碳纳米管简介

合集下载

碳纳米管定义

碳纳米管定义

碳纳米管定义
碳纳米管是一种由碳原子构成的纳米材料,具有管状结构。

它的直径通常在纳米尺度(纳米级别为1100纳米)范围内,
长度可以从纳米到微米级别。

碳纳米管的结构可以分为单壁碳
纳米管和多壁碳纳米管两种。

单壁碳纳米管由一个原子薄的石墨单层卷曲而成,形成一个
管状结构。

单壁碳纳米管的墙壁由碳原子构成,以六边形的芳
香环排列。

其典型特点是具有高强度、高导电性、高热导率和
良好的力学性能。

多壁碳纳米管由多个同心圆层组成,每个层均由碳原子六边
形结构构成,层与层之间的间距一般为0.34纳米。

多壁碳纳米管具有类似于单壁碳纳米管的特性,但其力学性能和导电性能
相对较差。

碳纳米管具有独特的物理和化学性质,广泛应用于材料科学、电子学、能源储存和传感器等领域。

由于其独特的结构和性能,碳纳米管在电子器件中可以用作纳米导线、场发射器件、纳米
传感器等。

此外,碳纳米管还被研究用于制备高性能锂离子电池、超级电容器和光催化材料等。

相信随着科学技术的不断发展,碳纳米管将在更多领域发挥重要作用。

新材料概论——碳纳米管

新材料概论——碳纳米管

新材料概论——碳纳米管碳纳米管是一种由碳原子组成的纳米材料,具有特殊的结构和优异的性能,被认为是未来材料科学发展的重要方向之一、本文将从碳纳米管的定义、制备方法、结构特点和应用领域等方面进行阐述。

