数据分析 统计分析 培训PPT

合集下载

数据分析师培训PPT课件完整版)pptx

数据分析师培训PPT课件完整版)pptx
数据分析师需要对收集到的数据进行清洗和整理,去除无效和错误数据,确保数据的准确性和可靠性。
数据清洗和整理
数据分析
数据分析师需要将分析结果以图表、报告等形式呈现出来,帮助组织更好地理解和利用数据。
数据可视化
数据分析师可以在各个行业领域中找到工作机会,如金融、电商、医疗、教育等。
随着数据驱动决策的普及,数据分析师的地位和作用越来越重要,未来的职业发展前景更加广阔。
分类与聚类
掌握常见的分类算法(如决策树、朴素贝叶斯、支持向量机)和聚类算法(如K-means、层次聚类),并能够根据业务需求选择合适的算法。
数据分析师的职业素养与道德规范
THANKS
感谢您的观看

汇报人:可编辑
2023-12-24
数据分析师培训ppt课件完整版)pptx
目录
数据分析师概述数据分析基础知识数据分析工具与技术数据分析实战案例数据分析师技能提升数据分析师的职业素养与道德规范
数据分析师负责收集各种数据,包括市场调查、销售数据、用户行为数据等,为组织提供全面的数据资源。
数据收集
在此添加您的文本17字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
详细描述
数据采集与清洗:收集历史股票数据和市场信息,清洗和整理数据,去除异常值和缺失值。
特征提取与选择:从数据中提取与股票价格相关的特征,如开盘价、收盘价、成交量等,选择对预测有用的特征。
理解参数估计、假设检验、回归分析等统计方法,以及如何根据数据做出合理的预测和推断。
推断性统计
理解概率、随机变量、期望、方差等基本概念,以及常见概率分布(如二项分布、正态分布)的应用。

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件
对数据进行初步分析,了解数据 的分布、特征和关系。
结果解释和应用
将分析结果转化为业务洞察和行 动计划,并应用到实际业务中。
模型评估和优化
对模型进行评估和优化,以提高 预测准确性和业务洞察力。
建立模型
根据分析目标,选择合适的数据 分析方法和模型。
02
CATALOGUE
数据收集与整理
数据来源
01
02
格式统一
将不同格式的数据统一 为标准格式,便于后续
分析。
数据转换
对数据进行必要的转换 ,以满足分析需求。
数据存储与备份
选择合适的存储介质
根据数据量、访问频率和安全 性要据进行备份,以防数 据丢失。
数据归档
将不常用的数据归档到低成本 存储设备上。
数据迁移
随着数据量的增长,适时迁移 数据到更高级的存储设备。
03
04
内部数据
公司数据库、CRM系统、日 志文件等。
外部数据
市场调查、公共数据、第三方 数据提供商等。
社交媒体数据
社交媒体平台上的用户生成内 容。
IoT数据
物联网设备产生的数据。
数据清洗与整理
缺失值处理
删除缺失值过多、无法 获取有效信息的记录。
异常值处理
识别并处理异常值,如 离群点、错误数据等。
简洁明了
避免图表过于复杂,突出核心信息 ,减少不必要的元素。
选择合适的图表类型
根据数据特点选择合适的图表类型 ,如柱状图、折线图、饼图、散点图 等。
色彩和字体选择
使用易于阅读的颜色和字体,确保 图表清晰易读。
数据可视化案例分享
销售趋势分析
使用折线图展示不同时间段内的销售数据, 分析销售趋势。

数据分析统计分析培训ppt

数据分析统计分析培训ppt

9
大家应该也有点累了,稍作休息
大家有疑问得,可以询问与交流
10
第二课时: Excel常用操作技巧
Sum:求与 Average:平均值 Max:最大值 Min:最小值 Large:第几大值 Count:计数 Round:保留小数位 Int:取整数位 And Or If
常用 函数
最有价值得函数 Vlookup:查找引用 精确查找:最常用,找到完全
客户性别 客户年龄 消费值 地理区域 使用得产品类型 拆分后在同一个项目里可能拥有若干个呼叫子清单,之所以这样做 就是您会发现在不同得呼叫时段/不同得技能组/不同性别得电话销售 代表/不同得排序方式下,不同得呼叫子清单会有着不同得绩效表现。 这个时候我们要做得只就是根据数据分析得结果相应得去调整各个子 清单,与其最适合得要素进行搭配就可以了!
数据分析在整个电话销售项目中就是贯穿始末得,但主要集中在以 下三个方面:
数据清单得提取
现场活动得监控
项目活动得总结
20
第六课时:数据分析在电话销售项目中得应用
数据清单得提取
电话销售得一个前提条件就是拥有大量得呼叫清单(CALL LIST),呼 叫清单就意味着潜在客户,因此为了寻找合适得清单不少企业甚至宁愿 花费巨额代价去第三方公司购买。而在某些企业得合作案例中我们也 瞧到,客户资源竟作为重要得参股条件为企业获得股权上得利益。但另 一方面我们也注意到,在拥有大量终端客户资源得电信及银行等行业, 在实施电话销售项目时对数据得滥用令人痛心!
案例1:某电信公司在推广新业务得时候,对所有得用户进行地毯式 得外呼,耗时之长、影响之大令人叹为观止。但实际结果就是新增市场 份额得目得就是达到了,但作为一个商业项目来核算得话,收益却就是 负值。用户得满意度及忠诚度也会因为这个不合时宜得电销活动受到 影响,对今后其她电话销售活动得开展埋下了隐患。

