62个特殊函数图像
最全三角函数概念公式、图像大全完整版.doc
初等函数的图形幂函数的图形指数函数的图形各三角函数值在各象限的符号sinα·cscα cosα·secα tanα·cotα三角函数的性质反三角函数的图形反三角函数的性质三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinBtan(A+B) =tanAtanB -1tanBtanA +tan(A-B) =tanAtanB 1tanBtanA +-cot(A+B) =cotA cotB 1-cotAcotB +cot(A-B) =cotAcotB 1cotAcotB -+倍角公式tan2A =Atan 12tanA2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A -cos(2A)=2cos 1A +tan(2A)=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积sina+sinb=2sin2b a +cos 2ba - sina-sinb=2cos 2b a +sin 2ba -cosa+cosb = 2cos 2b a +cos 2ba -cosa-cosb = -2sin 2b a +sin 2ba -tana+tanb=ba b a cos cos )sin(+积化和差sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)]sinacosb = 21[sin(a+b)+sin(a-b)]cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sina cos(-a) = cosasin(2π-a) = cosacos(2π-a) = sinasin(2π+a) = cosacos(2π+a) = -sinasin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosatgA=tanA =aacos sin万能公式sina=2)2(tan 12tan2aa + cosa=22)2(tan 1)2(tan 1aa+- tana=2)2(tan 12tan2aa -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a)2其他非重点三角函数csc(a) =a sin 1 sec(a) =acos 1双曲函数sinh(a)=2e -e -aacosh(a)=2e e -aa +tg h(a)=)cosh()sinh(a a公式一设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系:sin (2π+α)= cosαcos (2π+α)= -sinαtan (2π+α)= -cotαcot (2π+α)= -tanαsin (2π-α)= cosαcos (2π-α)= sinαtan (2π-α)= cotαcot (2π-α)= tanαsin (23π+α)= -cosαcos (23π+α)= sinαtan (23π+α)= -cotαcot (23π+α)= -tanαsin (23π-α)= -cosαcos (23π-α)= -sinαtan (23π-α)= cotαcot (23π-α)= tanα(以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ赠送以下资料《二次函数的应用》中考题集锦10题已知抛物线222(0)y x mx m m =+-≠.(1)求证:该抛物线与x 轴有两个不同的交点;(2)过点(0)P n ,作y 轴的垂线交该抛物线于点A 和点B (点A 在点P 的左边),是否存在实数m n ,,使得2AP PB =?若存在,则求出m n ,满足的条件;若不存在,请说明理由.答案:解:(1)证法1:22229224m y x mx m x m ⎛⎫=+-=+- ⎪⎝⎭,当0m ≠时,抛物线顶点的纵坐标为2904m -<, ∴顶点总在x 轴的下方.而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.(或者,当0m ≠时,抛物线与y 轴的交点2(02)m -,在x 轴下方,而该抛物线的开口向上,∴该抛物线与x 轴有两个不同的交点.)证法2 :22241(2)9m m m ∆=-⨯⨯-=,当0m ≠时,290m >,∴该抛物线与x 轴有两个不同的交点. (2)存在实数m n ,,使得2AP PB =.设点B 的坐标为()t n ,,由2AP PB =知,①当点B 在点P 的右边时,0t >,点A 的坐标为(2)t n -,且2t t -,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即294n m >-.且(2)t t m +-=-(I ),2(2)t t m n -=--(II )由(I )得,t m =,即0m >.将t m =代入(II )得,0n =.∴当0m >且0n =时,有2AP PB =.②当点B 在点P 的左边时,0t <,点A 的坐标为(2)t n ,,且2t t ,是关于x 的方程222x mx m n +-=的两个实数根.2224(2)940m m n m n ∴∆=---=+>,即 294n m >-.且2t t m +=-(I ),222t t m n =--(II )由(I )得,3mt =-,即0m >. 将3m t =-代入(II )得,2209n m =-且满足294n m >-.∴当0m >且2209n m =-时,有2AP PB =第11题一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( )A.24米 B.12米C.米 D.6米答案:B第12题我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.关系式;(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(0t >)的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.))图(1)图(2)天)答案:解:(1)依题意,可建立的函数关系式为:2160(0120)380(120150)220(150180)5t t y t t t ⎧-+<<⎪⎪=<⎨⎪⎪+⎩,,. ≤ ≤≤ (2)由题目已知条件可设2(110)20z a t =-+. 图象过点85(60)3,,2851(60110)203300a a ∴=-+∴=.. 21(110)20300z t ∴=-+ (0)t >. (3)设纯收益单价为W 元,则W =销售单价-成本单价. 