首先,碳纳米管是由碳原子按照特定的方式排列而成的管状结构。

它们的直径通常在纳米尺度范围内,但长度可达数微米至数厘米。

碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种形式。

单壁碳纳米管具有单层碳原子构成的管状结构,而多壁碳纳米管由多个同心层组成,每层之间有适当的间隙。

制备碳纳米管的方法有很多种,包括化学气相沉积、物理气相沉积、电化学剥离等。

其中,化学气相沉积是最常用的方法之一、该方法在惰性气氛中将碳源分解并沉积在金属催化剂上,从而形成碳纳米管。

此外,还可以利用电弧放电、化学还原剥离等方法获得碳纳米管。

碳纳米管的结构特点使其具有许多独特的性能。

首先,碳纳米管具有优异的导电性能,其导电能力可媲美铜和银等传统导电材料。

其次,碳纳米管具有优异的机械性能,具有很高的抗拉强度和模量。

此外,碳纳米管还具有优异的光学性质和热导性能,具有良好的化学稳定性和抗辐射性能。

碳纳米管的应用领域非常广泛。

在电子器件方面,碳纳米管可以用于制备纳米晶体管和纳米电极,可用于高分辨率显示器、柔性电子器件和高性能电池等。

在能源领域,碳纳米管也可以用于制备锂离子电池和超级电容器,以提高能源存储和转换效率。

此外,碳纳米管还可以用于传感器、生物医药、纳米催化剂等领域。

总之,碳纳米管作为一种新型材料,具有独特的结构和优异的性能,在材料科学领域具有广阔的应用前景。

随着制备技术的不断改进和研究的深入,碳纳米管的应用范围将进一步扩大,为各个领域的科技发展和实际应用带来更多的可能性。

碳纳米管材料的介绍

碳纳米管材料的介绍

碳纳米管材料的介绍碳纳米管是一种由碳原子构成的纳米材料,具有许多独特的性质和应用潜力。

它的发现引起了科学界的广泛关注和研究。

碳纳米管具有极高的强度和刚度。

由于碳原子之间的键合非常强大,碳纳米管能够承受很大的拉伸力和压缩力,使其具有很强的抗弯曲性能。

这使得碳纳米管成为一种理想的材料,用于制造轻巧但坚固的结构,如飞机和汽车部件。

碳纳米管具有优异的导电性和导热性。

碳纳米管内部存在着一维的碳原子排列,使得电子在其内部能够自由传输,形成了高效的电子输运通道。

因此,碳纳米管被广泛应用于电子器件领域,如晶体管和纳米电线等。

同时,碳纳米管还具有良好的热导性能,使其成为制造高效散热器和热电材料的理想选择。

碳纳米管还具有丰富的表面化学活性和高比表面积。

碳纳米管的表面可以通过化学修饰来引入不同的功能团,从而赋予其特定的化学性质和应用功能。

例如,通过在碳纳米管表面引入亲水性团体,可以制备出具有优异吸附能力的纳米过滤器。

而碳纳米管的高比表面积则使其成为一种理想的催化剂载体,可用于提高化学反应的效率和选择性。

碳纳米管还具有良好的光学性能和生物相容性。

由于碳纳米管具有一维结构,使得它们能够吸收和发射可见光和红外光。

这使得碳纳米管在光学传感器和光电器件领域具有广泛的应用前景。

此外,碳纳米管还具有良好的生物相容性,可以用于生物医学领域,如药物传递和组织工程等。

碳纳米管具有多种优异的性质和应用潜力,使其在材料科学、电子学、化学和生物医学等领域具有广泛的应用前景。

随着对碳纳米管性质和制备方法的深入研究,相信碳纳米管将会在未来的科技发展中发挥更加重要的作用。

碳纳米管简介

碳纳米管简介

加强基础研究和创新能力
深入研究结构与性能关系
进一步揭示碳纳米管的微观结构和性 能之间的关联,为新应用提供理论支 持。
探索新的合成方法
加强跨学科合作
与化学、物理、生物等学科进行交叉 合作,拓展碳纳米管的应用领域。
开展新合成方法的研究,实现碳纳米 管的绿色合成和可控合成。
建立产业联盟和创新平台
促进产学研合作
导电材料
碳纳米管具有优异的导电性能,可作为复合材料的导电填料,提高材料的导电性能。
半导体领域
晶体管
碳纳米管具有优异的半导体性能,可 用于制造高性能晶体管,提高集成电 路的性能和集成度。
传感器
碳纳米管具有较高的化学敏感性和光 电响应性,可用于制造高性能传感器 ,用于环境监测、生物医学等领域。
纳米电子领域
碳纳米管的应用领域
电池领域
电池电极材料
碳纳米管具有优异的导电性能和比表 面积,可作为高性能电池电极材料, 提高电池的能量密度和充放电效率。
电池隔膜材料
碳纳米管具有较高的机械强度和化学 稳定性,可用于制造高性能电池隔膜 ,提高电池的安全性和稳定性。
复合材料领域
增强材料
碳纳米管具有优异的力学性能和化学稳定性,可作为复合材料的增强剂,提高材料的强度和韧性。
化学反应性
碳纳米管具有较高的化学反应性,可以在高温下与多种氧化剂反应,也可以在催化剂的作 用下进行加氢反应。此外,碳纳米管还可以通过表面修饰改性来提高其化学反应性和相容 性。
表面基团
碳纳米管的表面可以含有多种基团,如羧基、羟基、羰基和环氧基等。这些基团的存在会 影响碳纳米管的化学反应性和相容性。
稳定性
碳纳米管简介
汇报人: 2023-12-15

