道次变形量必须大于 奥氏体再结晶变形量。普碳钢的临界变形量比较小,而含铌钢的 临界变形量较大。轧后停留时间长则晶粒长大,形成粗大的奥氏 体晶粒。再结晶控轧主要是利用静态再结晶过程去细化晶粒。 • 5. 3未再结晶型控轧 • 主要是在轧制中不发生奥氏体再结晶过程。一般是在950 C ~Ar3范围内变化,变形使奥氏体晶粒长大、压扁并在晶粒中形成 变形带。奥氏体晶粒被拉长将阻碍铁素体晶粒长大。随着变形量 的加大,变形带的数量增加,分布更加均匀。

4控轧和控冷技术的理论基础
• 4.1钢的奥氏体化过程 • 所谓奥氏体化是指在加工前将钢加热到奥氏体区,是形核、长大 均匀化过程。对亚共析钢来说,加热到Ac,以上,进行保温、形 核、长大、剩余渗碳体(Fe3C)溶解和奥氏体均匀化。对于共析钢 和过共析钢来说,加热到Ac,以上,使珠光体变为奥氏体。进一 步加热到Acm以上,保温足够时间,使铁素体或渗碳体溶解,获 得单相奥氏体。 • 4.2钢的变形再结晶 • 变形后的金属加热发生再结晶,根据温度不同有回复、再结晶和 晶粒长大。回复仍为拉长的晶粒,但储存能降低,为前阶段。而 再结晶是新晶粒的形核及长大过程,不是相变,无畸变能。核心 的产生一是原晶界的某部位变为核心。

精选控制轧制和控制冷却工艺讲义

精选控制轧制和控制冷却工艺讲义
有助于控制轧制钢的显微组织细化和韧性改善。这种工艺可用于任何化学成分的钢。例如在改善低C中Mn-Nb-V,低Mo钢的韧性也获得成功。采用这种工艺,新日本钢铁公司已建立了北极用厚壁X70 级管线的大规模生产系统。
5.2.2现代化宽厚板厂控制轧制和控制冷却技术
近三十年以来 ,控制轧制和控制冷却技术在国外得到了迅速的发展 ,国外大多数宽厚板厂均采用控制轧制和控制冷却工艺 ,生产具有高强度、高韧性、良好焊接性的优质钢板。
获得细小铁素体晶粒的途径——三阶段控制轧制原理
奥氏体再结晶区域轧制 (≥ 950℃ )在奥氏体再结晶区域轧制时 ,轧件在轧机变形区内发生动态回复和不完全再结晶。在两道次之间的间隙时间内 ,完成静态回复和静态再结晶。加热后获得的奥氏体晶粒随着反复轧制——再结晶而逐渐变细。
图中第Ⅰ 阶段 ,由于轧件温度较高 ,奥氏体再结晶在短时间内完成且迅速长大 ,未见明显的晶粒细小。
不然,出于平整道次压下率确定不合适,引起晶粒严重不均,产生个别特大晶粒,造成混晶,导致性能下降。
道次变形分配
满足奥氏体再结晶区和未再结晶区临界变形量的要求,要考虑轧机设备能力及生产率的要求。压下量的分配一殷在奥氏体区采用大的道次变形量 ,以增加奥氏体的再结晶数量,细化晶粒。在未再结晶区在不发生部分再结晶的前提下,尽可能采用大的道次变形量,以增加形变带,为铁素体相变形核创造有利条件。在轧机能力比较小的条件下,采用在未再结晶区多道次、每道次小变形量并缩短中间停留时间的快轧控制方案,也取得较好的效果,而且不降低轧机产量。经验结论 在未再结晶区大于45—50%的总变形率有利于铁素休晶粒细化。
5.2板带钢控轧与控冷应用实例
5.2.1北极管线用针状铁素体钢
管线钢的发展历史
60年代末70年代初,美国石油组织在API 5LX和API 5LS标准中提出了微合金控轧钢X56、X60、X65三种钢 .这种钢突破了传统钢的观念,碳含量为0.1-0.14%,在钢中加入≤0.2%的Nb、V、Ti等合金元素,并通过控轧工艺使钢的力学性能得到显著改善。到1973年和1985年,API标准又相继增加了X70和X80钢,而后又开发了X100管线钢,碳含量降到0.01-0.04%,碳当量相应地降到0.35以下,真正出现了现代意义上的多元微合金化控轧控冷钢。

