线性代数 欧氏空间

合集下载

第八讲 欧氏空间

第八讲 欧氏空间
高等代数选讲
高等代数选讲
第八讲 欧氏空间
线性空间中,向量之间的基本运算只有加 法与数量乘法。作为几何空间的推广,可以发 现几何向量的度量性质,如长度、夹角等,在 线性空间的理论中没有得到反映。但是向量的 度量性质在许多问题(包括几何问题)有特殊 的地位。因此有必要在线性空间中引入度量的 概念,使其更接近于几何空间,并有更丰富的 内容与方法。
高等代数选讲 8、构造内积的方法 在实线性空间V 中构造内积使之构成欧氏空间,通 常采用如下两种方法: (1)直接构造:对任意 , V ,直接构造二元实 函数 , ,并验证其满足内积的四条公理。 (2)由正定矩阵确定内积:若V 为 n 维实线性空间, 任取V 的基 1 , 2 ,, n ,以及 n 阶正定矩阵A,定义: b1 b , a1 , a2 ,, an A 2 bn 其中 a11 a2 2 an n , b11 b2 2 bn n
高等代数选讲 欧氏空间证与内积有关的正交变换与对称变换在 现实生活中有着广泛而重要的应用,这两种变换在标 准正交基下分别对应着正交矩阵及实对称矩阵这两种 具有特殊性质的矩阵。要求掌握正交变换与对称变换 的概念及性质,能够运用它们与对应特殊矩阵之间的 关系解题对实对称矩阵A,要求能熟练地找到正交矩阵 T Q,使 Q AQ为对角阵,以及以另一种形式出现的同一 个问题,即用正交变换化实二次型为标准形。 将线性空间关于某个子空间进行直和分解是不唯 一的,但是欧氏空间关于某个子空间及其正交补空间 的直和分解是唯一的。欧氏空间的这种分解是很重要 的,要求掌握子空间的正交补的概念及基本性质,会 求某些子空间的正交补。
1 1 2 2 n n
高等代数选讲 (2) R mn --对于实矩阵 A aij mn , B bij mn 内积为

高教线性代数第九章 欧氏空间课后习题答案

高教线性代数第九章  欧氏空间课后习题答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, nR 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j iij y x a,),(αααα,由于A 是正定矩阵,因此∑ji j iij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =,因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,,(,)ij i ji ja x xααα==∑,,(,)iji ji jay y βββ==∑,故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。

欧氏空间

欧氏空间

1 0
5 3 1 0 15
《线性代数与解析几何》 第四章 n维向量
第十七讲
4.5 欧氏空间
(几何空间的推广)
本节在实数域内讨论问题
16
本节主要内容
1. 欧氏空间的概念 2. 规范正交基 3.Schmidt正交化 4. 正交矩阵
17
引言
空间的推广: 几何空间R3 n维实向量空间Rn
度量性质的推广: R3中: 长度夹角内积 Rn中: 内积长度夹角
( )2
+ .
24
3.夹角: 设 ∈, Rn 0, 0
称 arc cos ( , ) , 0
为 与 的夹角. 4.正交: 当(,)=0 时,称 与 正交.
记为⊥ .
因为零向量与任何向量的内积为零.
规定: ∈Rn,必有 0⊥ .
25
4.5.2 规范正交基(自然基的推广)
1.正交向量组:两两正交的非零实向量构 成的向量组称为正交向量组.
正交向量组有一个非常重要的性质.
26
2.正交向量组 线性无关
证 设,2,,m是正交向量组, 若 k1+k22++kmm= 0 两边同i 作内积 (k1++kmm , i ) = 0 即 k1(,i )+k2(2, i )++km(m, i ) = 0 当ij 时(i ,j ) = , 有 ki (i ,i ) = 0 又i 0, 则(i ,i ),从而ki , i =1,2,,m 故 ,2,,m 线性无关.
(, ) a12 a22 L an2
单位向量:长度为1的向量.
20
要推广几何空间中向量夹角的概念, 必须先证明下面著名的不等式.

第八章 欧氏空间

第八章 欧氏空间

例3 在R3中,向量 (1, 0, 0), (1, 1, 0) 求 , 的夹角。
欧氏空间
§1 欧氏空间的定义和性质
三、向量的正交
定义4 对欧氏空间V中的两个向量 , , 若内积 ( , ) 0, 则称
与 正交或垂直,记为:
注意: 零向量与任一向量正交。 例4 在R4中求一单位与下面三个向量
例1 设 (1 , 2 ), (1 , 2 ) 为二维实空间R2中的任意两个 向量,问:R2对以下规定的内积是否构成欧氏空间?
(1) ( , ) 1 2 2 1
(2) ( , ) (1 2 )1 (1 2 2 ) 2
正交向量组。
如果一个正交组的每一个向量都是单位向量,则这样的向 量组称为标准正交向量组。 性质1 欧氏空间V中的正交向量组必定线性无关。 注: (1) 单个非零向量也称为一个正交向量组。 (2) 线性无关的向量组不一定是正交向量组。
欧氏空间
§2 标准正交基
定义2 在n维欧氏空间中,由n个向量组成的正交向量组称为 正交基,由n个标准正交向量组成的正交基称为标准正交基。 性质2 设 1 , 2 , , n 是n维欧氏空间V中的一组标准正交基,则
(3) ( , ) ( , ) ( , ) (4) ( , ) 0,当且仅当 0 时有 ( , ) 0 这里 , , 是V中任意的向量,k为实数,这样的线性空间V
称为欧几里得空间,简称为欧氏空间。
欧氏空间
§1 欧氏空间的定义和性质
i 1 i 1 i 1 i 1n n n
n
(4) 一组基为标准正交基的充要条件是它的度量矩阵为 单位矩阵。
欧氏空间