碳纳米管概述

碳纳米管概述

碳纳米管概述碳纳米管概述1、碳纳米管的结构1991年日本NEC公司基础研究实验室的电子显微镜专家Iijima[22]在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon Nanotubes”,即碳纳米管(CNTs),又名巴基管碳.纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸可达微米量级)的一维量子材料,具有典型的层状中空结构特征,一般管的两端有端帽封口.碳纳米管的管身是准圆管结构,由六边型碳环结构单元组成,端帽部分为含五边形和六边形的碳环组成的多边形结构[23].碳纳米管可以只有一层也可以有多层,分别称为单层碳纳米管和多层碳纳米管.由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值,如:其独特的结构是理想的一维模型材料;巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6;同时它还有望用作为分子导线,纳米半导体材料,催化剂载体,分子吸收剂和近场发射材料等.科学家们还预测碳纳米管将成为21世纪最有前途的纳米材料,以碳纳米管为材料的显示器将是很薄的,可以像招贴画那样挂在墙上.碳纳米管依其结构特征可以分为三种类型:扶手椅型纳米管,锯齿型纳米管和手性纳米管.按照是否含有管壁缺陷可以分为:完善碳纳米管和含缺陷碳纳米管.按照外形的均匀性和整体形态,可分为:直管型,碳纳米管束,Y型等.2、碳纳米管的性能由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量和高强度.碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍.对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa.碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多.碳纳米管是目前可制备出的具有最高比强度的材料.若以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善.碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质.碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能.理论预测其导电性能取决于其管径和管壁的螺旋角.当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线.有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景[24].碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料.另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善.3、碳纳米管的改性方法尽管碳纳米管有其优异的综合性能,但是因为碳纳米管具有较大的比表面积及表面自由能,管与管之间易团聚形成带有若干弱连接界面且尺寸较大的团聚体,从而在有机溶剂中的分散性较差,这些缺点限制了它的进一步广泛应用.特别是对于聚合物/碳纳米管复合材料而言,这些团聚体很难被分散开,容易形成应力集中点,从而导致材料的性能下降.同时碳纳米管与大多数聚合物相比,亲和性比较差,而且界面结合较弱.为了解决这些问题,我们必须对碳纳米管进行改性.改性的主要目的是降低它的表面能,提高它与有机相的亲和力.目前碳纳米管改性的方法通常分为两大类:一类是共价键改性,另一类是非共价键改性.本课题中共价键合CNT修饰一般是在CNT表面进行ATRP、NMP、RAFT及离子聚合等活性聚合、自由基聚合或化学改性以获得聚合物共价修饰的碳纳米管.非共价修饰CNT则主要基于聚合物和CNT间的三种不同相互作用方法展开研究:π-π作用,静电作用,物理包覆.聚合物修饰不仅改善了碳纳米管的分散性能,还赋予碳纳米管新的性能.3.1 碳纳米管表面共价键改性碳纳米管表面的共价功能化修饰的其中一种方法是对其侧壁进行氟化研究.被功能化的碳纳米管表面的氟原子可以通过亲核取代反应被取代,开辟了一条将不同的官能团引入到碳纳米管两端和表面的新路径.在碳纳米管修饰过程中的另一个突破性的发现就是浓酸氧化法,其方法是利用超声条件,在一定量浓度硝酸和硫酸的混合溶液中,使碳纳米管上修饰了羧基.这样剧烈的条件可以使碳纳米管的顶端以及管壁氧化开环,伴随着开环过程的发生,最终所得碳纳米管产物长度在100到300nm范围,管壁和顶端都修饰了一定密度的官能团,其中主要以羧基为主.在稍微弱一点的酸性环境中,比如在稀硝酸中回流,可以减少碳纳米管的断裂,开环主要发生在具有缺陷的位置,修饰后的碳纳米管依旧保持原有的电学和机械性质.