线材生产中的控制轧制和控制冷却技术

线材生产中的控制轧制和控制冷却技术

线材生产中的控制轧制和控制冷却技术线材是现代工业生产中使用频繁的一种材料,它广泛应用于电线电缆、机械制造、建筑材料等行业。

在线材生产过程中,控制轧制和控制冷却技术是关键的环节,它们直接影响着线材的质量、机械性能和用途范围。

一、控制轧制控制轧制是指通过改变轧制变形量、轧制温度、轧制速度、轧制力等因素,控制金属材料的形变和微观组织,达到调整线材力学性能、改善表面质量和优化产品用途的目的。

1、轧制变形量控制轧制变形量是指轧制前后的减压变化,它对线材的力学性能和表面质量有着直接影响。

为了保证线材的质量稳定和合格率,轧制变形量控制必须精准可靠,并考虑到批量变化和轧制型号的特定要求。

目前,国内外的轧制变形量控制采用电液伺服技术,通过实时监测轧制变形量变化,及时控制系统参数的变化,保证线材轧制变形量的稳定。

2、轧制温度控制轧制温度是指线材在轧制时的温度,它对线材的力学性能和表面质量有着重大影响。

过高或过低的温度会导致线材的晶粒过大或过小,从而影响线材的硬度、韧性和塑性等力学性能。

为了提高线材的机械性能和用途范围,轧制温度控制必须准确可靠,并考虑到金属材料的温度敏感性和轧制工艺的特定要求。

目前,国内外的轧制温度控制采用激光测温技术或红外线测温技术,通过实时监测线材温度变化,及时调整轧制温度,保证线材轧制温度的稳定。

3、轧制速度控制轧制速度是指线材在轧制过程中的速度,它对线材的表面质量和机械性能有着直接影响。

过高或过低的轧制速度会导致线材表面的纹路不均匀和线材的硬度、韧性等力学性能下降。

为了提高线材的表面质量和机械性能,轧制速度控制必须准确可靠,并考虑到轧制型号的特定要求。

目前,国内外的轧制速度控制采用伺服电机技术或电磁流体技术,通过实时监测线材的速度变化,及时调整轧制速度,保证线材轧制速度的稳定。

二、控制冷却控制冷却是指针对金属材料在热加工过程中产生的内应力、变形、晶粒长大等现象,通过采用不同的冷却方式和工艺参数,调整金属材料的组织和性能。

钢材的控制轧制和控制冷却

钢材的控制轧制和控制冷却

钢材的控制轧制和控制冷却一、名词解释:1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。

2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。

3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。

在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。

4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。

两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。

同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出。

5、再结晶临界变形量:在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。

6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。

二、填空:1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。

另一类是材料的内在因素,主要是材料的化学成分和冶金状态。

2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的。

3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。

4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。

5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。

6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能。

钢铁的控轧控冷工艺(TMCP)介绍

钢铁的控轧控冷工艺(TMCP)介绍

4.控制轧制的效应
(1)使钢材的强度和低温韧性有较大幅度的改善
控制轧制对细化晶粒有明显的作用,按常规轧制工艺, 铁素体晶粒最好的情况为7~8级,晶粒直径>20m,而 按控制轧制工艺,铁素体晶粒可达12级,其直径可为 5m。仅从这方面就可使钢材的强韧性能得到明显的改 善。
(2)可以充分发挥微量合金元素的作用
5.控制冷却的介绍
➢ 控制冷却存在的主要问题是高冷却速率下材料冷 却不均而发生较大残余应力、甚至翘曲的问题。 例如,作为控制冷却的极限结果,直接淬火的作 用早已为人们所认识。但是,其潜在的能力一直 未得到发挥,原因在于直接淬火条件下冷却均匀 性的问题一直没有得到解决,板形控制一直因扰 着人们。
5.控制冷却的介绍
对于控制冷却,有两个通俗说法:
(1)水是最廉价的合金元素 (可以用水替代合金元素来改变钢材的性能)
控制冷却的理念可以归纳为“水是最廉价的合金元素” 这样一句话。
(2)中国的多数(中板)轧机是世界上最干旱的轧机 (目前我们还没有充分利用好水的作用) -川崎水岛:12000 m3/h,迪林根:14000 m3/h -宝钢2050:14000 m3/h,1580: 13000 m3/h
钢铁的控轧控冷 工艺介绍
知识求索人
目录
1. 何为控轧控冷工艺? 2. 控轧控冷工艺的优势和应用 3. 控制轧制的类型 4. 控制轧制的效应 5. 控制冷却介绍
1.何为控轧控冷工艺?
➢ 控轧控冷工艺,又称TMCP(Thermo Mechanical Control Process:热机械控制工艺),是将控制轧制和控制冷却 技术结合起来的工艺,该工艺能够进一步提高钢材的强 韧性和获得合理的综合性能,并能够降低合金元素含量 和碳含量,节约贵重的合金元素,降低生产成本。TMCP 是20世纪钢铁业最伟大的成就之一!