数据分析师培训PPT课件完整版

数据分析师培训PPT课件完整版
商业智能定义
角色
在企业和组织中,数据分析师扮 演着数据解读者、业务顾问和决 策支持者的角色。
数据分析师的核心能力
数据处理和分析能力
沟通和表达能力
掌握数据处理和分析技术,包括数据 挖掘、数据清洗、数据可视化等。
能够将复杂的数据分析结果以简洁明 了的方式呈现给非技术人员,具备良 好的沟通和表达能力。
业务理解和洞察能力
从大量数据中提取出有用信息和 知识的过程。
数据挖掘流程
包括数据准备、数据挖掘、结果 评估和应用四个阶段。
数据挖掘技术
分类、聚类、关联规则挖掘、时 间序列分析等。
关联规则挖掘与聚类分析
关联规则挖掘
发现数据项之间的有趣关联和相关性,如购物篮 分析等。
聚类分析
将数据对象分组,使得同一组内的对象相似度较 高,不同组间的对象相似度较低。
颜色搭配等。
可视化工具
介绍常用的数据可视化工具和技术 ,如Excel、Tableau、Power BI 等。
报告制作
阐述数据分析报告的结构和内容, 包括标题、摘要、目录、正文、结 论和建议等部分,同时提供报告制 作的技巧和规范。
数据分析方法与技
03

描述性统计分析
数据可视化
利用图表、图像等方式 直观展示数据分布和特
根据样本数据构造总体参数的 置信区间,评估参数估计的可
靠性。
方差分析
研究不同因素对总体变异的影 响程度,确定各因素对结果的
影响显著性。
回归分析
探究自变量与因变量之间的线 性或非线性关系,建立预测模
型。
机器学习算法与应用
监督学习
通过已知输入和输出数据进行 训练,建立预测模型,如线性 回归、逻辑回归、支持向量机

培训培训数据分析报告(PPT

培训培训数据分析报告(PPT
主要用于文学领域的学术论文引用。
3
Chicago格式
主要用于历史和传记领域的学术论文引用。
THANKS。
通过问卷调查、面谈、绩效评估等方 式收集员工对培训的反馈意见。
分析评估结果和反馈意见,找出培训 中存在的问题和改进点,制定针对性 的改进措施。
定期对培训效果进行跟踪评估,确保 培训持续改进和提高。
05
结论
培训数据分析的价值和意义
提升培训效果
通过数据分析,可以了解 培训过程中存在的问题和 不足,从而针对性地改进 ,提高培训效果。
评估方法
可以采用问卷调查、考试 、绩效评估等多种方式进 行培训效果评估。
效果反馈
将培训效果评估结果及时 反馈给相关人员,以便针 对性地改进和优化培训计 划,提高培训质量。
培训需求预测
预测方法
通过分析组织战略、业务发展、 员工职业规划等因素,结合历史 培训数据和趋势分析,预测未来
培训需求。
需求优先级
SPSS
用于数据分析和统计检验,如 描述性统计、回归分析等。
Python
用于数据清洗、处理和可视化 ,如Pandas、Matplotlib等
库的应用。
R语言
用于数据分析和统计建模,如 基础统计分析、机器学习算法
等。
数据解读和呈现
数据解读
通过对收集到的数据进行统计 分析,得出有意义的结论和解
释。
图表呈现
优化培训计划
数据分析可以帮助我们了 解培训需求和目标受众, 从而制定更符合实际需求 的培训计划。
评估培训投资回报
通过数据分析,可以量化 培训的效果和收益,为企 业的决策提供有力的数据 支持。
对未来培训工作的展望和建议

培训培训数据分析报告(PPT

培训培训数据分析报告(PPT

THANKS 感谢观看
描述性统计分析还可以通过绘制直方图、箱线图等图形,更加直观地展 示数据的分布情况。
推断性统计分析
推断性统计分析是通过样本数据来推 断总体特征的统计方法,包括参数估 计和假设检验。
假设检验是通过样本数据来检验关于 总体的某个假设是否成立,帮助我们 了解总体特征是否符合预期。
参数估计是通过样本数据来估计总体 的参数值,如总体均值和总体比例。
案例二:销售培训数据分析
总结词
销售业绩与培训效果关联性
详细描述
通过对销售培训数据进行分析,探究销售业绩与培训效果之间的关联性。收集销售人员 的培训参与情况、考核成绩和销售业绩数据,利用统计分析方法,如回归分析或相关分 析,分析培训效果与销售业绩之间的关联程度。根据分析结果,优化销售培训计划,提
高销售人员的专业能力和业绩。
总结词
员工参与度、学习效果与满意度
详细描述
通过分析员工在线培训数据,评估员工参与度、学习效果和满意度。使用数据分析工具,如Excel或Python,对 在线培训平台的数据进行可视化分析,以了解员工的学习进度、课程完成率和考试成绩等。同时,结合员工反馈 ,评估在线培训的优缺点,为后续培训提供数据的准确性和 完整性。
数据清洗与整理
数据清洗
去除重复、错误或不完整的数据,对缺失值进行填补或删除 。
数据整理
将数据按照统一格式进行分类、排序和组织,以便进行后续 分析。
数据存储与备份
数据存储
选择合适的存储介质和数据库管理系统,确保数据的安全性和可访问性。
推断性统计分析可以帮助我们了解总 体的特征和规律,从而为决策提供依 据。
数据可视化分析
数据可视化分析是通过图形化手 段呈现数据和分析结果,帮助人 们更加直观地理解数据和分析结