欧氏空间复习

欧氏空间复习

欧氏空间复习 一、欧氏空间定义如果V 是实数域R 上维线性空间,而且存在V 上二元实函数(,)满足: 1)(,)(,)αββα=2)(,)(,)(,)k l k l αβγαγβγ+=+3)(,)0αα≥,而且等于0的充分必要条件是0α=其中,,,,V k l R αβγ∈∈。

则称V 为具有内积(,)的欧氏空间,简称为欧氏空间。

我们有: ●(,0)0α=●1111(,)(,)rsrsi i j j i ji j i j i j k l k lαβαβ=====∑∑∑∑● 2(,)(,)(,)αβααββ≤(可以用其定义角度,证明一些不等式)如果设12,,,n εεε 为V 基,则定义(,)i j n n A εε⨯⎡⎤=⎣⎦,称其为基12,,,n εεε 的度量矩同样我们有:● 基的度量矩阵正定;● 不同基的度量矩阵合同(由此可以证明标准正交基的存在性) ●如果设1212[,,,],[,,,]n n X Y αεεεβεεε== ,则有:(,)T X AY αβ=二、标准正交基和正交补欧氏空间V 的基12,,,n εεε 称为标准正交基,如果有(,)i j ij εεδ=。

标准正交基的存在性一可以通过基的度量矩阵为正定矩阵及其正定矩阵和单位矩阵合同的性质证明。

其次可以通过施密特正交化方法证明。

我们有: ●n 维列向量12,,,n ααα 为n R 标准正交基的充分必要条件是矩阵12[,,,]n A ααα= 满足T A A E =,换句话说A 是正交矩阵。

注意一个正交矩阵决定两组正交基,一个是正交矩阵的列向量组,另外一个是正交矩阵的行向量组。

● 标准正交基的过度矩阵是正交阵。

●根据施密特正交化我们可以推出,对任意实可逆矩阵A 存在正交矩阵U 和上(或者下)三角矩阵T 使得A TU =或者A U T =。

●如果12,,,n εεε 为欧氏空间V 的标准正交基,而且:1212[,,,],[,,,]n n X Y αεεεβεεε==则有(,)T X Y αβ=。

欧式空间

欧式空间

欧氏空间(Euler space )一、 内积与欧氏空间1.设V 是实数域R 上的线性空间,在V 上定义一个二元实函数,称为内积,记为),(βα,它具有以下性质: )3(,)2(),,(),)(1( αββα= 这样的线性空间V 称为欧几里的空间,简称欧氏空间.2.设V 是数域P 上的线性空间,如果V 中的任意两个向量βα,都按某一法则对应P 内唯一确定的数,记为),(βαf ,且),(),(),(,,,,)1(221122112121βαβαβααβααk f k k k f V P k k +=+∈∈∀有;),(),(),(,,,,)2(221122112121βαβαββαββαl f l l l f V P l l +=+∈∈∀有 则称),(βαf 是V 上的一个双线性函数.3.内积是双线性函数.4.设V 是n 维欧氏空间,n e e e ,,,21 为V 的一组基,V ∈βα,,若n n e x e x e x +++= 2211α; n n e y e y e y +++= 2211β则j i n j ni j i j i n j n i j i y x a y x e e ∑∑∑∑====∆=1111),(),(βα,5.称 )),(()(j i ij e e a A ==为基n e e e ,,,21 的度量矩阵.6. 设n e e e ,,,21 是n 维欧氏空间V 的一组基,,A 是基n e e e ,,,21 下的度量矩阵,则任意V ∈βα,,有AY X '=),(βα.7.度量矩阵必为正定矩阵,且不同基下的度量矩阵是合同的.二、 长度与夹角1。

欧氏空间V 中向量长度 ),(||ααα=;单位化:当||0||0αααα=≠时, 2.欧氏空间中的重要不等式:① Cauchy-Буняковский不等式:对任意向量V ∈βα,有线性相关时等式成立。