控轧控冷-8全解

控轧控冷-8全解
按照冷却方式,钢筋轧后控制冷却方法有两种:
(1)轧后立即快冷工艺,在冷却介质中快冷到规定 温度或快冷一定时间后就中断快冷,随后空冷进行 自回火。
钢筋轧后控制冷却工艺:三个过程
第三阶段:为心部组织转变阶段,钢筋在冷床上空 冷一定时间后,断面上的热量重新分布,温度趋于 一致,同时降温。此时心部由奥氏体转变为铁素体 和珠光体或铁素体、索氏体和贝氏体。心部产生的 组织类型取决于钢的成分,钢筋直径,终轧温度和 第一阶段的冷却效果和持续时间。
轧后控制冷却对钢筋性能的主要影响因素为终轧温 度、第一阶段冷却速度和持续时间及钢的化学成分。 除钢的化学成分外,其他的各个因素决定了自回火 温度。而自回火温度很大程度上决定了钢筋的力学 性能。
另一种热处理工艺是将热轧或冷轧钢带加热到奥氏体 化程度,转变成单一奥氏体组织,然后控制冷却速度, 在冷却过程中先使奥氏体一部分发生铁素体转变,并 控制残留奥氏体数量,再进行快冷,使残余奥氏体转 变成马氏体,形成双相钢,这种钢称为奥氏体双相钢 (Austenite dual phase)简称“ADP”。
钢筋轧后控制冷却的方法及类型
根据在快冷前变形奥氏体发生再结晶的情况可以分为两类:
一类是变形的奥氏体已发生充分的再结晶,变形对奥氏体位 错、亚结构的影响已通过再结晶而消除。形变热处理的效果 已很小或者完全没有,这样就只有相变强化,而没有形变强 化,强化效果较小。这样强化处理的钢筋,虽然综合力学性 能略低,但其应力腐蚀稳定性较高。
双相钢的生产方法
中低温卷取型热轧双相钢
这种直接热轧双相钢,除了省去了附加热处理 工序外,其焊接性和疲劳特性也较热处理双相 钢好。而其缺点则表现在性能的一致性方面, 难以准确控制马氏体和铁素体的比例,性能的 波动取决于工艺参数的波动,难以沿带钢全长 及宽度方向上获得一致的性能。另外钢的合金 元素含量偏高,变形抗力较大,生产薄规格钢 板时比较难以控制钢温。