数据分析培训课件精品ppt

数据分析培训课件精品ppt
总结词
探索性分析是对数据进行深入挖掘和探索的方法,旨在发现数据中的潜在规律 和模式。
详细描述
探索性分析通过绘制图表、计算相关系数、进行假设检验等方式,深入挖掘数 据中的潜在规律和模式,为后续的数据分析提供方向和思路。
预测性分析
总结词
预测性分析是利用已知数据和算法对未来进行预测的方法,包括回归分析、时间 序列分析等。
可读性
数据的格式和呈现是否易于理解。
03
数据处理与清洗
数据预处理
01
02
03
数据清洗
去除重复、无效或异常数 据,确保数据质量。
数据转换
将数据从一种格式或类型 转换为另一种格式或类型 ,以便于分析。
数据整合
将多个数据源的数据进行 整合,形成统一的数据集 。
数据缺失处理
删除缺失数据
对于缺失值较多的数据, 可以考虑删除含有缺失值 的记录。
市场风险分析:分析市场 走势和波动性,预测未来 市场风险,提前做好风险 管理准备。
用户行为分析
详细描述
用户画像构建:利用数据分析技 术,构建用户画像,了解用户特 征和需求。
用户行为路径分析:分析用户在 产品或服务中的使用路径和交互 行为,发现潜在优化点。
总结词:通过数据分析,了解用 户需求、偏好和行为模式,优化 产品设计和服务体验。
数据分析培训课件精品
汇报人:可编辑
2023-12-23
目录
• 数据分析基础 • 数据来源与获取 • 数据处理与清洗 • 数据分析方法与技巧 • 数据分析应用场景 • 数据分析案例分享
01
数据分析基础
数据分析的定义与重要性
数据分析的定义
数据分析是指通过统计方法和分 析工具对数据进行分析、挖掘和 解释,以提取有价值的信息和知 识的过程。

《数据分析培训》PPT课件

《数据分析培训》PPT课件
竞品分析
通过分析竞品的销售数据、产品特 点、价格策略等,了解市场动态和 竞争态势,制定针对性的竞争策略 。
金融行业数据分析
风险评估
通过分析金融数据,评估 贷款、投资等业务的信用 风险和市场风险,为决策 提供依据。
市场分析
通过分析金融市场的交易 数据、宏观经济数据等, 预测市场走势,为投资决 策提供支持。
柱状图
用于比较不同类别 之间的数据。
饼图
用于展示各部分在 整体中所占的比例 。
热力图
通过颜色的变化展 示数据的分布和密 度。
数据可视化工具
Excel
适用于基础的数据分析 和可视化。
Tableau
功能强大的数据可视化 工具,支持多种数据源
连接。
Power BI
基于云的数据分析和可 视化工具,支持团队协
客户分析
通过分析客户的金融交易 行为、资产状况等数据, 了解客户需求和偏好,优 化产品设计和服务策略。
制造业数据分析
生产数据分析
通过分析生产过程中的数据,了 解生产效率、质量、成本等方面 的情况,优化生产流程和降低成
本。
供应链分析
通过分析供应链数据,了解供应 商、库存、物流等方面的情况, 优化供应链管理和降低运营成本
数据类型转换
说明如何将数据转换为正确的 数据类型,如将字符串转换为 日期或数字。
数据标准化和归一化
解释标准化和归一化的概念, 并说明在数据分析中的重要性

数据探索
描述性统计分析
介绍均值、中位数、众数、方差等统 计量,并说明如何使用它们来初步了 解数据。
数据可视化
介绍如何使用图表(如直方图、箱线 图、散点图等)来直观展示数据的分 布和关系。

数据分析统计分析培训ppt

数据分析统计分析培训ppt

VS
详细描述
利用数据分析工具对产品成本、市场需求 、竞争情况等数据进行处理和分析,评估 产品的盈利潜力和市场份额。根据分析结 果,制定针对性的定价策略,提高销售量 和利润。同时,根据市场反馈和竞争状况 ,灵活调整定价策略,保持竞争优势。
06
CATALOGUE
数据分析在各行业的应用
金融行业的数据分析
透明性原则
数据分析方法和过程应清晰明了,便于理解,避免黑箱操作或暗箱 操作。
可解释性原则
分析结果和结论应具有可解释性,能够为决策提供充分依据,避免 误导。
THANKS
感谢观看
整性。
数据清洗
对数据进行预处理,包括缺失 值处理、异常值处理、数据转
换等。
数据分析
运用统计分析方法对数据进行 分析,以提取有价值的信息和
知识。
结果呈现
将分析结果以图表、报告等形 式呈现出来,便于理解和应用

