暴强Dijkstra算法求任意两点间最短路径(matlab程序)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

效果展示:

开头输入的是点的序列号(表示第几个点),显示的是最短路径的走法(同样以点的序列号显示,表示途径的第几个点)。

%编写m文件

function [distance,path]=dijkstra(A,s,e)

% [DISTANCE,PA TH]=DIJKSTRA(A,S,E)

% returns the distance and path between the start node and the end node.

%

% A: adjcent matrix

% s: start node

% e: end node

% initialize

n=size(A,1); % node number

D=A(s,:); % distance vector

path=[]; % path vector

visit=ones(1,n); % node visibility

visit(s)=0; % source node is unvisible

parent=zeros(1,n); % parent node

% the shortest distance

for i=1:n-1 % BlueSet has n-1 nodes

temp=zeros(1,n);

count=0;

for j=1:n

if visit(j)

temp=[temp(1:count) D(j)];

else

temp=[temp(1:count) inf];

end

count=count+1;

end

[value,index]=min(temp);

j=index; visit(j)=0;

for k=1:n

if D(k)>D(j)+A(j,k)

D(k)=D(j)+A(j,k);

parent(k)=j;

end

end

end

distance=D(e);

% the shortest distance path

if parent(e)==0

return;

end

path=zeros(1,2*n); % path preallocation

t=e; path(1)=t; count=1;

while t~=s && t>0

p=parent(t);

path=[p path(1:count)];

t=p;

count=count+1;

end

if count>=2*n

error(['The path preallocation length is too short.',...

'Please redefine path preallocation parameter.']);

end

path(1)=s;

path=path(1:count);

%算法实现

clc; clear; close all;

%% 载入设置数据

lines = load('Distance.txt'); %点与点之间的距离矩阵

A=lines;

A(find(A>10))=inf; %对步长的限制,根据自己的要求决定!我们在此选择10. % A就是连接矩阵,其中对角线为0,表示本身

% 有连接关系的就对应线的长度

% 没有连接关系的就对应inf

%% 下面的是dijstra算法,有两种方式可以调用

s =input('输入起点'); % 起点(点的序号)

e =input('输入终点'); % 终点(点的序号)

[distance,path0] = dijkstra(A,s,e);

fprintf('\n Use Dijkstra the Min Distance is: %.5f \n', distance);

fprintf('\n Use Dijkstra the Min Distance path is: \n');

disp(path0);

A1 = A;

A1(isinf(A1)) = 0;

[d, p, pred] = graphshortestpath(sparse(A1), s, e);

fprintf('\n Use graphshortestpath the Min Distance is: %.5f \n', d);

fprintf('\n Use graphshortestpath the Min Distance path is: \n');

disp(p);

for i = 1 : length(path0)

if i == length(path0)

temp = [path0(1) path0(i)];

else

temp = [path0(i) path0(i+1)];

end

end

相关文档
最新文档