控轧与控冷知识点

控轧与控冷知识点

控制轧制:是指在热轧过程中通加热制度,变形制度,温度制度的合理控制,使钢材具有优异综合理学性能的轧制新工艺。

控制冷却:是指控制轧后钢材的冷却速度达到改善组织和性能的目的。

金属强化:通过合金化,塑性变形,和热处理等手段提高金属材料的强度。

微合金钢:合金元素总含量小于0.1%的钢。

变形抗力:在一定条件下塑性变形单位体积上抵抗变形的能力。

韧性:材料在断裂前在塑性变形和裂纹扩展时吸收能量的能力。

IF钢:又称无间隙原子钢,由于C,N含量低,在加入一定量TI,Nb使钢背固定成碳化物,氮化物或者碳氮化物,从而使钢无间隙存在。

不锈钢:在腐蚀介质中有良好的耐腐蚀性的钢。

双相钢:由马氏体或奥氏体基本两相组织构成的钢一般由分散岛状马氏体或贝氏体为强化相。

在线常化:在热轧无缝管钢生产中在轧管延伸工序后将钢管按常化处理要求冷却到某一温度后再进行加热炉生产然后进行减轻轧制按照一定冷却速度冷却至常温的过程。

非调质钢:在热轧状态或正火状态或锻造后空冷状态下具有与调质热处理态相当的综合力学性能的中碳低合金结构钢。

不进行调质以省略工序铁素体轧制:轧件进入精轧前,必需完成奥氏体向铁素体的转变,使精轧过程完全在铁素体温度范围内进行。

控制冷却的工艺特点:1节约能耗,简化工艺,降低生产成本2可以降低奥氏体的转变温度,细化室温组织3可以降低碳含量,从而改善材料的焊接性能、韧性、冷成形性能4道次间控冷可以减少待温时间,提高产量影响材料强韧性的因素:化学成分;气体夹杂物;晶粒尺寸;沉淀析出;形变;相变组织等的影响。

其中气体夹杂物对韧性有害,晶粒越小,材料韧性越好。

提高材料强韧性的措施:细化晶粒冶炼产用真空搅拌减少有害成分控轧四种强化机制再结晶控制轧制的特点:采用控制轧制工艺时,为了防止原始奥氏体晶粒过分长大,一般采用较低的加热温度和开轧温度。

由于开轧温度高,变形后的奥氏体晶粒会发生再结晶丽细化,如在这个阶段停止变第八节控制轧糊技术形,轧件即随温度下降而产生相变。

控制轧制、控制冷却工艺

控制轧制、控制冷却工艺

控制轧制、控制冷却⼯艺控制轧制、控制冷却⼯艺技术1.1 控制轧制⼯艺控制轧制⼯艺包括把钢坯加热到适宜的温度,在轧制时控制变形量和变形温度以及轧后按⼯艺要求来冷却钢材。

通常将控制轧制⼯艺分为三个阶段,如图 1.1所⽰[2]:(1>变形和奥⽒体再结晶同时进⾏阶段,即钢坯加热后粗⼤化了的γ呈现加⼯硬化状态,这种加⼯硬化了得奥⽒体具有促使铁素体相变形变形核作⽤,使相变后的α晶粒细⼩;(2> (γ+α>两相区变形阶段,当轧制温度继续降低到Ar3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从⽽在α晶粒内形成亚晶,促使α晶粒的进⼀步细化。

图1.1控制轧制的三个阶段(1>—变形和奥⽒体再结晶同时进⾏阶段;(2>—低温奥⽒体变形不发⽣再结晶阶段;(3>—<γ+α)两相区变形阶段。

1.2 控制轧制⼯艺的优点和缺点控制轧制的优点如下:1.可以在提⾼钢材强度的同时提⾼钢材的低温韧性。

采⽤普通热轧⽣产⼯艺轧制16Mn钢中板,以18mm厚中板为例,其屈服强度σs≤330MPa,-40℃的冲击韧性A k≤431J,断⼝为95%纤维状断⼝。

当钢中加⼊微量铌后,仍然采⽤普通热轧⼯艺⽣产时,当采⽤控制轧制⼯艺⽣产时,-40℃的A k值会降低到78J以下,然⽽采⽤控制轧制⼯艺⽣产时。

然⽽采⽤控制轧制⼯艺⽣产时-40℃的A k值可以达到728J以上。

在通常热轧⼯艺下⽣产的低碳钢α晶粒只达到7~8级,经过控制轧制⼯艺⽣产的低碳钢α晶粒可以达到12级以上<按ASTM标准),通过细化晶粒同时达到提⾼强度和低温韧性是控轧⼯艺的最⼤优点。

2.可以充分发挥铌、钒、钛等微量元素的作⽤。

在普通热轧⽣产中,钢中加⼊铌或钒后主要起沉淀强化作⽤,其结果使热轧钢材强度提⾼、韧性变差,因此不少钢材不得不进⾏正⽕处理后交货。

当采⽤控制轧制⼯艺⽣产时,铌将产⽣显著的晶粒细化和⼀定程度的沉淀强化,使轧后的钢材的强度和韧性都得到了很⼤提⾼,铌含量⾄万分之⼏就很有效,钢中加⼊的钒,因为具有⼀定程度的沉淀强化的同时还具有较弱的晶粒细化作⽤,因此在提⾼钢材强度的同时没有降低韧性的现象。