数据分析的常用工具
Excel
Python
Excel是一款常用的办公软件,也具有强大 的数据分析功能,如数据透视表、公式计 算等。
推论性统计分析
总结词
推论性统计分析是通过样本信息来推断总体特征的一种方法,它可以帮助我们了 解总体的分布特征和规律。
详细描述
推论性统计分析包括参数估计和假设检验两种方法。参数估计是通过样本数据来 估计总体参数的大小,如总体均值、总体比例等;假设检验则是通过样本数据来 检验对总体的某种假设是否成立。
02
CATALOGUE
统计分析基础
描述性统计分析
总结词
描述性统计分析是数据分析的基础,它通过收集、整理、描述数据的方式来揭 示数据的分布特征和规律。
详细描述

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件

数据安全和隐私保护
数据安全
随着数据价值的不断提升,数据安全问题也变得越来越重要。未来的数据分析将更加注重数据的安全保护,包括 数据的加密、备份、访问控制等方面,确保数据的完整性和安全性。
隐私保护
在数据分析过程中,保护用户隐私是一个重要的伦理问题。未来的数据分析将更加注重隐私保护,通过匿名化、 去标识化等技术手段,保护用户隐私不受侵犯。同时,数据分析人员也需要遵守伦理规范,确保用户隐私得到尊 重和保护。
运营效率等。
数据分析的流程
数据清洗
对数据进行预处理,包括缺失 值处理、异常值处理、数据转 换等。
建模分析
根据分析目的,选择适当的分 析方法和模型进行数据分析。
数据收集
根据分析目的,收集相关的数 据。
数据探索
对数据进行初步分析,了解数 据的分布和特征。
结果解读与报告
将分析结果进行解读,并形成 报告,以便于决策者理解和应 用。
数据集成
将多个数据源的数据进行整合,形成一个统 一的数据集。
数据清洗
缺失值处理
根据实际情况选择填充缺失值的方法 ,如使用均值、中位数、众数等。
异常值处理
通过统计方法、业务逻辑等方式识别 异常值,并采取相应的处理措施。
重复值处理
去除重复值或对重复值进行合并处理 。
格式统一
将不同格式或类型的数据统一为标准 格式,以便于后续分析。
客户细分
通过数据分析将客户群体 细分,以便更好地理解客 户需求并提供定制化服务 。
市场趋势预测
通过分析历史销售数据和 市场趋势,预测未来的市 场需求和销售情况。
产品定位与定价
通过分析市场和竞争环境 ,确定产品的定位和定价 策略。
销售数据分析

《数据分析培训》PPT课件

《数据分析培训》PPT课件
交互式图表制作
利用工具提供的功能,增加图表交互性,如鼠标悬停提示、筛选器 、动态效果等。
数据报告制作流程与注意事项
数据报告制作流程
明确报告目标、收集并整理数据、设计报告结构、制作可视化图表、编写文字 说明、校对并调整格式、分享并演示报告。
注意事项
确保数据准确性和完整性、统一数据格式和度量单位、保持报告逻辑性和连贯 性、使用清晰简洁的语言和图表、注意报告排版和美观度、考虑受众背景和需 求等。
大数据处理技术与
05
应用
大数据概念、特点及处理技术概述
大数据概念
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是 需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和 多样化的信息资产。
大数据特点
大数据具有数据量大、处理速度快、数据类型多、价值密度低等特点。
推断性统计分析方法及应用案例
参数估计
利用样本数据对总体参数进行估计, 包括点估计和区间估计。
假设检验
提出原假设和备择假设,通过检验统 计量和P值判断假设是否成立。
方差分析
研究不同因素对因变量的影响程度, 如单因素方差分析和多因素方差分析 。
相关与回归分析
探讨变量之间的相关关系和因果关系 ,建立回归模型进行预测和控制。
Spark
Spark是加州大学伯克利分校AMP实验室开发的通用大数据处理框架, 具有处理速度快、易用性好、通用性强和随处运行等特点。
03
其他大数据处理框架
除了Hadoop和Spark外,还有Flink、Storm等大数据处理框架,它们
各有特点,适用于不同的应用场景。
大数据在各行各业的应用案例
金融行业

《数据分析培训》PPT课件

《数据分析培训》PPT课件
行动来提高效率和盈利能力。
数据分析还可以帮助组织改进产 品和服务,提高客户满意度和忠
诚度。
数据分析的流程
数据收集
这是数据分析的第一步,涉及从各种 来源收集数据,包括数据库、社交媒 体、市场调查等。
结果解释和报告
最后,将分析结果解释给相关人员并 编写报告,以帮助他们做出更好的决 策。
01
02
数据清洗和整理
柱状图
折线图
用于比较不同类别数 据的大小。
饼图
散点图
热力图
用于表示各部分在整 体中的比例。
用于表示数据的密度 和分布。
数据可视化最佳实践
明确目的
在开始可视化之前,明确想要传达的信 息和目标受众。
适应性和可读性
根据观众的背景和需求调整图表,确保 可读性和易理解性。
选择合适图表
根据数据和分析目的选择合适的图表类 型。
详细描述
通过描述性分析,可以了解数据的分布情况、异常值和缺失值,为数 据预处理和进一步分析提供依据。
探索性分析
探索性分析通过绘制图表、相关 性分析、因子分析等方法,发现 数据之间的关联、趋势和模式。
通过探索性分析,可以发现隐藏 在数据中的潜在规律和市场趋势 ,为企业决策提供支持。
总结词 详细描述 总结词 详细描述
数据分析包括使用统计和预测模型来提取数据中的有用 信息,并将其转化为可操作的见解。
数据分析师是专门从事数据分析的专业人员,他们使用 各种工具和技术来处理和分析数据。
数据分析的重要性
数据分析可以帮助组织更好地理 解其业务和市场,从而做出更明
智的决策。
通过数据分析,组织可以发现潜 在的机会和风险,并采取适当的
解释图表
提供必要的图表说明和标注,帮助观众 理解。