,当且仅当βαβαβα|,||||),(|≤。

高等代数 第7章欧式空间 7.1 欧氏空间的定义及性质

高等代数 第7章欧式空间 7.1 欧氏空间的定义及性质
称为n维向量x与y的夹角 .
x, y
x y
例 求向量 1,2,2,3与 3,1,5,1的夹角.
18 2 解 cos 3 261. 非负性 当 x 0时, x 0;当 x 0时, x 0; 2. 齐次性 x x ; 3. 三角不等式 x y x y .
单位向量及n维向量间的夹角
1 当 x 1时, 称 x 为单位向量 .
2 当 x 0, y 0时, arccos
(4)[ x , x ] 0, 且当x 0时有[ x , x ] 0.
则称V(R)关于这个数积构成一个欧氏空间。这里 x,y为任意向量,k为任意实数。
数积的性质: (1)(x ,ky)=k(x , y) (2) (x , y+z )=(x , y)+( x , z ) (3) (x , )=0
欧氏空间的定义及性质
定义:设V(R)是实数域R上的线性空间,
在V(R)中定义了一个叫做数积的运算,即 有一定的法则,按照这个法则,对V(R)中 的任意两个向量x,y,都能确定R中唯一一个实 数,称之为x与y的数积,记作(x,y),如果这个 运算具有性质:
(1) ( 2) ( 3)
x, y y, x ; x, y x, y; x y, z x, z y, z ;
n (4) k i i 1
, l
i j 1 i
n
n,m ki l j ( i i 1, j 1
,
i
j
)
向量的长度及性质
定义2 令
x
x, x
2 2 2 x1 x2 xn ,
称 x 为n 维向量 x的长度 或 范数 .

第九章_欧氏空间

第九章_欧氏空间

第九章 欧氏空间一. 内容概述1. 欧氏空间的定义设V 是实数域R 上的一个线性空间.如果V ∈∀βα.,定义了一个二元实函数.记作()()R ∈βαβα,,,称为内积,且满足1)()()2;,,αββα=)()()()()()(),0,)4;,,,)3;,,≥+=+=ααγβγαγβαβαβαk k 当且仅当0=α时,().0,=αα其中γβα,,是V 中任意向量,k 为任意实数,则称V 为欧几里空间,简称欧氏空间.常见的欧氏空间有: (1)在(){}R x x x x R inn∈=|,,21里定义内积为()()1,2211y x yx y x nn +++= βα其中()().,,,,,11y y x x nn==βα则称Rn为R 上的欧氏空间.(2)设[]b a C ,为定义在[]b a ,上所有连续实函数所成的线性空间.内积定义为()()()()2,dx x g x f g f ba ⎰=(3)设Rmn ⨯为一切m n ⨯矩阵所成的线性空间.内积定义为()()3,B A B A t r '=则称Rmn ⨯为R上的欧氏空间,2. 欧氏空间的内积的主要性质: 1)()()()()()()())4;0,00,)3;,,,)2;,,==+=+=βαγαβαγβαβαβαk k 设εεεn ,,,21 为V的一组基,,,22112211εεεεεεβαnnn n y y y x x x +++=+++=则()Ay x '=βα,其中()()()()⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=εεεεεεεεn n n nn n A y x y y y x x x11112121,.3. 向量的长度,角,柯西-不涅柯夫斯基不等式().,βαβα≤4. 标准正交基 施密特正交化的方法正交向量组是线性无关的.正交基.标准正交基.格拉姆矩阵()()()()⎪⎪⎪⎭⎫⎝⎛=∈αααααααααααn n n nm G V V111121.,,,.度量矩阵.εεεn V ,,,.21 一组基G=()()()()⎪⎪⎪⎭⎫⎝⎛εεεεεεεεn n n n1111 5. 同构.6. 正交变换的定义及其等价的四个命题欧氏空间V 的线性变换A 称为正交变换,如果它保持向量的内积不变即对于任意的V ∈βα,,都有(βαA A ,)()βα,=.设A 是欧氏空间V 的一个线性变换,于是下面四个命题相互等价的: 1)A 是正交变换;2)A 保持向量的长度不变,即对于.,ααα=A ∈V3)如果εεεn ,,,21是标准正交基,那么εεεn A A A ,,,21 也是标准正交基4)A 在任一组标准正交基下的矩阵是正交矩阵,正交矩阵的乘积是正交矩阵, 正交矩阵的逆是正交矩阵. 正交变换的分类,第一类(旋转)|A|=1第二类的|A|=-1. 7. 向量与空间的正交, 空间与空间的正交.正交补. 8. 对称变换;, 对称矩阵的标准形.四个引理:1)设A 是实对称矩阵,则A 的特征值皆为实数.2) 设A 是实对称矩阵,A 定义为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛x x x n A 21=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛x x x n A 21.则对任意R n∈βα,有()()βαβαA A ,,=或βααβA A '='3) 设A 是实对称矩阵,则Rn中属于A 的不同特征值的特征向量必正交.4.设是A 对称变换,V 是A 一子空间,则也是A 一子空间。