控制轧制及控制冷却技术在型钢生产中的应用

控制轧制及控制冷却技术在型钢生产中的应用

控制轧制及控制冷却技术在型钢生产中的应用一、导言在当今工业领域中,钢铁工业一直扮演着不可或缺的角色。

而型钢作为钢铁产品中的重要一员,其质量和性能的提升一直是企业和行业追求的目标。

控制轧制及控制冷却技术作为一种重要的生产工艺,对型钢的生产和性能提升具有重要意义。

本文将从控制轧制和控制冷却技术在型钢生产中的基本原理、关键技术和应用实例等方面展开探讨,旨在深入了解这一主题的重要性和具体应用。

二、控制轧制技术控制轧制技术是指钢铁生产中利用先进的控制系统和设备,对轧制过程中的参数进行精确控制,以获得高质量、高性能的型钢产品的一种技术。

这项技术最早应用于薄板生产领域,后来逐步在型钢生产中得到推广和应用。

1. 温度控制:在轧制过程中,控制轧制技术可以通过对钢坯的温度进行精确调控,以保证轧制过程中的塑性变形性能,从而得到均匀、细腻的晶粒结构。

2. 形状控制:利用控制轧制技术可以对轧制过程中的轧辊、模具等设备进行精确控制,获得符合设计要求的型钢截面形状和尺寸精度。

3. 轧制力控制:控制轧制技术可以实现对轧制力的实时监测和调节,避免轧制过程中的过度变形,并保证产品的尺寸和形状精度。

三、控制冷却技术控制冷却技术是指在型钢生产过程中,通过对冷却过程的控制,使钢材在冷却过程中获得理想的组织和性能。

这项技术的应用可以有效提高型钢的强度、韧性和耐磨性等性能,同时降低产品的变形和裂纹率。

1. 冷却介质控制:通过选择不同的冷却介质和控制冷却速度,可以使型钢获得不同的组织和性能,如马氏体组织、贝氏体组织等,从而满足不同领域对型钢性能的要求。

2. 温度控制:在控制冷却技术中,对冷却过程中的温度进行精确控制,可以有效控制组织相变,并获得理想的力学性能,如强度、韧性等。

3. 冷却速度控制:通过对型钢冷却速度进行控制,可以获得不同的组织和性能,如快速冷却可以获得细小的组织和高强度,而缓慢冷却则可以得到较好的塑性和韧性。

四、控制轧制及控制冷却技术在型钢生产中的应用实例1. 控制轧制技术在型钢生产中的应用:某钢铁企业引进了先进的控制轧制系统和设备,通过对轧制过程中的温度、形状和轧制力等参数进行精确控制,生产出了高精度、高强度的型钢产品,受到了市场的广泛认可。

控制轧制和控制冷却技术(TMCP)

控制轧制和控制冷却技术(TMCP)
参 考文献
经正 确选用 AE D s 控 制癫痫 发作 ,就应 每天
按 时服用 ,至少坚持 2~ 3 年 。控制几个月就 自行
停 药 ,可引起癫 痫发作 而造 成严重 的外 伤 ,甚 至 死 亡。经 治疗后癫 痫患者 ≥2年无发作且脑 电图无 癫痫 波样异常 ,经综合评 估才可逐 渐停用 A ED s 。
西药 。 ( 3 ) 用 药 剂 量 偏 低 ,没 有 达 到 有 效 浓
4 朱 国行 ,吴 洵 呋 ,虞 培敏 ,等. 新诊 断
癫 痫 患者 的规 范化 药 物治 疗 . 中华 神 经科 杂 志 ,
2 01 1, 4 4: 1~ 8
5 中华 医学会 神 经病 学 分会 癫 痫 与脑 电图 学组 .成 人 癫痫诊 断 和药 物 治疗 规范 f 草案 ) . 中
制丁艺) 技术是通过控制S L  ̄ J ' 温度和轧后冷却速度 、冷却 的开始温度和终止温度 ,来控制钢材高温 的奥氏体组织
形 态 以 及 控 制 相 变 过 程 ,最 终 控 制 钢 材 的组 织类 型 、形 态 和分 布 ,提 高 钢 材 的组 织 和 力 学 性 能 。 通 过 T MC P可
a n I L AE/ I BE H0 s t u dy . Ne u r o l o g y, 2 00 3, 6 0: l 5 4 4~ 1 5 4 5
现 2 7 8例新 诊 断 癫痫 患者 中 2 3 5例 采 用 卡 马 西 平 或 丙戊 酸单 药 治疗 ,4 3例 采 用 联 合 治 疗 。2 年 总 的无 发 作 率 达 到 7 6 3 % ,发 作 减 少 5 0 % 的 有 效率 2 2 . 7 % 。提 示 在 规 范 化 治 疗 原 则 指 导 下