故22221160(110)20(0120)3300180(110)20(120150)3002120(110)20(150180)5300t t t W t t t t t ⎧-+---<<⎪⎪⎪=---<⎨⎪⎪+---⎪⎩,,. ≤ ≤≤ 化简得2221(10)100(0120)3001(110)60(120150)3001(170)56(150180)300t t W t t t t ⎧--+<<⎪⎪⎪=-+<⎨⎪⎪--+⎪⎩,,. ≤ ≤≤①当21(10)100(0120)300W t t =--+<<时,有10t =时,W 最大,最大值为100; ②当21(110)60(120150)300W t t =--+<≤时,由图象知,有120t =时,W 最大,最大值为2593;③当21(170)56(150180)300W t t =--+≤≤时,有170t =时,W 最大,最大值为56. 综上所述,在10t =时,纯收益单价有最大值,最大值为100元.第13题如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=)答案:解:(1)(3分)如图,设第一次落地时, 抛物线的表达式为2(6)4y a x =-+. 由已知:当0x =时1y =. 即1136412a a =+∴=-,. ∴表达式为21(6)412y x =--+.(或21112y x x =-++)(2)(3分)令210(6)4012y x =--+=,.212(6)4861360x x x ∴-===-<.≈,(舍去). ∴足球第一次落地距守门员约13米.(3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+1210CD x x ∴=-=. 1361017BD ∴=-+=(米). 解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0).设抛物线CND 为21()212y x k =--+.将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+. 23617BD ∴=-=(米). 解法三:由解法二知,18k =, 所以2(1813)10CD =-=, 所以(136)1017BD =-+=. 答:他应再向前跑17米.第14题荆州市“建设社会主义新农村”工作组到某县大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元),写出y 关于x 的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可)(3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.答案:(1)()227.5 2.70.90.30.9 4.5y x x x x x x =-++=-+. (2)当20.9 4.55x x -+=时,即2945500x x -+=,153x =,2103x =从投入、占地与当年收益三方面权衡,应建议修建53公顷大棚. (3)设3年内每年的平均收益为Z (万元)()()2227.50.90.30.30.3 6.30.310.533.075Z x x x x x x x =-++=-+=--+(10分)不是面积越大收益越大.当大棚面积为10.5公顷时可以得到最大收益.建议:①在大棚面积不超过10.5公顷时,可以扩大修建面积,这样会增加收益. ②大棚面积超过10.5公顷时,扩大面积会使收益下降.修建面积不宜盲目扩大.③当20.3 6.30x x -+=时,10x =,221x =.大棚面积超过21公顷时,不但不能收益,反而会亏本.(说其中一条即可)第15题一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写x 的取值范围);(3)请你通过(2)中的函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.答案:略.第16题一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?答案:(1)由题意可知抛物线经过点()()()024682A P B ,,,,,设抛物线的方程为2y ax bx c =++ 将A P D ,,三点的坐标代入抛物线方程. 解得抛物线方程为21224y x x =-++ (2)令4y =,则有212244x x -++=解得1244x x =+=-212x x -=>∴货车可以通过.(3)由(2)可知21122x x -=>∴货车可以通过.第17题如图,在矩形ABCD 中,2AB AD =,线段10EF =.在EF 上取一点M ,分别以EM MF ,为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN x =,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?答案:解:矩形MFGN ∽矩形ABCD ,MN MFAD AB∴=. 2AB AD MN x ==,,2MF x ∴=.102EM EF MF x ∴=-=-. (102)S x x ∴=-2210x x =-+ 2525222x ⎛⎫=--+ ⎪⎝⎭.∴当52x =时,S 有最大值为252.第18题某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元.信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元时,可获利润3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对AB ,两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?B A D MF答案:解:(1)当5x =时,12250.4y k k ===,,, 0.4A y x ∴=,当2x =时, 2.4B y =;当4x =时, 3.2B y =.2.4423.2164a ba b =+⎧∴⎨=+⎩解得0.21.6a b =-⎧⎨=⎩∴20.2 1.6B y x x =-+.(2)设投资B 种商品x 万元,则投资A 种商品(10)x -万元,获得利润W 万元,根据题意可得220.2 1.60.4(10)0.2 1.24W x x x x x =-++-=-++ 20.2(3) 5.8W x ∴=--+当投资B 种商品3万元时,可以获得最大利润5.8万元,所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.第19题如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱3350m A B =,5根支柱1122334455A B A B A B A B A B ,,,,之间的距离均为15m ,1515B B A A ∥,将抛物线放在图(2)所示的直角坐标系中. (1)直接写出图(2)中点135B B B ,,的坐标; (2)求图(2)中抛物线的函数表达式; (3)求图(1)中支柱2244A B A B ,的长度.答案:(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=.B 图(1)图(2)l130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==。
高考数学指数函数对数函数与幂函数对数与对数函数对数函数的性质与图像对数函数的性质与图像
, -2<x<2
所以函2 数 fx(x)的定义域为(-2,2),关于原点对称.