《数据分析培训》PPT课件

《数据分析培训》PPT课件
数据可视化
R提供了许多优秀的可视化包,如ggplot2、lattice等,可以生成各种类型的图表和图像,帮助用户更好地理解数据和分析结果。
统计分析方法
R拥有丰富的统计分析方法,包括回归分析、聚类分析、主成分分析等,可以满足各种数据分析需求。
数据分析方法
04
总结词:描述性分析是对数据进行基础描述,提供数据的总体特征和分布情况。详细描述:描述性分析主要是对数据进行整理、分类和汇总,计算出各种统计量,如均值、中位数、众数、方差等,以展示数据的集中趋势和离散程度。总结词:描述性分析是数据分析的基础,为后续的探索性和预测性分析提供数据准备。详细描述:在进行探索性和预测性分析之前,需要对数据进行清洗、去重、异常值处理等操作,确保数据的质量和准确性。同时,描述性分析还可以帮助我们了解数据的分布情况,为后续的分析提供参考。
数据分析在现代商业和社会中具有重要意义,能够帮助企业和个人做出更科学、更准确的决策。
通过数据分析,企业可以更好地了解市场需求、优化产品和服务、提高运营效率、降低成本等。
在竞争激烈的市场环境中,数据分析能力已经成为企业核心竞争力的重要组成部分。
根据分析目的和需求,收集相关数据。
数据收集
对数据进行预处理,包括缺失值处理、异常值处理、数据转换等。
《数据分析培训》ppt课件
汇报人:可编辑
2023-12-24
数据分析概述数据收集与整理数据分析工具数据分析方法数据可视化数据分析应用
contents
目录
数据分析概述
01
01
02
数据分析包括数据收集、清洗、整合、探索、建模和可视化等多个环节,旨在帮助企业或个人更好地理解数据,做出科学决策。
数据分析是指通过统计和数学方法对数据进行分析、挖掘和解释,以揭示数据背后的规律、趋势和关联性的过程。

数据分析(培训完整)ppt课件(精)

数据分析(培训完整)ppt课件(精)

01
02
Python
一种流行的编程语言,提供丰富的数 据处理和分析库,如pandas、 numpy等。
03
R语言
一种专门为数据分析和统计计算设计 的编程语言,提供强大的数据处理和 可视化功能。
05
04
SQL
一种用于管理和查询关系型数据库的 标准语言,适用于大规模数据的处理 和分析。
数据收集与预处理
分析方法
运用统计学和机器学习 算法,构建风险评分模 型,对客户进行分类和
预测。
实战步骤
数据探索与预处理、特 征选择、模型构建与验 证、模型部署与监控。
案例三:医疗健康领域的数据挖掘应用
01
02
03
04
数据来源
医疗电子病历、健康监测数据 、生物医学文献等。
分析目标
挖掘疾病与症状之间的关联规 则,辅助医生进行疾病诊断和
分析方法
采用数据挖掘和机器学习技术 ,对用户行为数据进行清洗、 转换和建模,提取有用特征并 训练模型。
实战步骤
数据预处理、特征提取、模型 训练与评估、结果可视化与解
读。
案例二:金融风险控制模型构建
数据来源
银行信贷数据、征信数 据、第三方数据等。
分析目标
识别潜在风险客户,预 测客户违约可能性,为
信贷决策提供支持。
数据地图
将数据与地理空间信息相结合,通过地图形式展 示数据的空间分布和特征。
数据动画
利用动画技术动态展示数据的变化过程,增强数 据的直观性和易理解性。
数据挖掘与机器学
04

数据挖掘的基本概念
数据挖掘定义
从大量数据中提取出有用信息和知识的过程。
数据挖掘任务

数据分析师培训PPT课件完整版)pptx

数据分析师培训PPT课件完整版)pptx

数据分析师的核心能力
数据处理能力
统计分析能力
数据分析师需要具备强大的数据处理能力 ,能够从海量数据中提取有用的信息,并 进行数据清洗、预处理和可视化。
数据分析师需要熟练掌握各种统计分析方 法,如描述性统计、回归分析、聚类分析 等,以从数据中挖掘出有用的信息。
商业理解能力
沟通能力
数据分析师需要具备对商业的理解和洞察 力,能够将数据与商业实践相结合,为企 业提供实用的决策建议。
01
02
03
数据清洗
处理缺失值、异常值、重 复值
数据转换
数据类型转换、数据标准 化、数据归一化
数据整合
合并数据、数据关联、数 据去重
数据可视化与报表制作
数据可视化
图表类型、可视化工具、可视化技巧
报表制作
报表设计、报表工具、报表发布
数据分析报告的撰写
报告结构、报告内容、报告呈现方式
03
数据分析工具与技术
理和分析。
数据分析方法
掌握R中常用的数据分析 方法,如描述性统计、 回归分析、聚类分析等