钢材的控制轧制和控制冷却(7)

钢材的控制轧制和控制冷却(7)

§7.3 控制冷却各阶段的冷却目的和 冷却方式的选择
一、控制冷却的目的 控制冷却的目的在于能够在不降低材料韧 性的前提下进一步提高材料的强度。 低碳钢、低合金钢和微合金钢:改善材的 强韧性; 高碳钢和高碳合金钢:防止变形后的A晶 粒长大,降低以至阻止网状碳化物的析出 量和降低级别,减小P团尺寸,改善P形 貌和片层间距,从而改善钢材的性能。
§7.3 控制冷却各阶段的冷却目的和 冷却方式的选择
二、轧后的冷却阶段
1、一次冷却:从终轧温度开始到变形A向F 开始转变温度Ar3或二次碳化物开始析出 温度Arcm。 目的:是控制变形A的阻止状态,阻止A 晶粒的长大,阻止碳化物析出,固定因变 形而引起的位错,降低相变温度、为相变 做组织上的准备。一次冷却的开始温度越 接近终轧温度,细化变形A和增大有效晶 界面积的效果越明显。
一、基本概念 温度场:各时刻物体中各点温度分布的总 称,一般的讲是坐标和时间的函数。
t f x , y , z ,


x,y,z-空间坐标, -时间坐标。 非稳态温度场:物体温度随时间改变的温 度场; 稳态温度场:物体温度不随时间改变的温 度场,t = f(x, y, z)。
§7.5 热轧钢材水冷后温度场的计算
§7.3 控制冷却各阶段的冷却目的和 冷却方式的选择
§7.4 轧后快速冷却的强韧化机制
快速冷却强化机理与控制冷却的机理有 本质不同。轧后快速冷却实质上是控制轧 制后细化了变形A组织经过快速冷却,相 变组织相应变化,钢中析出物的大小、数 量、析出部位发生变化,从而使钢材的强 韧性得以提高。 一、轧后快速冷却对钢材强度的影响 控制冷却钢材的强化主要是由于F晶粒 细化、P片层间距减小、B量的增多和C、 N化合物的析出而引起的。而组织的变化 又与材料的成分、冷却工艺相关。