解法一: f(-x)=ln
12/12/2021
2 =②x
2 -x
=-f(x),
第二十六页,共三十页。
所以函数f(x)=ln 2是- x 奇函数.
2 x
解法二: f(x)+f(-x)=ln +2 l-nx =③2 x
2 x
12/12/2021
第二十九页,共三十页。
内容(nèiróng)总结
第四章 指数函数、对数函数与幂函数。易错辨析:忽视对数函数对系数、底数(dǐshù)、真数的要求致误.。b的取值范围是(3,+∞),故选C.。所以
y=log2(x2+4)≥log24=2.。即函数y=log2(x2+4)的值域为[2,+∞).。3.(1)(变条件)把本例(1)①中的函数变成“y= ”,结果如何。因为对数函数的图像过点
12/12/2021
第十四页,共三十页。
探究(tànjiū)三 对数函数的定义域、值域问题
例3 (1)求下列函数的定义域:
①y= ;lg (2-x)
②y=log(2x-1)(-4x+8). (2)求下列函数的值域:
①y=log2(x2+4);
②y=lo (3+2x-x第四章 指数函数(zhǐ shù hán shù)、对数函数与 4.2 对数与幂对函数数函数
4.2.3 对数函数(duìshùhán shù)的性质与图像
第1课时 对数函数(duìshùhán shù)的性质与图像
12/12/2021
第一页,共三十页。
情境导学
问题(wèntí):已知细胞的分裂个数y与分裂次数x满足函数y=2x,那么反过来,x是不是关于
双曲函数
▪ 悬链线 ▪ 数学证明
双曲函数图册
相关函数 纠错
9 参考文献
5 导数 6 不定积分
二次函数
对勾函数
复变函数
1
定义
双曲函数(hyperbolic function)可借助指数函数定义 [1] 双曲正弦:
编辑 幂指函数 贝塞尔函数 三次函数
双曲余弦:
五次函数
幂函数
初等函数
双曲正切:
词条统计
浏览次数:295104次 编辑次数:79次 历史版本 最近更新:20150617
中文名 外文名 双曲函数 Hyperbolic function 别 称 领 域 圆函数 数学函数论
目录
1 定义 2 函数性质 3 与三角函数关系 4 恒等式
▪ 加法公式
▪ 减法公式 ▪ 二倍角公式 ▪ 三倍角公式 ▪ 半角公式
7 级数表示 8 实际应用
▪ 阻力落体 ▪ 导线电容 ▪ 粒子运动 ▪ 非线性方程
[(x2+a2)+y2] /[(x2―a2)+y2]=k2 ⒆ 式中 k2 =e4πε0φ/λ ⒇ 令 c=[(k2+1)/(k2―1)]a (21) 则⒆式可化为 (x―c)2+y2=[4k2/(k2―1)2]a 2 (22) 这表明,偶极线的等势面都是轴线平行于z轴的圆柱面,它们的轴线都在z轴上z=c处,其横截面的半径为 R=∣2k/(k2―1) ∣a (23) 这个结果启示,我们可以找到偶极线的两个等势面,使它们分别与原来两导线的表面重合。这只要下列等式成立就可以了: a1= ∣c1∣=[(k12+1)/(k12―1)]a (24) R1=∣2k1/(k12―1) ∣a (25) a2= ∣c2∣=[(k22+1)/(k22―1)]a (26) R2=∣2k2/(k22―1) ∣a (27) d=a1+a2 (28) 由(24)至(27)式得 a12―R12=a2= a22―R22 (29) 原来两导线表面的方程是 R1:(x―a1)2+y2= R12 (30) R2:(x+a2)2+y2= R22 (31) 利用(29)式,可以把(30)和(31)式分别化为 x2+y2+ a2= 2a1 x (32) x2+y2+ a2= ―2a2 x (33) 利用(32)和(33)两式,由⒅式得出,半径为R1和R2的两导线的电势分别为 φ1=(λ/4πε0)In[(a1+a)/ (a1―a)] (34) φ2=―(λ/4πε0)In[(a2+a)/ (a2―a)] (35) 于是两导线的电势差便为 U=φ1+φ2=(λ/2πε0)In[(a1+a)(a2―a)/ R1R2] (36) 用已知的量消去未知数,可以得出 U=(λ/2πε0)In[(d2―R12―R2)/ 2R1R2+√[(d2―R12―R2)/ 2R1R2]2―1] (37) 最后得出原来两导线为l一段的电容为 C=Q/U=2πε0l/ In[(d2―R12―R22)/ 2R1R2+√[(d2―R12―R22)/ 2R1R2]2―1] (38) 单位长度的电容为 c=2πε0/ In[(d2 ― R12 ―R22) / 2R1R2+√ [(d2―R12―R22) / 2R1R2 ] 2―1] (39) 利用反两曲余弦关系式 archx= In[(x+√x2―1)] (40) 对本题的精确解表示作简洁表示 c=2πε0/ arch[(d2―R12―R22)/ 2R1R2] (41) 最后一式可以在一般手册上查到。
正弦形函数图像
0 -1
π 6
π π 2π 4 2 3
π
7π 6
5 3
2π
π 7 4
9 4
x
π π 5π y sin(x ),x [ , ] 3 3 3
二、研究问题
问题一:画 y sin( x
4
4
) 和y sin( x
6
)的图像,并观察与 y sin x 的图像关系。
函数y sin2x , x R
1 函数y sin x , x R 2
π
x
2x
sin2x
0
π 4
π 2
3π 4
x
1 x 2
1 sin x 2
0
0
π
π 2
2π
π
3π
3π 2
4π
2π
0
π 2
π
3π 2
2π
0
1
0
-1
0
0
1
0
-1
0
y 1 0 -1
π 4
y sinx, [0,2π] x
横坐标 伸长或缩短1/w倍
步骤 2
得到 y sin(ω x ),x R
纵坐标 伸长或缩短A倍
步骤 3
得到 y Asin(ω x ),x R
1 π 练习: 画出函数y 4sin( x )在一个周期上的简图 3 4
x
1 π x 3 4
1 π 4sin( x ) 3 4
3π 4 0
9π 4 π 2
15 π 4 π
21π 4 3π 2
27 π 4 2π
0
《二次函数的图像和性质》PPT课件 人教版九年级数学
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
升学复习第四章-幂函数、指数函数、对数函数
n
1
M= logaM.
n
典例解析
例11.求下列对数的值:
(1)log64+log69;
(2)log2162;
(3)log672-log62;
(4)lg5+lg2.
知识聚焦
5.换底公式
logaN lgN
logbN= loga = lg (a>0且a≠1,b>0且b≠1,N>0).
函数时,图像只分布在第一象限.
知识聚焦
3.幂函数的图象与性质
(-2,4)
4
y=x3
(2,4)
y=x2
3
y=x
1
-6
-4
-2
(1,1)
-1
-2
-3
-4
(0,+∞)内都有定义,并且函数图象
y=x-1
2
(-1,-1)
(2)过定点:所有的幂函数在
y=x 2
(4,2)
2
(-1,1)
1
4
6
都通过点(1,1).
特别地,以10为底的对数函数y=lgx叫做常用对数函数
以e为底的对数函数y=lnx叫做自然对数函数.