对碳纳米管进行共价修饰通常可以利用碳纳米管表面的羧基.3.2 碳纳米管表面非共价改性碳纳米管管壁由SP2碳原子构成,具有高度离域的π电子体系,这些二电子可以与含有π电子的其他化合物通过π-π键作用来形成功能化的碳纳米管,同时疏水部分的相互作用及超分子包合作用也是非共价功能化的主要机理.通常碳纳米管的物理改性是在超声作用下,表面活性剂或聚合物等分子的疏水部分与疏水的管壁相互作用,而亲水部分与水等极性溶剂相互作用,从而阻止了碳纳米管在溶剂中的团聚.非共价功能化碳纳米管有其独特的优点:①不损伤碳纳米管的π电子体系;②有望将碳纳米管组装成有序网络.3.2.1 表面活性剂法在两性分子表面活性剂存在的条件下,可以制备出水溶性的碳纳米管.表面活性剂的憎水基团会在碳纳米管表面按一定的方向排列,而极性亲水性基团会在碳纳米管外表面与溶剂分子相互作用.M.F.Islam等发现通过十二烷基苯磺酸钠(NADDBS)、辛基苯磺酸钠(NAOBS)、苯甲酸钠(NABBS)、十二烷基硫酸钠(SDS)等表面活性剂物理吸附作用可以制备出水溶性碳纳米管.而且发现苯环和碳纳米管间的π-π配位作用可以增加表面活性剂在碳纳米管中的物理吸附能力;当端基相同时,烷基链较长的表面活性剂具有更好的吸附能力.范凌云等采用阴离子改性剂十二烷基苯磺酸钠、十二烷基硫酸钠在乙醇溶液中对碳纳米管表面进行改性处理,考察了不同表面改性剂对.PMMA/MWCNTs复合材料电性能的影响.研究发现经表面改性处理后的MWCNTs团聚体有了较大的改善,改性后的MWCNTs在复合材料中分散比较均匀,较大地改善了聚合物的电性能.3.2.2 聚合物包裹法通过π键作用,许多大分子质量的高聚物分子链能够缠绕、包覆碳纳米管表面,降低碳纳米管的范德华力,从而增加碳纳米管在溶剂中的溶解度.Curran等[25]测量了通过π-π相互作用的PmPv-MWCNTs复合材料的发光和光致导电性质.结果表明,其导电性较碳纳米管高8-10个数量级,并能提高发光二极管在空气中的稳定性.Connel等[26]通过非共价连接聚乙烯毗咯烷酮(PVP)和聚苯乙烯磺酸盐(PSS)于SWCNT上,实现了线型聚合物功能化,使其可溶于水.这类聚合物可紧密均匀的缠绕在SWCNT侧壁.实验证明,这种功能化的热力学推动力在于聚合物破坏了碳纳米管的疏水界面,消除了SWCNT集合体中管与管间的作用,通过改变溶剂系统还可以实现去功能化操作.因此线型聚合物的SWCNT 功能化方法可用于它的纯化分散,并可把SWCNT引入生物等相关体系.Star等制备了聚间苯亚乙烯衍生物,并用其对SWCNT进行非共价功能化修饰,然后用紫外-可见光(UV-Vis)、核磁(NMR)进行了表征,UV-Vis谱图表明,PmPv己经缠绕在碳纳米管表面,NMR谱图的共振位置也更加明确地解释了功能化的结合位置.他们进一步用原子力显微镜(AFM)对单根功能化SWCNT束进行了光电导及双光子荧光实验,结果表面,PmPV衍生物与碳纳米管表面之间接触紧密,功能化产物是聚合物缠绕的SWCNT束,而不是聚合物包覆的单根SWCNT后聚集成的束.3.2.3 双亲性聚合物改性碳纳米管两亲性聚合物是指在一个大分子中同时含有亲水基团和疏水基团的聚合物.两亲性聚合物具有独特的性能,如pH温度响应,自组装特性等,因此在众多领域具有潜在的应用前景.利用两亲性共聚物的自组装特性,将其与碳纳米管(CNT)结合,可赋予碳纳米管更加优异的性能.这些材料将在信息、生物医学、催化等领域得到重要应用.4、碳纳米管研究现状及发展前景谢续明等[27]利用苯乙烯类聚合物对分散碳纳米管进行了研究,如果以响应性聚合物修饰CNT则可以赋予CNT特定功和响应性.通常聚合物分散碳纳米管都在有机溶剂体系进行,溶剂的挥发性对人有伤害,且分散CNT长期稳定性欠佳.Hudson等[28]人制备了水溶性的碳纳米管,使得碳纳米管在水中分散稳定性得到明显提高.美国明尼苏达大学的Kang 和Taton等人[29]尝试在水溶液中设计新的方法分散CNT,用双亲性嵌段大分子PSt-b-PAA组装胶束来稳定碳纳米管,随后在胶束稳定的CNT溶液中加入交联剂使胶束发生交联进一步稳定CNT.这些研究解决了CNT 在水相的分散稳定问题,但在CNT外围富集的水溶性聚合物链使其电性能下降[30-31],影响其进一步的应用;而嵌段共聚物规模化制备较困难,外加交联剂使得体系复杂化.碳纳米管具有两个优异的电学性能即场发射性质和二重电性质.由于碳纳米管顶端可以做得极为尖锐,因此可以在比其它材料更低的激发电场作用下发射电子,并且由于强的碳碳结合键使碳纳米管可以长时间工作而不损坏,具有极好的场致电子发射性能,这一性能可用于制作平面显示装置使之更薄、更省电来取代笨重和低效的电视和计算机显示器,碳纳米管的优异场发射性能还可使其应用于微波放大器真空电源开关和制版技术上,单层碳纳米管还可以用作传感器.当半导体性的单层碳纳米管暴露于含有NO2或NH3的气氛中时其导电性会发生急剧变化,通过这种效应可以探测这些气体在某些环境中的含量,这种传感器的灵敏度要远远高于现有室温下的探测器.总之,碳纳米管在电子材料领域有广阔的应用前景.。