数据可视化Байду номын сангаас
学习使用R的内置函数和 包,如ggplot2、plotly 等,创建各种图表和图
形。
04
数据分析方法与模型
描述性分析
总结与概括
对数据进行简单的统计和 描述,如平均值、中位数 、众数等。
数据可视化
通过图表、图像等方式直 观展示数据特征和分布情 况。
数据分析师是指专门从事数据分析与数据挖掘工作的专业人员,他们通过对数 据的收集、整理、分析和挖掘,为企业提供数据支持和决策建议。
数据分析师的职责
数据分析师的主要职责包括收集和整理数据,进行数据清洗和预处理,运用统 计分析、机器学习等方法进行数据挖掘和分析,最终为企业提供数据支持和决 策建议。

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件

市场营销
03
在市场营销中,数据可视化可以帮助企业了解 消费者行为和市场趋势,制定更有针对性的营
销策略。
项目管理
04
在项目管理中,数据可视化可以帮助团队更好 地了解项目进度和资源使用情况,提高项目管
理效率。
05
数据分析在业务中的应用
客户细分与精准营销
客户细分
通过数据分析,将客户群体细分 为具有相似需求和行为的子群体 ,以便更好地理解客户需求并提 供定制化的产品和服务。
准确反映数据
数据可视化应准确地反映数据的特点 和变化趋势,避免误导观众。
可交互性
数据可视化应突出关键信息,使观众 能够快速找到重点。
常见的数据可视化工具
Excel
Excel是一款常用的办 公软件,也提供了数据 可视化的功能,如图表
、表格等。
Tableau
Tableau是一款功能强 大的数据可视化工具, 支持多种数据源,能够 快速创建交互式图表和
详细描述
通过建立回归分析、时间序列分析、决策树、随机森林等预测模型,对未来的趋 势和结果进行预测和分析。同时,运用模型评估和优化技术,提高预测的准确性 和可靠性。
04
数据可视化
数据可视化的原则
直观易懂
数据可视化应清晰、直观,避免过多 的视觉干扰,使观众能够快速理解数 据。
突出关键信息
数据可视化应具备可交互性,使观众 能够与数据进行互动,深入探索数据 。
探索性分析
总结词
深入挖掘数据之间的关系和潜在模式,为进一步的数据分析提供方向和思路。
详细描述
通过相关性分析、因子分析、聚类分析等方法,探索数据之间的关联和规律。 同时,运用数据可视化技术,如热力图、网络图等,揭示数据之间的复杂关系 和模式。

《数据分析培训课程》课件

《数据分析培训课程》课件

金融风控数据分析案例
总结词
通过数据分析识别金 融风险,提高风险控 制能力和客户满意度 。
数据整合
整合信贷、交易、征 信等各类金融数据。
风险评估
运用统计模型和算法 ,评估客户信用风险 和欺诈风险。
策略制定
根据风险评估结果, 制定相应的风险控制 策略。
监控与优化
实时监控风险变化, 调整策略以降低风险 和提高客户满意度。
05
04
市场趋势
识别热门话题和流行趋势,了解用户 需求和兴趣点。
THANKS
感谢观看
04
数据分析技术
统计分析
01
02
03
04
描述性统计
通过均值、中位数、众数、方 差等统计量描述数据的基本特
征。
推断性统计
利用样本数据推断总体特征, 如参数估计和假设检验。
相关与回归分析
研究变量之间的相关关系和因 果关系。
时间序列分析
对时间序列数据进行预测和趋 势分析。
数据挖掘
数据预处理
数据清洗、集成、转换和规约。
社交媒体数据分析案例
总结词
通过分析社交媒体数据,了解用户需 求和市场趋势,优化产品推广和品牌 形象。
01
02
数据收集
抓取社交媒体平台上的用户讨论、话 题、品牌提及等信息。
03
情感分析
运用自然语言处理技术,分析用户对 产品或品牌的情感态度。
推广与优化
根据分析结果,制定针对性的推广策 略和优化方案,提升品牌知名度和用 户满意度。
数据分析的常用工具
Excel
Excel是一款功能强大的电子表 格软件,可以进行简单的数据 处理、图表制作和数据分析。