知识聚焦
2
对数
函数
的图
象与
性质
解析式
对数函数y=log
a>1(真大整体大,真小整体小)
图
象
a
0<a<1(真大整体小,真小整体大)
y
o
x (a>0, a≠1)
y
(1, 0)
(2)正数的负分数指数幂的意义:
a
m
n
1m
an
n
1 ( a 0, m , n N , 且n 1)
双曲函数
定义双曲函数(Hyperbolic Function)包括下列六种函数:sinh / 双曲正弦:sinh(x) = [e^x - e^(-x)] / 2cosh / 双曲余弦:cosh(x) = [e^x + e^(-x)] / 2tanh / 双曲正切:tanh(x) = sinh(x) / cosh(x)=[e^x - e^(-x)] / [e^x + e^(-x)]coth / 双曲余切:coth(x) = cosh(x) / sinh(x) = [e^x + e^(-x)] / [e^(x) - e^(-x)]sech / 双曲正割:sech(x) = 1 / cosh(x) = 2 / [e^x + e^(-x)]csch / 双曲余割:csch(x) = 1 / sinh(x) = 2 / [e^x - e^(-x)]cosh^2(t) - sinh^2(t) = 1和性质 t > 0 对于所有的 t。
参数 t 不是圆角而是双曲角,它表示在 x 轴和连接原点和双曲线上的点(cosh t,sinh t) 的直线之间的面积的两倍。
函数 cosh x 是关于 y 轴对称的偶函数。
函数 sinh x 是奇函数,就是说 -sinh x = sinh (-x) 且 sinh 0 = 0。
[3]实变双曲函数y=sh(x),定义域:R,值域:R,奇函数,函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,当x->+∞时是(1/2)e^x的等价无穷大,函数图像关于原点对称。
y=ch(x),定义域:R,值域:[1,+∞),偶函数,函数图像是悬链线,最低点是(0,1),在Ⅰ象限部分是严格单调递增曲线,当x->+∞时是(1/2)e^x 的等价无穷大,函数图像关于y轴对称。
y=th(x),定义域:R,值域:(-1,1),奇函数,函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,其图像被限制在两渐近线y=1和y=-1之间,lim[x->+∞,tanh(x)=1],lim[x->-∞,tanh(x)=-1]。
函数y=Asin(ωx φ)的图像(第二课时)课件-2022-2023学年高一上学期数学必修第一册
“第五点”为ωx+φ=2π.
函数y Asin(x )图像与性质的应用
4.对称性:利用函数y=sinx的对称中心为(k,0), k Z,函数y=sinx的对称轴为x= k(k Z),
2 (1)令x =k,k Z,解得x的解为函数
y A sin(x )对称中心的横坐标; (2)令x = k(k Z)解得x的解为函数
y
1 2
sin
x
图象上各点横坐标 伸长为原来的2倍
y 1 sin 1 x 22
1 y 1 sin x 2
2
3
4
O
x
y 1 sin 1 x
1
y sin x
22
法二:
图象上各点横坐标
y sin x 伸长为原来的2倍
y sin 1 x 图象上各点纵坐标 2 缩短为原来的一半
y 1 sin 1 x 22
2
“第五点”为ωx+φ=2π.
函数y A sin(x )图像与性质的应用
2.周期:正弦曲线、余弦曲线相邻两对称中心、相邻
两对称轴之间的距离是半个周期,相邻的对称中心与 对称轴之间的距离是 1 个周期.