控制轧制和控制冷却

控制轧制和控制冷却

3. 轧制工艺参数的控制
(1)坯料的加热制度
坯料的最高加热温度的选择应考虑对原始奥氏体 晶粒大小、晶粒均匀程度、碳化物的溶解程度以及开轧 温度和终轧温度的要求。
对一般轧制,加热的最高温度不能超过奥氏体晶粒 急剧长大的温度,如轧制低碳中厚板一般不超过1250℃。 但对控轧Ⅰ型或Ⅱ型都应降低加热温度(Ⅰ型控轧比一般 轧制低100~300℃),尤其要避免高温保温时间过长,不 使变形前晶粒过份长大,为轧制前提供尽可能小的原始晶 粒,以便最终得到细小晶粒和防止出现魏氏组织。
中厚板生产过程的控制
三个阶段
• 第一阶段在20 世纪40-50 年代,为单机 自动化阶段;
• 第二阶段在20 世纪60 年代,为计算机和 单机自动控制系统共存阶段;
• 第三阶段为20 世纪70 年代至现在,为全 部采用计算机直接数字控制阶段。
中厚钢板组织性能控制
一、组织与性能的关系
结论:材料的性能是由材料的组织决定的。 金属材料的性能有哪些?
对于任何钢材 最基本的性能要求是强度。
二、控制轧制
1.概念:通过控制加热温度、轧制 温度、变形制度等工艺参数,控制奥氏体 的状态和相变产物的组织状态,从而达到 控制钢材组织性能的目的。
2.控制轧制工艺的类型
(1)奥氏体再结晶区的控制轧制(又称Ⅰ型 控制轧制)
特点:轧制全部在奥氏体再结晶区内进 行(950℃以上)。
方法:一般采用快速冷却。 一次冷却的目的:控制变形奥氏体的组 织状态,阻止晶粒长大或碳化物过早析出形成 网状碳化物,固定由于变形引起的位错,增加 变形奥氏体相变时的过冷度,为变形奥氏体向 铁素体或渗碳体和珠光体的转变做组织上的准
备。
(2)二次冷却
由奥氏体向铁素体或渗碳体析出的相变阶段 的控制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制轧制和控制冷却要点
我国控轧控冷技术概况
❖ 我国控制控冷起步于60年代初,并取得了 初步成果,例如对含有Cr、Ni、V的超高 强度钢德形变热处理工艺研究,轴承钢轧 后快冷工艺研究等;
❖ 1978年开始对控制控冷进行系统研究; ❖ 武钢、鞍钢、重钢、太钢等钢铁企业采用
控制控冷技术生产高强度、高韧性的造船、 锅炉及压力容器用各种钢材,开发了新钢 种,填补了国内钢材的部分空白。
控制轧制和控制冷却要点
控制轧制和控制冷却概念
❖ 控制冷却(Controlled Cooling):控 制轧制后钢材的冷却速度达到改善钢材组 织和性能的目的。 控制轧制和控制冷却相结合能将热轧钢 材的两种强化效果相加,进一步提高钢材 的强韧性和获得合理的综合力学性能。 目前,控制轧制和控制冷却工艺已应用 到中、高碳钢和合金钢的轧制生产中,取 得了明显的经济效果。
❖ 钢铁冶金学报
控制轧制和控制冷却要点
控制轧制和控制冷却概念
❖ 控制轧制(Controlled Rolling):在热 轧过程中通过对金属加热制度、变形制度和 温度制度的合理控制,使塑性变形与固态相 变结合,以获得细小晶粒组织,使钢材具有 优异的综合力学性能的轧制新工艺。
对低碳钢和低合金钢来说,采用控制轧制 工艺主要通过控制工艺参数,细化变形γ晶 粒,经过γ向α和P的相变,形成细化的α和 较为细小的P球团,从而达到提高钢的强度、 韧性和焊接性能的目的。
❖ 第二篇:控制轧制及控制冷却技术的应用
➢ 控制轧制及控制冷却技术在钢板生产中的应用 ➢ 控制轧制及控制冷却技术在型钢生产中的应用 ➢ 控制轧制及控制冷却技术在钢管生产中的应用
控制轧制和控制冷却要点
教学安排
❖ 教学:本课程2学分,总课时为32学时,每 周2学时,1-16周上课。
❖ 考核:总成绩=平时成绩(30%)+期末大作 业(70%) ➢ 平时成绩:考勤+课堂提问+课堂讨论 等 ➢ 期末大作业作为考试
无故缺课达到学校规定的次数者,不 能获得本课程学分。
控制轧制和控制冷却要点
参考书目
❖ 教材:王有铭,钢材的控制轧制和控制冷 却,冶金工艺出版社,2008.6