数据分析基础培训课件PPT课件

数据分析基础培训课件PPT课件

数据采集与预处理
03
数据采集方法
网络爬虫
通过编写程序模拟浏览器行为 ,自动抓取互联网上的信息。
API接口调用
利用应用程序编程接口获取数 据,如Twitter、Facebook等 提供的API。
数据库查询
通过SQL等查询语言从数据库 中提取数据。
文件读取
读取本地或服务器上的文件, 如CSV、Excel、JSON等格式
数据分析师的职业发展
数据运营工程师/运营专员
数据挖掘工程师/大数据分析师
负责数据的采集、处理和分析工作,为产 品或运营提供数据支持。
负责大数据的挖掘和分析工作,发现数据 中的潜在价值。
大数据运维工程师
负责大数据平台的搭建、维护和管理等工 作。
大数据产品经理/大数据运营经 理
负责制定大数据产品的规划和设计,带领 团队实现产品的开发和运营目标。
重要性
在数字化时代,数据已经成为企业和社会的重要资源,数据分析能够帮助人们 更好地理解和利用数据,为决策提供支持,推动业务发展和社会进步。
数据分析的应用领域
医疗领域
疾病预测、药物研 发、医疗管理等。
政府领域
城市规划、交通管 理、环境保护等。
商业领域
市场分析、用户研 究、产品运营、风 险管理等。
金融领域
数据分析基础培训课件 PPT课件
汇报人: 2024-01-01
目 录
• 数据分析概述 • 数据分析基础知识 • 数据采集与预处理 • 数据分析方法与工具 • 数据分析案例实战 • 数据分析挑战与未来趋势
数据分析概述
01
数据分析的定义与重要性
定义
数据分析是指通过对数据进行收集、清洗、处理、建模和解释等一系列过程, 从中发现有用信息和形成结论的一门科学。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
客户性别 客户年龄 消费值 地理区域 使用的产品类型 拆分后在同一个项目里可能拥有若干个呼叫子清单,之所以这样 做是你会发现在不同的呼叫时段/不同的技能组/不同性别的电话销售 代表/不同的排序方式下,不同的呼叫子清单会有着不同的绩效表现。 这个时候我们要做的只是根据数据分析的结果相应的去调整各个子清 单,与其最适合的要素进行搭配就可以了!
案例1:某电信公司在推广新业务的时候,对所有的用户进行地毯 式的外呼,耗时之长、影响之大令人叹为观止。但实际结果是新增市 场份额的目的是达到了,但作为一个商业项目来核算的话,收益却是 负值。用户的满意度及忠诚度也会因为这个不合时宜的电销活动受到 影响,对今后其他电话销售活动的开展埋下了隐患。
2020/4/26
常用 快捷键
最有价值快捷键
F4:重复上次/上一组操作
快速选取单元格: ctrl+鼠标:选取多个单元 格 ctrl+↑↓←→ :快速切 到行列首尾 ctrl+home/end:快速切到 区域首个/最后一个单元格 shift+↑↓←→ or 鼠标: 选取连续单元格 ctrl+shift+↑↓←→:快 速选取数据区整列整行 Ctrl+1:单元格格式设置
▲ 实事求是,反映真相
数据分析报告罪重要的就是必须具备真实性。
▲ 用词准确,避免含糊
尽量用数据说话,避免使用“大约”“估计”“更多”“更少”等模糊字 眼。
▲ 篇幅适宜,简洁有效
篇幅长的报告不一定是好的报告!
▲ 结合业务,分析合理
一份优秀的分析报告不恩能够仅基于数据而分析问题,或简单地看图说话, 必须紧密结合公司的具体业务才能得出可实行、可操作的建议,否则将是纸上 谈兵,脱离实际。
数据分析的目的是为了管理决策提供依据,并在运营中不断发现 问题及解决问题。当沉浸其中的时候,当绩效不断提升的时候,我们 会发现工作原来是快乐的!
2020/4/26
27
4
第一课时:初步认识数据分析
数据分析方法论
数据分析方法论主要从宏观角度知道如何进行数据分析,从整体上对 数据进行规划,指导。好比如:做题的思路分析,项目的规划,起着火车 头的作用,指引前进的方向。
方法论 工具 技术
数据分析
服装制作
5W2H、4P、逻辑 树等思路分析
复制设计图
EXCEL、 SPSS 剪刀、缝纫机、电
数据分析培训课程安排
一,初步认识数据分析 二,Excel常用操作技巧 三,数据透视表(上机操作) 四,数据图表 五,数据分析报告 六,案例分析—数据分析在电话销售中的应用
2020/4/26
总部-项目信息管理部
1
第一课时:初步认识数据分析
什么是数据分析?
数据分析是指用适当的统计分析方法 对收集来的大量数据进行分析,将 它们加以汇总、理解并消化,以求 最大化地开发数据的功能,发挥数 据的作用。
2020/4/26
15
第五课时: 数据分析报告
5.4 数据分析报告的种类: 专题问题报告:用户流失分析、提升用户消费分析
综合分析报告:企业运营报告、世界人口发展报告
日常数据通报:月度数据报告、日报表
2020/4/26
16
第五课时: 数据分析报告
5.5 数据分析报告的结构:
总述
分述
总结
“总-分-总”结构的开篇部分包括标题页、目录和前沿(主要包括 分析背景、目的与思路);正文部分主要包括具体分析过程与结果;结 尾部分包括结论、建议及附录。
SAS等
熨斗等
交叉分析、相关分 析、回归分析、等
平面、立体剪裁等
(图表来源:小蚊子—黄书)
2020/4/26
5
5W2H分析法
第一课时:初步认识数据分析
2020/4/26
6
第一课时:初步认识数据分析
SWTO矩阵分析法
2020/4/26
7
第二课时: Excel常用操作技巧
提升excel使用效率的四个因素