第九章 欧氏空间

第九章 欧氏空间

= ( , ) + ( , ) .
3 ) ( , 0 ) = (0 , ) = 0;
4) ( ki i , l j j ) ki l j ( i , j );
i 1 j 1 i 1 j 1
s
n
s
n
5 ) | ( , ) | | | | |,当且仅当 , 线性相
关时,等号才成立.
2 长度、夹角与正交
(1) 设V是欧氏空间,对任意V,非负实数 ( , ) 称为向量 的长度,记为 | |. 即| | 度为1的向量称为单位向量. 如果≠0,则
( , ) ,长
1 | |
是单位
向量,称为将单位化.
(2) 非零向量 , 的夹角 < , > 规定为
为 V1 . 如果V1 V2 ,且V=V1 + V2 ,则称V2为V1的
正交补,记为V1.
(2) 正交子空间有下列结果: 1) 设V是欧氏空间, , i , j V,则
L(1 , 2 , … , t) 等价于 j (j=1, 2, ..., t);
L(1 , 2 , … , s) L(1 , 2 , … , t)等价于i j
第九章
欧氏空间
内 容 摘 要
1 内积和欧几里得空间
(1) 设 V 是实数域 R 上一个线性空间,如果对V中 任意两个元素 , 有一个确定的实数( , )与它们对应, 且满足:
1) ( , ) = ( , );
2) (k , ) = k( , );
3) ( + , ) = ( , ) + ( , ) ; 4) ( , ) 0,当且仅当 = 0 时 ( , ) = 0 .

欧氏空间内积的性质及应用

欧氏空间内积的性质及应用

欧氏空间内积的性质及应用欧氏空间是指以欧几里德度量为基础的向量空间,其中的向量可以进行加法、数乘和内积运算。

欧氏空间内的内积是一种常见的运算,具有一些重要的性质和应用。

本文将详细介绍欧氏空间内积的性质及其应用。

一、欧氏空间内积的性质:1. 正定性:在欧氏空间中,内积满足正定性,即对于任意非零向量x,有内积⟨x,x⟨>0。

这一性质保证了内积能够给出向量的大小和方向信息,且仅当向量为零向量时,内积为0。

2. 对称性:内积是对称的,即对于任意向量x和y,有⟨x,y⟨=⟨y,x⟨。

这一性质表明内积不依赖于向量的顺序。

3. 线性性:内积具有线性性,即对于任意向量x,y和z,以及任意标量a,有⟨ax+y,z⟨=a⟨x,z⟨+⟨y,z⟨。

这一性质是内积运算的基本性质,使得内积可以方便地与向量的其他运算(如加法、数乘等)结合使用。

4. 正交性:如果两个向量的内积为0,则它们被称为正交向量。

欧氏空间中的正交向量在几何上相互垂直,且具有一些重要的性质,如正交向量的线性无关性。

正交向量在许多应用中起到关键作用,如最小二乘法和信号处理等领域。

5. 柯西-施瓦茨不等式:欧氏空间中的内积满足柯西-施瓦茨不等式,即对于任意向量x和y,有⟨x,y⟨≤∥x∥∥y∥,其中∥x∥和∥y∥分别表示向量x和y的范数。

这一不等式给出了内积和向量范数之间的关系,具有重要的几何意义。

6. 三角不等式:欧氏空间中的内积满足三角不等式,即对于任意向量x和y,有∥x+y∥≤∥x∥+∥y∥,其中∥x∥和∥y∥分别表示向量x和y的范数。

这一不等式给出了向量加法和内积之间的关系,保证了向量范数的一致性。

7. 等距性:欧氏空间中的内积具有等距性,即对于任意向量x和y,有∥x+y∥^2=∥x∥^2+2⟨x,y⟨+∥y∥^2。

这一性质可以被视为勾股定理的推广,将向量加法和内积结合在一起,描述了欧氏空间中的距离关系。

二、欧氏空间内积的应用:1. 几何:欧氏空间的内积可以用于计算向量之间的夹角和距离。

欧氏空间

欧氏空间

欧氏空间在线性空间中,向量之间的运算只有加法和数乘这两种基本运算,而向量的度量性质,如长度、夹角、距离等,在线性空间中没有得到反映。

因此有必要在线性空间中引入度量的概念。

而在解析几何中我们看到,向量的长度与夹角等度量性质都可以通过向量的内积表示,所以我们选取内积作为基本概念。

在线性空间中引入内积以后就成为欧氏空间。

一、定义与基本性质【定义1】设V 是实数域R 上的一个线性空间,如果在V 上定义一个二元实函数,记作()βα,,称为内积。

如果它有以下性质:1. ()()αββα,,=2. ()()βαβα,,k k =3. ()()()γβγαγβα,,,+=+4. ()0,≥αα,当且仅当0=α时,()0,=αα这里γβα,,是V 中任意向量,k 是任意实数,就称线性空间V 对内积()βα,构成一个欧几里得空间,简称欧氏空间。

注:1. 二元函数意为对V 中任意向量βα,,有唯一的实数对应 2. 内积的定义方法不唯一,不同的内积构成的欧氏空间不同 例:设V 是一个n 维实线性空间,在V 中取定一组基。