❖ 刘永铨,钢的形变热处理,冶金工业出版 社
❖ 李曼云,钢的控制轧制和控制冷却技术手 册,冶金工业出版社
❖ 田中智夫,钢的微合金化及控制轧制,冶 金工业出版社
控制轧制和控制冷却要点
控轧控冷技术发展过程
❖ 20世纪20年代开始研究钢在热加工时, 温度和变形条件对显微组织和力学性能的 影响;
❖ 二战时,荷兰等国采用“低温大压下”细化 低碳钢的α晶粒,提高强韧性;
❖ 50年代末和60年代初,美国和原苏联等 国开展钢的形变热处理工艺与钢材组织和 性能关系的理论研究工作,为控制轧制和 控制冷却的机理研究和工艺的实践奠定了 基础;
控制轧制和控制冷却要点
控轧控冷技术发展过程
❖ 60年代中期,英国钢铁研究会对钢的成分 与钢的力学性能之间的关系进行了系列研 究,提出了相应的控制轧制理论;
❖ 在开发控制轧制工艺时,人们致力于降低 终轧温度;
❖ 近些年来,控制冷却工艺已经成功地运用 到棒材、螺纹钢、钢管及型钢生产和合金 钢生产中,并取得了明显的经济效益和社 会效益。
控制轧制和控制冷却要点
第一篇 控制轧制及 控制冷却理论
1 钢的强化和韧化
控制轧制和控制冷却要点
§1.1 钢的强化机制
金属材料的机械性能是指金属材料在外力 (载荷)作用时表现出来的性能,包括强度、 塑性、硬度、韧性及疲劳强度等。
载荷的形式 控制轧制和控制冷却要点
§1.1 钢的强化机制
材料机械性能指标 控制轧制和控制冷却要点
❖ 了解控制冷却的工艺作用,控制轧制和控 制冷却技术在工业生产中的应用。
❖ 掌握钢的强韧化理论,变形条件下再结晶 和相变的组织行为理论,典型微合金元素 在控制轧制中的作用机理及控制冷却中的 强化冷却方式等控轧控冷的基本知识。
控制轧制和控制冷却要点
学习内容
❖ 第一篇:控制轧制及控制冷却理论
➢ 钢的强化和韧化 ➢ 钢的奥氏体形变与再结晶 ➢ 在变形条件下的相变 ➢ 微合金元素在控制轧制中的作用 ➢ 钢材控制冷却理论基础
控制轧制和控制冷却要点
课程简介
本课程作为金属材料加工方向选 修课,可使学生扩大和加深本专业 的知识,掌握材料加工的前沿技术。 控制轧制的核心就是将轧制的动态 过程和热处理的动态过程相结合, 来提高产品的综合性能。
控制轧制和控制冷却要点
教学要求
❖ 理解通过对金属加热制度、变形制度和温 度制度的合理控制,使热塑性变形与固态 相变结合,以获得细小晶粒组织,使钢材 具有优异的综合力学性能。
控制轧制和控制冷却要点
控制轧制和控制冷却要点
§0 绪论(Introduction)
❖ 课程简介 ❖ 教学要求 ❖ 学习内容 ❖ 教学安排 ❖ 参考书目
❖ 控轧和控冷的概念 ❖ 控轧和控冷技术的发展过程 ❖ 我国控轧和控冷发展概况
控制轧制和控制冷却要点
课程简介
控制轧制冷却技术是近十多年来国内外新 发展起来的轧钢新技术,已成功而广泛地应 用于生产过程中,能明显改善钢材组织结构, 提高钢材的强韧性和使用性能。学生通过学 习课程,能进一步理解压力加工过程不仅是 解决成型及尺寸精度问题,而且成型过程本 身也能影响金属材料的组织转变,最终影响 产品性能,通过控制工艺过程的影响因素能 在一定条件下获得所需的组织结构及产品性 称。
控制轧制和控制冷却要点
控轧控冷技术发展过程❖源自20世纪20年代开始研究钢在热加工时, 温度和变形条件对显微组织和力学性能的 影响;
❖ 二战时,荷兰等国采用“低温大压下”细化 低碳钢的α晶粒,提高强韧性;
❖ 50年代末和60年代初,美国和原苏联等 国开展钢的形变热处理工艺与钢材组织和 性能关系的理论研究工作,为控制轧制和 控制冷却的机理研究和工艺的实践奠定了 基础;
§1 钢的强化和韧化
对于钢材来说,在大多数情况下其力学性 能是最重要的,其中强度性能又居首位。
除了强度之外,钢材还要求一定的韧性和 可焊性能,这两个指标和强度是相互关联甚 至互相矛盾的,很难单方面改变某一指标而 其它不变。
结构钢的最新发展方向是高强、高韧和良 好的焊接性能,控制控冷是满足这一要求的 一种较好的工艺。
相关文档
最新文档