结论是以数据分析结果为依据得出的分析结果,通常以综述性文字 来说明
建议是根据数据分析结论对企业或业务等所面临的问题额提出的改 进方法,建议主要关注在保持优势及改进劣势等方面。
2020/4/26
17
第五课时: 数据分析报告
5.6 撰写报告时的注意事项:
▲ 结构合理,逻辑清晰
数据分析报告的结构是否合理、逻辑条理是否清晰是决定此份报告成败的 关键因素。
2020/4/26
25
第六课时:数据分析在电话销售项目中的应用
现场活动的监控
根据上述图表中经过分析,我们会得出以下结论:
清单A和清单B在时段a和时段b的成功率是较其他时段要高的, 因此我们可以将这二个清单集中在a和b时段外呼。
而清单C明显看出在时段c和时段d的成功率要相对较高,因此可 以安排在这二个时段进行外呼。
2020/4/26
24
第六课时:数据分析在电话销售项目中的应用
现场活动的监控
接下来我们看看数据分析能在一个项目开始后帮到我们什么?在 现场活动的监控中数据分析主要是帮助我们对呼叫清单的合理利用及 对人员绩效提升。
在清单的合理利用上,除了上述方法进行数据提取外,我们在进 行一个外呼项目的时候还可以按照客户的以下特征将呼叫清单拆分成 不同的子清单:
2020/4/26
22
第六课时:数据分析在电话销售项目中的应用
数据清单的提取
根据上面的图表显示,并不是每个细分群体的客户都是能获得利 润,在125个群体中可能只有21个群体在盈亏平衡点之上,其他却都是 亏损的。如果我们对所有的群体进行外呼,其收益可能是负数。盈利 的那部分群体的收益会被其他亏损的群体所消耗掉。因此在进行大规 模的正式外呼前,如果我们只提取符合获利群体代码的数据,你就会 发现最终的结果会比你撒网式的外呼效果好的多!
2020/4/26
21
第六课时:数据分析在电话销售项目中的应用
数据清单的提取
Mr. Arthur M Hughes曾经提出过一个著名的RFM模式来进行销售 前的目标用户提取,所谓的RFM是指根据客户的最近购买情况、购买频 率、消费金额将用户群切割成不同的细分群体。之所以根据这三个方 面进行分割,是因为根据研究,客户的购买行为绝大部分都基于这三 种行为之上。我们按不同的程度将每种行为划成五个纬度,因此我们 用这种办法可以将客户分割成5×5×5=125个细分群体,每个细分群 体用一个代码来表示,例如112等。在进行某个产品销售之前,我们可 以按照样本提取的原则从每个群体中提取部分数据进行测试,结果你 会发现以下的情况:
2020/4/26
13
第五课时: 数据分析报告
5.2 数据分析报告的写作原则:
一定形式的思路创新, 不要局限于某一种思 维方式。
规范性
数据分析报告中所使 用的名词术语一定要 规范,标准统一,前 后一致,要与业内公 认的术语一致。
创新性
编制过程一定要谨慎, 基础数据必须真实完 整,分析过程必须科 学合理全面,分析结 果可靠,内容要实事 求是。
1,快捷键 ctrl+……
2,函数 vlookup
3,数据透视表
4,图表
2020/4/26
8
第二课时: Excel常用操作技巧
ctrl+a 全选 ctrl+c 复制 ctrl+v 粘贴 ctrl+f 查找 ctrl+P 打印 ctrl+S 保存 ctrl+Z 后撤 ctrl+Y 复制上一步骤 ctrl+enter 多重填充 alt+enter 单元格内换行 F1 帮助 F4 锁定位置 F5 定位 "=ctrl+G
2020/4/26
18
第六课时:数据分析在电话销售项目中的应用
数据分析在电话销售项目中的应用 ——从数据中获取利润
有人说,呼叫中心管理是在进行一场数字游戏!其实在呼叫中心 的运营管理中,是否善于利用数据将是决定管理水准的重要因素之一! 目前电话销售已经成为呼叫中心应用中的一个热点,下面将就电话销 售项目中的数据分析应用进行一些探讨
20
第六课时:数据分析在电话销售项目中的应用
数据清单的提取
以上是一个没有经过数据分析就贸然进行电话销售活动的典型案 例,在电信或银行等拥有大量客户数据的企业,在进行电话销售活动 前需要思索的是:究竟哪些客户是我们的目标用户呢?或许有些项目 会有很明显的客户群体特征,例如我们要做一个客户挽留,那流失的 客户就是一个很明显的目标群体。但深层次思考,在这些流失的用户 中100%都是会成功的吗?又或者100%都是我们应该去挽留的吗?答案 是否定的!因此在正式开始项目前,我们必须对这些数据进行有效的 分析,并提炼出最合适的目标用户群体。
2020/4/26
11
第四课时: excel图表
2020/4/26
12
第五课时: 数据分析报告
5.1 数据分析报告定义:
数据分析报告是根据数据分析原理和方法,运用数据来反应、 研究和分析某项事物现状、问题、原因、本质和规律,并得出结论, 提出解决问题办法的一种分析应用问题。
这种问题是决策者认识事物、了解事物、掌握信息、搜集相关 信息的主要工具之一,数据分析报告通过对事物数据全方位的科学分 析来评估其环境及反正情况,为决策者提供科学、严谨的依据,降低 风险。
全匹配 模糊查找:常用于数值查找,
匹配小于所查找数值中的 最大值 F4:改变单元格引用状态$$ 初始状态:相对引用 第一次,绝对引用 第二次,固定行 第三次,固定列 第四次,返回初始状态 混合引用 Index:引用具体位置的数 值 Math:返回相对位置
2020/4/26
10
第四课时: excel图表
2020/4/26
9
第二课时: Excel常用操作技巧
相关文档
最新文档