碳纳米管

碳纳米管

碳纳米管概述碳纳米管是一种由石墨碳原子结晶而成的无缝、中空的管状纳米碳材料,可以看作是由石墨烯层卷起来的直径只有几纳米的微型管体,管的一端或两端由富勒烯半球封帽而成。

根据碳纳米管中碳原子层数不同,将碳纳米管分为单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)两种。

单壁碳纳米管由单层石墨卷成,管径为1-6Na,具有很高的长径比,是结构完美的单分子材料。

多壁碳纳米管可看作由多个不同直径的单壁碳纳米管同轴套构而成,层间距均为0.34Na。

主要性能1、优异的力学性能由于碳纳米管的结构与高分子材料的结构相似,但碳纳米管的结构更稳定,且具有超高的长径比,所以,碳纳米管具有超高的抗拉强度、良好的柔韧性和弹性。

碳纳米管的抗拉强度是钢的100倍,弹性模量是钢的5倍,而密度只有钢的1/6。

碳纳米管在被压扁后撤去压力,可以象弹簧一样立即恢复原状。

2、良好的导电性能由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能,且随着碳纳米管管径的减少表现出更好的导电性能,最高可以达到金属铜的电导率的一万倍。

据称,当管径小于6Na时,碳纳米管可看成是一根量子导线;当管径小于0.7Na时,碳纳米管在低温条件下具有超导性能。

3、良好的传热性能由于碳纳米管具有超高的长径比,沿其长度方向具有很高的热交换性能,而沿其径向方向热交换性能较低,所以,利用碳纳米管可以合成各向异性的热传导材料。

此外,碳纳米管具有较高的热导率,只要在其它材料中掺入少量碳纳米管,就可以大大提高复合材料的热导率。

4、优异的光学性能碳纳米管具有光学偏振性、光学各向异性、电致发光性及对红外辐射异常敏感等性能。

5、良好的电磁性能碳纳米管的尖端具有纳米尺度的曲率, 在相对较低的电压下就能够发射大量的电子, 呈现出良好的场致发射特性。

6、其它性能碳纳米管还具有熔点高(据称是已知材料中熔点最高的)、吸附能力强、催化催催化性能、宽带微波吸收能力强等性能主要应用1、用于制备碳纳米合成材料,如高强度复合材料、导电塑料、电磁干扰屏蔽材料、隐形材料、暗室吸波材料等。

碳纳米管 羧基和羟基

碳纳米管 羧基和羟基

碳纳米管、羧基和羟基一、碳纳米管简介碳纳米管,作为一种由单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝、空心圆柱状结构,其发现可追溯到20世纪90年代初。

由于具有优异的力学性能、电学性能和化学稳定性等特性,碳纳米管被视为未来材料科学的重要支柱之一。

随着科技的不断进步,碳纳米管在众多领域的应用前景愈发广阔。

二、羧基在碳纳米管中的作用羧基是一种常见的有机官能团,具有酸性。

在碳纳米管的结构中引入羧基,可以显著改变其性质。

一方面,羧基能够增强碳纳米管的亲水性,使其更容易在水中分散或与其他水溶性分子结合。

这为碳纳米管在水处理、生物医学和电化学等领域的应用提供了便利。

另一方面,羧基的引入还可以影响碳纳米管的电学和力学性能,为其在高性能复合材料、传感器和能量存储与转换系统中的应用创造了条件。

三、羟基对碳纳米管的影响羟基是一种含氧的官能团,具有极性。

羟基的引入同样会对碳纳米管的性质产生显著影响。

首先,与羧基类似,羟基可以增强碳纳米管的亲水性,促进其在极性溶剂中的溶解与分散。

此外,羟基的极性使其成为一种优良的界面活性剂,有助于改善碳纳米管与其他材料间的界面结合力。

羟基还可以通过影响碳纳米管的电子结构和化学活性,进而对其电导率、光学性能以及化学反应活性产生重要影响。

四、碳纳米管在羧基和羟基作用下的应用前景1.生物医学应用:由于羧基和羟基增强了碳纳米管的生物相容性,使得它们在药物输送、组织工程和生物成像等领域具有广泛应用前景。