设A 是一个正定矩阵,定义V 的内积如下:()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n y y y x x x21212121εεεβεεεα ()()⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n y y y A x x x2121,βα由于A 为正定矩阵,显然这样定义的内积符合定义中所列条件。

因此,V 对内积()βα,构成一个欧氏空间。

3. 定义中的性质1.说明内积是对称的。

因此,与性质2.及3.相对应的有:.2'()()βαβα,,k k = .3'()()()γαβαγβα,,,+=+进一步的,在欧氏空间V 中,对任意向量s 21,,,ααα ;t21,,,βββ 及任意实数s 21,,,k k k ;t 21,,,l l l ,都有()∑∑∑∑=====⎪⎪⎭⎫⎝⎛s i tj jiji tj jj si i i l k l k 1111,,βαβα【定义2】由()0,≥αα,设α是欧氏空间中的一个向量,非负实数()αα,称为向量α的长度,记为α。

欧氏空间与线性空间

欧氏空间与线性空间

欧氏空间与线性空间欧氏空间和线性空间是数学中两个重要的概念,它们在不同的领域和应用中发挥着重要的作用。

本文将从定义、性质和应用等方面来探讨欧氏空间和线性空间的相关内容。

一、欧氏空间欧氏空间是指具有内积的实数向量空间。

在欧氏空间中,可以定义向量的长度和向量之间的夹角。

具体而言,对于n维欧氏空间R^n 中的向量x=(x1, x2, ..., xn)和y=(y1, y2, ..., yn),其内积定义为:<x, y> = x1y1 + x2y2 + ... + xnyn而向量的长度定义为:||x|| = sqrt(<x, x>) = sqrt(x1^2 + x2^2 + ... + xn^2)欧氏空间具有一些重要的性质。

例如,欧氏空间中的向量满足三角不等式,即对于任意的向量x和y,有:||x + y|| <= ||x|| + ||y||此外,欧氏空间还满足正交性质,即对于任意的向量x和y,如果它们的内积为零,则称向量x和y是正交的。

欧氏空间的概念在几何学、物理学、统计学等领域中有广泛的应用。

在几何学中,欧氏空间可以用来描述点、线、面等几何对象之间的关系。

在物理学中,欧氏空间可以用来描述空间中的力、速度等物理量。

在统计学中,欧氏空间可以用来度量数据样本之间的相似性。

二、线性空间线性空间是指具有加法和数乘运算的向量空间。

在线性空间中,向量之间的加法满足交换律和结合律,数乘满足分配律和结合律。

具体而言,对于n维线性空间V中的向量x,y和标量a,其加法和数乘定义为:x + y = y + x (交换律)(a + b)x = ax + by (分配律)a(bx) = (ab)x (结合律)线性空间的概念在代数学、数学物理学、计算机科学等领域中有广泛的应用。

在代数学中,线性空间可以用来研究向量和矩阵的性质。

在数学物理学中,线性空间可以用来描述复杂的物理系统。

在计算机科学中,线性空间可以用来处理图像、音频等数据。

欧氏空间的知识点总结

欧氏空间的知识点总结

欧氏空间的知识点总结一、欧氏空间的基本概念1. 欧氏空间的定义欧氏空间是指具有度量的线性空间,它可以是具有内积的实数线性空间或者复数线性空间。

在欧氏空间中有一种特殊的度量,即欧氏距离。

欧氏距离是指在n维空间中,两点之间的距离d(x, y)定义为:d(x, y) = √((x1-y1)^2 + (x2-y2)^2 + ... + (xn-yn)^2)其中x=(x1, x2, ..., xn)和y=(y1, y2, ..., yn)分别是空间中的两个点。

2. 欧氏空间的维度欧氏空间的维度是指空间中的向量所属的维度数,通常用n表示。

在n维欧氏空间中,一个向量可以用n个实数或复数表示。

例如,在二维欧氏空间中,一个向量可以表示为(x, y)。

在三维空间中,一个向量可以表示为(x, y, z)。

3. 欧氏空间的内积在n维欧氏空间中,可以定义内积的概念。

内积是指两个向量之间的数量积,通常用"a·b"表示。

在欧氏空间中,两个向量a和b的内积定义为:a·b = a1b1 + a2b2 + ... + anbn内积满足交换律、线性性和正定性等性质。

内积可以用来定义向量的长度、夹角和投影等概念,是欧氏空间中重要的工具。

二、欧氏空间的性质和定理1. 欧氏空间的性质欧氏空间具有许多重要的性质,例如:- 距离的非负性:两点之间的距离永远是非负的。

- 距离的对称性:两点之间的距离与它们的顺序无关。

- 三角不等式:两点之间的最短距离加起来不大于第三个点所在的线段的长度。

- 同伦性:欧氏空间是同伦的,即两个点之间总可以找到一条连续的路径相连接。

2. 欧氏空间的定理在欧氏空间中,有许多重要的定理,例如:- 柯西-施瓦茨不等式:对于欧氏空间中的任意两个向量a和b,它们的内积满足|a·b| ≤ ||a|| * ||b||,其中||a||和||b||分别是向量a和b的长度。