4 3.奇偶性:若f(x)=Asin(ωx+φ)(A,ω≠0),则
(1)当=k(k Z)时, 函数y A sin(x )= A sin x为奇函数;
A 如图所示,则( )
A.y=2sin 2x-π6
B.y=2sin 2x-π3
x+π C.y=2sin 6
x+π D.y=2sin 3
以寻找“五点法”中的特殊点作为突破口:
“第一点”(即图象上升时与x轴的交点)为ωx+φ=0; “第二点”(即图象的最高点)为ωx+φ= ;
2
八年级数学上册 第四章 一次函数 4.3 一次函数的图象(2)课件
m 1 2
(2) m -1 < 0
且1-2m≠0
m 1且m 1 2
第十六页,共十八页。
结束语
人生(rénshēng)的价值,并不是用时间, 而是用深度去衡量的。
——列夫·托尔斯泰
第十七页,共十八页。
内容(nèiróng)总结
第四章 一次函数。当k>0时,y随x的增大而增大。当k>0 ,k越大时,图像与x轴正半轴的 夹角越大。当k>0 ,k越大时,图像与x轴正半轴的夹角越大。当k<0时,k越大时,图像与x轴正 半轴的夹角越大。一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个 点,再过这两点画直线就可以了。一次函数y=kx+b的图象也称为(chēnɡ wéi)直线y=kx+b。(1 )上述四个函数中,随着x值的增大,y的值分别如何变化
x -4 -3 -2 -1 O1 2 3 4
-1 -2 -3
y 1 x(4))倾倾斜斜度度
y x 3 当kk>>000,,kk越越大大时时,,图图图像像像与与xx轴轴正正半半半轴轴轴的
-4
y 3x
夹的角夹越越角大大越大
当 当kk<<00时时,,kk越越大大时时时,,,图图图像像像与与与xx轴x轴轴正正正半半半轴轴
7
6
y=-x
5
4
3
2
y=-x+6
1
-3 -2 -1 0 1 2 3 4 5 6 x
-1
-2
第十一页,共十八页。
反馈 练习巩固新知 (fǎnkuì)
y
(相交 ) (xiāngjiāo)
(2)直线y=2x+6与y=-x+6的位置(wèi zhi)关系如何?
一次函数 的图像和性质-教学课件
,0)或(1,k+b).
k
例2 在同一平面直角坐标系中用两点法画出
函数y=x+1, y=-x+1, y=2x+1,y=-2x+1的
图象 解:1.列表
x
01
y=2x+1 y y=x+1
y=x+1
1
2
y=-x+1
1
0
y=2x+1
1
3
y=-2x+1 1
-1
1
-1 -O1 1
xHale Waihona Puke y=-x+12.描点
y=-2x+1
19.2.2 一次函数的图像和性质
y
0
x
提问复习,引入新课
1.正比例函数y=kx的图象是什么形状 的?
2.正比例函数y=kx(k是常数,k≠0)
中, k的正负对函数图象有什么影响?
y例=21x:,在y=同2x一+3平,面y直=2角x-坐3的标图系象中画出y 函y=数2x+3
解:1. 列表
5
y=2x
长度得到.
正比例函数与一次函数图像之间的关系:
一次函数y kx b(k 0)的图象是一条
直线,我们称它为直线y=kx+b ,它可
以看作由直线 y=kx 平移︱b︱个单位 长度得到.(当b>0时,向上平移;当b
<0时,向下平移)
由于一次函数的图象是直线,故选择其上合适
两点即可.
一般选择图像与两坐标轴交点:(0,b),( b
cm.写出挂上重物后的弹簧长度y(cm)与所 挂重物的质量x(kg)之间的函数关系式与 自变量x的取值范围,并且画出它的图象.
12正弦性质型函数的图像
创设情景 知识回顾
在物理和工程技术的许多问题中,经
常会遇到形如
( )的
函数.
正弦型函数
下面我们来探索函数 的图像和性质
(
)
回顾:
y
1-
y sin x x[0,2]
o-1
6
3
2
2 3
5
7
6
6
4 3
3 2
5 3
11 6
2
x
-
-1 -
在函数 y sin x, x [0, 2 ] 的图象上,起关键作用的点有:
x
x
3
3
0
6
2
3
6
3
3 2
2
sin(x )
3
0
1
0
-1
0
1y
y sin(x )
3
2
3
O
x
1y
3
sin(x
)
3
1
y sin(x )
3
2
3
O
x
1 3
y sin(x )
3
正弦函数y sin x 的图像向左平移 个单位长度,得到
的图像,向右平移 个单位长度,得到
的图像.