- 皮亚诺定理:在欧氏空间中,任意有界闭集都是紧的。

线性代数-欧氏空间

线性代数-欧氏空间

, 2
,
0
,

, 2 , ,
两边开方后便得到
, 当α,β线性相关时,必有β=kα,从而
, k ,
k
故 , k , k
即(7.4.2)中等式成立. 反之,若(7.4.2)中等 式成立,则或者β=0 ,或者(7.4.3)式对
,
t
,
等式成立,这意味着此时
t , t 0 由内积性质(4),即知
性质2 设α , β是欧氏空间中的元素, 且α⊥β,则
2 2 2
证 由正交的定义,
2 , , 2 , ,
, ,
2 2
所得到的等式是普通几何空间中勾股 定理的推广. 它对于多个元素也成立,即 若α1,α2,…,αm两两正交,则
1 2 m 2 1 2 2 2 m 2
为基底ε1,ε2,…,εn的度量矩阵.
式(7.4.4)或(7.4.5)说明,在取定了一组 基后,任二元素的内积可由基的内积αij决 定,或由度量矩阵A决定. 换言之,只要给 出了度量矩阵A,就给出了V上的内积. 度 量矩阵完全确定了内积.
由内积的对称性,有 aij i , j j ,i a ji , i, j 1,2,, n
i1 j 1
引入矩阵记号,令
a11
A
a 21
a12
a 22
a1n a2n
an1 an2 ann
(7.4.4)
x1
X
x2
xn
y1
Y
y2
yn
则(7.4.4)式可写为
, X T AY
(7.4.5)
其中X、Y分别是α , β在基底 ε1,ε2,…,εn下的 坐标,A是由基底的内积组成的矩阵,称

线性代数第三章 线性空间和线性变换3.3 欧几里得空间简介

线性代数第三章 线性空间和线性变换3.3 欧几里得空间简介
说明: 在n维欧氏空间中,两两正交的非零
向量个数不会超过n个。(因为线性无关的非零
向量个数不会超过n个) 其几何意义就是:在平
面上找不到3个两两垂直的非零向量,在空间中找
不到4个两两垂直的非零向量。
定义3.17 在n维欧氏空间V中,由n个向量组成的正交向量 组称为V的一个正交基;由单位向量组成的正交基称为标 准正交基。
§3.3 欧几里得空间简介
一、定义与基本性质 首先看一下向量的内积 定义3.12设V是实数域R上一个线性空间,在V上定义
了一个二元函数,称为内积,记作(α,β),它具有以 下性质:
(1) (α,β)= (β, α); (2) (kα,β)=k (α,β); (3) (α+β,γ)= (α, γ)+(β,γ); (4) (α,α)≥0,当且仅当α=0时, (α,α)=0. 其中αβγ是V中的任意向量,0为V中的零向量,k是 任意实数.这个定义了内积的线性空间V称为
同构映射。
相关结论: (1)、任意一个n维欧氏空间V都与n维欧氏空间R n同构 (2)、两个有限维欧氏空间同构的充要条件是它们有相同的维数
定义2.21: 如果一个非零向量组(即该向量组中的向
量都不是零向量) 1, 2, ,s (s2) 中的向量两两 正交, 则称1, 2, ,s为一个正交向量组.
,x n
)
,

xi ( ,i ), (i 1, 2,L , n)
设,

V,在V的标准正交基1,
2,L

下,有:
n
=x11 x2 2 L xn n
=y11 y2 2 L yn n
则(, )=x1 y1 x2 y2 L xn yn

线性代数第六章 欧几里德空间 S1欧氏空间

线性代数第六章 欧几里德空间 S1欧氏空间
故 0, 0
性质1 V ,有 0, 0 ,特别 0,0 0 .
性质2 是V中某一向量,若对于 V ,有
, 0 ,则 0.
性质3 i , j V及 ai ,bj R (i 1,2, ,l; j 1,2, ,t),
恒有
l
t
lt
aii , bj j
i , j aibj
注意:由于内积的定义不同,这是两个不同的欧氏空间. 以后凡说到欧氏空间Rn均指例1所述的欧氏空间.
6
例3:在连续函数空间 C[a,b]中,对任意的
f ( x), g( x) C[a,b] 定义
b
f ( x), g( x) a f ( x)g( x)dx
由定积分的性质可知:设
f ( x), g( x),h( x) C[a,b],k R
成为C[a, b]中的一个内积. 于是,关于这个内积C[a, b]
也成为一个欧氏空间.
欧几里得空间的一些基本性质:
(Ⅰ) , , 定义1的条件(I)表明内积是对称的,故有
,k k , k , k , k,
, , , , , ,
8
又 0, 0 0, 0, 0, 2 0,
10
2. 齐次性
3. 三角不等式 【后面证明】
柯西——布涅柯夫斯基不等式
定理:对于欧氏空间中任意二向量, ,恒有
, 2 , , 或 ,
其中等号成立的充要条件是与线性相关.
证明:若, 线性相关,则有 =0, 或者 =k, (kR)
在上述情况下,容易证明题设的等号成立.
, ,
(Ⅲ) k, kx1 y1 kx2 y2 kxn yn k ,
(Ⅳ) , x12 x22 , , xn2 0 ,当且仅当 0