向左平移 a(a 0)个单位长度
3
y=sinx
周期为2
周期为4
4 x
y
y=sin
1 2
x
1
O
1
y=sin2x
2
3
y=sinx
4 x
y=sin
1 2
x的图象可以看作是把
y=sinx的图象上所
数学北师大版九年级上册二次函数的图像与性质
XXX
PART 03
二次函数与一元二次方程 关系
REPORTING
一元二次方程求解方法回顾
公式法
对于一般形式的一元二次方程 $ax^2 + bx + c = 0$,可以使用求根公式 $x = frac{-b pm sqrt{b^2 4ac}}{2a}$ 来求解。
配方化为 两个一次方程的乘积,然后分别解这 两个一次方程得到原方程的解。
利用二次函数图像解一元二次方程
观察二次函数图像与x轴的交点情况,若有一个交点,则对应的一元二次方程有一个实数根 ;若有两个交点,则对应的一元二次方程有两个实数根;若没有交点,则对应的一元二次方 程没有实数根。
利用二次函数的对称性,可以确定一元二次方程的根的和与积,进一步求解一元二次方程。
通过分析二次函数图像的开口方向、顶点坐标等特征,可以判断一元二次方程的根的范围和 性质。
练习题目2
已知二次函数$y = -x^2 + 2x + 8$,求该函数图像的顶点坐标和对称轴方程,并判断该 函数图像与坐标轴的交点情况。
练习题目3
已知二次函数$y = ax^2 + bx + c$的图像经过点$A(-1,0)$,$B(3,0)$和$C(1,-8)$,求 该二次函数的解析式,并判断该函数图像开口方向、顶点坐标和对称轴方程。
当函数图像关于原点对称时,函数表达式由f(x)变为-f(-x),即图像在原点处中心对 称。
伸缩变换规律
当函数图像在x轴方向伸缩a倍时,函数表达式由f(x)变为f(ax) ,若a>1则图像在x轴方向压缩为原来的1/a,若0<a<1则图 像在x轴方向拉伸为原来的a倍。
当函数图像在y轴方向伸缩b倍时,函数表达式由f(x)变为 bf(x),若b>1则图像在y轴方向拉伸为原来的b倍,若0<b<1 则图像在y轴方向压缩为原来的1/b。
高二数学正切函数的图像和性质
4
5
tan
4
tan
2
5
,即
tan
13
4
tan
17 5
练习 不查表比较大小:
(1) tan167 与tan173 (2) tan 470 与 tan 822
例题2
x
4
的性质;
练习 讨论函数 y tan 2x 的性质;
§1.4.3 正切函数的图象和性质 (一)
1、利用正切函数的定义,说出正切函数的定义域;
tan y x 0 的终边不在y轴上
x
k
k
z
2
2、利用周期函数的定义及诱导公式,推导正切函数 的最小正周期;
tan( x) tan x 是y tan x的周期;
1、画出正切函数在一个周期
2
,
2
内的图象
y
0
x
2
2
§1.4.3 正切函数的性质和图象
1.正切函数
的性质:
y y tan x
定义域:
值域:
周期性: 正切函数是周期函数,
周期是
2
奇偶性: 奇函数 tan(-x)=-tanx
2
o 2
x 2
单调性: 在 内是增函数
对称性: 对称中心是
对称轴呢?
;宜宾装修公司/ 宜宾装修公司
;
全家人都知道这个说法,在姐姐的心灵深处,樟木箱子早已深深地扎下了根。 光阴似箭,姐姐真的到了谈婚论嫁的时候了
(8) 三角函数的图像及其变换(2)(10.28、29)
三角函数的图象变换有振幅变换、周期变换和相位 变换等,重点掌握函数y=Asin(ωx+φ)+B的作法.
(1)_振__幅__变__换___或叫做沿y轴的伸缩变换:由y=sin x 的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1) 或缩短(当0<|A|<1)到原来的___|A__| ___倍,得到y=Asin x 的图象.
来左的平3移倍,个就单得位到长曲度线就y=得3s到in曲2再x线. 将y=曲3s线iny(=32sxi+n2πx向)
4 3
y=3sin(2x+ π2)
2
先缩后移
1
y=sin2x
π
4 -1
Oπ
4
π 2
3π
4
2
-3
y=3sin2x
y=sinx
怎样由正弦曲线y=sinx得到曲线y=3sin(2x+π )?
B.向右平移π8 个单位长度
π C.向左平移 4 个单位长度
π D.向右平移 4 个单位长度
课前自 修
基础自测
1.(2013·唐山模拟)函数 y=sin 3x 的图象可以由函数 y=cos 3x
的图象( D ) π
A.向左平移 3 个单位得到 B.向右平移π3 个单位得到
π C.向左平移 6 个单位得到
考点探 究
变式探究
1.已知函数 y=Asin12x-π5 ,给出下面 4 个命题,其中正确命题的个
数为_______1_______个.