欧氏空间的定义与基本性质-PPT

欧氏空间的定义与基本性质-PPT

a
a
a
证:在 C(a,b) 中, f ( x)与 g( x) 的内积定义为
b
( f ( x), g( x)) a f ( x)g( x)dx
由柯西-布涅柯夫斯基不等式有 ( f ( x), g( x)) f ( x) g( x)
从而得证.
3)
三角 不等式
对欧氏空间中的任意两个向量 、 , 有

C
cij
nn
C1,C2 ,
,Cn ,
n
则 i cki k , i 1, 2, , n
k 1
于是
n
n
nn
(i , j ) ( cki k , clj l )
( k , l )ckiclj
k 1
l 1
k1 l 1
nn
aklckiclj CiAC j
k1 l 1
B (i , j ) CiAC j
i 1
j1
m
m
(i ,i ) (i , j )
m
i 1
i j
(i ,i ) 1 2 2 2 m 2
i 1
例3、已知 2,1,3,2, 1,2,2,1
在通常的内积定义下,求 ,( , ), , , .
解: , 22 12 32 22 18 3 2 ( , ) 2 1 1 2 3 2 2 1 0 ,
0 ,
定义2:设 、 为欧氏空间中两个向量,若内积
, 0
则称 与 正交或互相垂直,记作 .
注:
① 零向量与任意向量正交.

, ,
2

cos , 0
.
5. 勾股定理
设V为欧氏空间, , V
2 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在空间L(1, 2 ,...,m )中, 它与L(1, 2 ,...,m )中所有元素正交
21:33 第18页
正交向量组与标准正交基
定义:n维欧氏空间中,
正交向量组:两两正交的非零向量组
标准正交向量组:两两正交的非零单位向量组
正交基:由正交向量组构成的一组基
标准正交基:由标准正交向量组构成的一组基
设 ki i . 则( , ) ( , ki i ) 0.
i 1 i 1 n n
由内积正定性 , 0.
和一组基正交(内积为0)的向 量,必为0向量 线性空间中一个元素, 与这个空间中所有元素正交, 那么这个元素一定是0元素
21:33 第16页
例:1 , 2 , , m是n维欧氏空间的m个向量, (1 , 1 ) ( 2 , 1 ) 令G (1 , 2 , , m ) (1 , 2 ) (1 , m ) ( 2 , 2 ) ( 2 , m ) ,
长度的性质
(1) | | 0,且 | | 0当且仅当 0;
(2)对任意的实数 k及向量, | k || k || |;
(3)Cauchy Schwarz 不等式: 对任意两个向量 ,,我们有| ( , ) || || | , 等号成立当且仅当 ,线性相关; (4)三角不等式:
i 1 j 1
பைடு நூலகம்
例:C ([a, b])中可定义如下内积:
函数内积
b
对任意f ( x), g ( x) C ([a, b]),( f ( x), g ( x)) f (t ) g (t )dt
a
第4页
21:33
多项式内积
例:在R[ x]n 1中,对任意的p ( x), q ( x) R[ x]n 1 , 设p ( x) a0 x n a1 x n 1 an , q ( x) b0 x n b1 x n 1 bn , 定义( p ( x), q ( x)) ai bi
21:33
第8页
Cauchy-Schwarz不等式的应用
| ( , ) || || | ,等号成立当且仅当 ,线性相关;
(1)设ai , bi , i 1,2, , n都是实数, n 2 n 2 那么 | ai bi | ai bi i 1 i 1 i 1
21:33 第20页
若n维欧氏空间中有一组标 准正交基, 1 , 2 , , n。 对任意的 , V , k R, 设
对任意实数 x,由内积正定性 , 我们有 二次函数的判别式小于 或等于0 | x | ( x , x ) 0. 2 4 ( , ) 4( , )( , ) 0. 计算
这样( , )2 ( , )( , ). ( x , x ) ( x , x ) ( x , ) ( , x ) ( , ) 等号成立,即判别式为 0,
i 1 n
(这是R 中通常意义下的内积 )
n
( , ) 是一个实数
T T
另外一种内积定义: ( , ) a1b1 2a2b2 nanbn iai bi
i 1
n
21:33
第3页
例:R
m n
中可定义内积:
m n
矩阵内积
( A, B) aijbij , 这里A (aij ) mn , B (bij ) mn。
定义:若( , ) 0, 那么称和正交;
零向量与任意向量都正 交; 设和是V中两个非零向量 , 和正交当且仅当 ,
21:33

2
第14页
例:设对任意的 i 1,2,, m, 与i正交。那么 ( , ki i ) 0。
i 1
m
对任意的i 1,2,, m,与i正交,即( , i ) 0。
2 2
2