①函数的最大值为 A
π ②函数的初相位是 5
π ③将函数图象向左平移 5 个单位长度,得到函数
函数及其图像(课堂PPT)
集合:A,B,C…表示;元素:a,b,c…表示
函数与极限
4
2.实数与数轴
实数R有理数Q分 整数 数(Z12负非, 整 负86 ,数 整)( 数(1,自2然,数集nN,:0),1,2, )
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故定义域是[-3, -1].
函数与极限
28
例3 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2. 函数中根式,要求负数不能开偶次方
3. 函数中有对数式,要求真数必须大于零
4. 函数中有对数式和反三角函数式,要求符合它们定义域
5. 若函数式是上述各式的混合式,则应取各部分定义域
的交集
函数与极限
20
例1 求下列函数的定义域
(1()1(y)1y)y44411x1x22x2 xxx222; ;
((22()2)y)yylglgxlxg11;x; 1 ; x x22x 2
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U 0
(t )
E
0
2
即U 2E (t )
函数与极限
29
当 t (,) 时, U 0.
U
( , E)
2
三角函数图像与性质ppt
-π,π 63
上的值域.
合作探究(性质问题)规范解答
大安一中
例题:设函数
f(x)=sin(2x+π3)+
33sin2x-
3 3
cos2x.
(1)求 f(x)对称中心;
(2)求 f(x)单调区间.
[探究 1] 在本例条件下,讨论函数 f(x)在-π6,π3上
的单调性.
解:当x [ , ]时,2x [ , 5 ],
学习目标
1.理解并熟记三角函数的图像与性质。 2.会运用图像与性质解决相关问题。 3.掌握数形结合与整体转化思想方法。
合作探究(性质问题)规范解答
例题:设函数 f(x)=sin(2x+π)+ 3sin2x- 3cos2x.
33
3
(1)求 f(x)的最小正周期及其图象的对称轴方程;
(2)求
f(x)在区间
2019/12/3
10
[探究 3] 若函数 f(x)的图象向右平移1π2个单位,再
向上平移
3 6
个单位,得函数
h(x)的图象,若函数
y=
h(x) 在[0,b](b>0)上至少含有 10 个零点,求 b 的最小值.
解:函数 f(x)=
33sin
2x+π6
向右平移 π 个单位得 12
y=
33sin
2x,然后再向上平移
三角函数的图像与性质
高考预测
1.高考对三角函数图象的考查主要包括三个方 面:一是用五点法作图,二是图象变换,三是已 知图象求解析式或求解析式中的参数的值,以选 择题或填空题的形式考查.
2.高考对三角函数性质的考查是重点,以解答 题为主,考查y=Asin(ωx+φ)的周期性、单调 性、对称性以及最值等,常与平面向量、三角形 结合进行综合考查,试题难度属中低档.
三角函数
(1)特殊的三角函数值sin0=cos90°=0 cos0=sin90°=1 tan0=0 ,sin15°=(√6-√2)/4 cos15°=(√6+√2)/4 tan15°=2-√3sin30°=1/2 cos30°=√3/2 tan30°=√3/3sin45°=√2/2 cos45°=sin45°=√2/2 tan45°=1sin60°=√3/2 cos60°=1/2 tan60°=√3sin75°=cos15° cos75°=sin15° tan75°=sin75°/cos75°=2+√3 sin90°=cos0°=1 cos90°=sin0°=0 tan90°不存在sin105°=cos15° cos105°=-sin15° tan105°=-cot15°sin120°=cos30° cos120°=-sin30° tan120°=-tan60°sin135°=sin45° cos135°=-cos45° tan135°=-tan45°sin150°=sin30° cos150°=-cos30° tan150°=-tan30°sin165°=sin15° cos165°=-cos15° tan165°=-tan15°sin180°=sin0°=0 cos180°=-cos0°=-1 tan180°=0sin195°=-sin15° cos195°=-cos15° tan195°=tan15°sin360°=sin0°=0 cos360°=cos0°=1 tan360°=tan0°=0cos72=[(√5)-1]/4(利用黄金等腰三角形可得出)(2)0°~90°的任意角的三角函数值,查三角函数表。