2
21:33
第12页
定义两个向量的夹角
Cauchy Schwarz 不等式: ( , ) 对任意两个非 0向量,,我们有| | 1, 定义:设和是V中两个非零向量,这两 个向量的 ( , ) ( , ) 夹角为 , arccos ; cos , ; | || | | || |
即对任意 0,我们有 是一个单位向量。 | |
21:33
第7页
长度的性质
(1) | | 0,且 | | 0当且仅当 0;
(2)对任意的实数 k及向量, | k || k || |;
(3)Cauchy Schwarz 不等式: 对任意两个向量 ,,我们有| ( , ) || || | , 等号成立当且仅当 ,线性相关;
21:33 第2页
定义了内积的实数域上的线性空间称为欧氏空间。
例:R n是实数域上的 n维线性空间。 对任意 (a1 , a2 ,, an )T , (b1 , b2 ,, bn )T , 定义: ( , ) a1b1 a2b2 anbn ai bi
内积实际上是对角度这一概念的抽象和推广,凡是 能够定义内积的地方,都可以有角度概念, 比如,矩阵之 间,多项式之间,函数之间.
21:33
第13页
定义两个向量的夹角
Cauchy Schwarz 不等式: ( , ) 对任意两个非 0向量,,我们有| | 1, 定义:设和是V中两个非零向量,这两 个向量的 ( , ) 过去几何中的: 夹角为 , arccos ; 垂直,夹角90度 | || |
1 , 2 ,, m线性相关当且仅当 G (1 , 2 ,, m ) 0。
系数矩阵行列式为 0 方程组有非0解 (1 , 1 ) (1 , 2 ) (1 , m ) x1 ( 2 , 1 ) ( 2 , 2 ) ( 2 , m ) x2 记 x11 ... xm m 0 ( , ) ( , ) ( , ) x m 2 m m m m 1 (i , ) (i , x11 ... xm m ) (i ,1 ) x1 (i , m ) xm 0
( m , 1 ) ( m , 2 ) ( m , m )
1 , 2 ,, m线性相关当且仅当 G (1 , 2 , , m ) 0。
1 , 2 ,, m线性相关 存在不全为0的x1 ,..., xm , 使得x11 ... xm m 0 ( x11 ... xm m ,1 ) (1 , 1 ) x1 ( m , 1 ) xm 0 ( x11 ... xm m ,i ) (1 ,i ) x1 ( m , i ) xm 0 ( x11 ... xm m , m ) (1, m ) x1 ( m , m ) xm 0
i 0 n
21:33
第5页
注意:在任何欧氏空间 中, (0, ) 0; ( ki i , li i ) ki l j ( i , j ),
i 1 i 1 i 1 j 1 m n m n
根据内积线性性得到
21:33
第6页
定义:设V是欧氏空间,对任意 V , 记 ( , )为 | | , 即 | | ( , ),称 | | 为的长度;长度为 1的向量称为 单位向量。 任何一个非零向量都可 以单位化,
由内积线性性 , ( , ki i ) ki ( , i )。
i 1 i 1 m m
从而,和线性空间 L(1 , 2 ,, m )中所有向量正交
这个例子说明:如果一个向量和 一组向量正交,那么它和这组向 量的任何线性组合正交
21:33
第15页
例:设1 , 2 ,, n是n维欧氏空间的一组基 , 是V中一个向量。 若( , i ) 0, i 1,2,, n则 0。
21:33
第19页
若n维欧氏空间中有一组标 准正交基, 1 , 2 , , n。 对任意的 , V , k R, 设
x11 x2 2 xn n (1 , 2 , , n ) x, y11 y2 2 yn n (1 , 2 , , n ) y,
欧氏空间
21:33
第1页
内积
设V是实数域上的线性空间 。若对任意两个向量 和, 按照一定的法则,存在 唯一的一个实数与 和对应, 记这个实数为 ( , )。进一步,如果我们有 (1)( , ) ( , ); (对称性) (2)线性性 : ( , ) ( , ) ( , ); (k , ) k ( , ), 这里k是一个实数; (3)( , ) 0, 且( , ) 0当且仅当 0; (正定性) 那么我们称实数 ( , )是和的内积。
方程组有非 0解 系数矩阵行列式为 0
21:33 第17页
例:1 , 2 , , m是n维欧氏空间的m个向量, (1 , 1 ) (1 , 2 ) (1 , m ) ( 2 , 1 ) ( 2 , 2 ) ( 2 , m ) 令G (1 , 2 , , m ) , ( m , 1 ) ( m , 2 ) ( m , m )
n
(2)设f ( x), g ( x) C ([a, b]),那么

21:33
b
a
f (t ) g (t )dt

b
a
f ( x)dx g 2 ( x)dx
2 a
b
第9页
Cauchy-Schwarz不等式的证明
| ( , ) || || | ,等号成立当且仅当 ,线性相关;
相关文档
最新文档