通过精确调控羧基和羟基的数量与分布,可以实现对药物释放行为的精细调控,实现靶向治疗并降低副作用。

此外,基于羧基和羟基改性的碳纳米管还可用于构建生物传感器和生物电极,以监测生命过程中的各种生理参数。

2.能源与环境应用:在能源存储与转换领域,羧基和羟基改性的碳纳米管可被用作高性能电极材料,如锂离子电池和超级电容器。

其独特的结构和电学性能为提高能源设备的能量密度和循环稳定性提供了可能。

在环境治理方面,这些材料可用于水处理过程中的重金属离子吸附和有机染料的光催化降解,有助于实现绿色、可持续的废水处理。

金属-碳纳米管

金属-碳纳米管

金属-碳纳米管
金属-碳纳米管是一种新型复合材料,它将金属和碳纳米管结合在一起,形成了独特的纳米结构,具有许多优异的性能。

碳纳米管是一种典型的一维纳米材料,又名巴基管,是由单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝碳纳米管。

在微观尺度下,单根碳纳米管的拉伸强度可达200GPa,是碳素钢的100倍,而密度只有钢的1/7~1/6,弹性模量是钢的5倍;电导率可以达到108S·m-1,具有比铜高两个数量级的载流能力。

将金属和碳纳米管结合后,这种新型材料可以同时具备金属和碳纳米管的优异性能。

例如,它的强度和韧性可以得到显著提高,同时还具备良好的导电性和导热性。

此外,金属-碳纳米管复合材料还具有独特的结构和形态,可以用于制造各种高科技产品,如电子元件、传感器和医疗器械等。

总的来说,金属-碳纳米管复合材料具有广阔的应用前景和发展潜力,是一种极具前途的新型材料。

碳纳米管化学物质cas号

碳纳米管化学物质cas号

碳纳米管化学物质cas号(实用版)目录1.碳纳米管简介2.碳纳米管的化学性质3.CAS 号的定义与作用4.碳纳米管的 CAS 号5.碳纳米管的应用领域正文1.碳纳米管简介碳纳米管(Carbon Nanotubes,简称 CNTs)是一种具有特殊结构的碳材料,其形态类似于管状,并以六角形排列。

碳纳米管重量轻、强度高、导电性能优越,拥有广泛的应用前景。

根据其结构和排列方式的不同,碳纳米管可分为单壁碳纳米管、多壁碳纳米管等类型。

2.碳纳米管的化学性质碳纳米管作为一种碳材料,具有稳定的化学性质。

在常温下,它们能够抵抗大多数酸、碱、盐等化学物质的侵蚀。

同时,碳纳米管在高温条件下具有优良的氧化性,可用于催化剂等领域。

3.CAS 号的定义与作用CAS 号(Chemical Abstracts Service Number)是化学物质的唯一识别码,由美国化学文摘协会(Chemical Abstracts Service,简称 CAS)负责分配和管理。

CAS 号由三部分数字组成,能够准确无误地表示一种化学物质。

在科研、生产和安全管理等领域,CAS 号具有重要作用。

4.碳纳米管的 CAS 号由于碳纳米管是一种碳材料,其化学成分较为简单,因此并没有统一的 CAS 号。

在实际应用中,通常根据碳纳米管的具体类型、结构和制备方法等因素来命名和区分。

5.碳纳米管的应用领域碳纳米管具有广泛的应用前景,涵盖了材料、能源、生物医学等多个领域。

例如,碳纳米管可作为高强度、轻质的材料用于航空航天等产业;其优良的导电性能使其成为新一代电子器件的研究热点;在生物医学领域,碳纳米管可作为药物载体、影像剂等。

最轻最硬的材料

最轻最硬的材料

最轻最硬的材料碳纳米管(carbon nanotube,简称CNT)是一种由碳原子构成的纳米材料,具有极其轻巧和出色的机械性能,因此被誉为“最轻最硬的材料”。

碳纳米管的直径约为1到2纳米,长度可以达到数毫米甚至更长,其比表面积非常大,而且具有优异的导电性和导热性。

这些特性使得碳纳米管在诸多领域具有广泛的应用前景。

首先,碳纳米管在材料科学领域具有巨大的潜力。

由于其出色的机械性能,碳纳米管可以用于制备高强度、高韧性的复合材料,例如碳纳米管增强的聚合物复合材料,可以用于制造轻质、高强度的航空航天材料。

此外,碳纳米管还可以用于制备导电性能优越的复合材料,例如碳纳米管与聚合物复合材料可用于制造柔性电子产品,如可穿戴设备和柔性显示屏等。

其次,碳纳米管在电子器件领域也有着重要的应用价值。

由于碳纳米管具有优异的导电性能,可以作为微电子器件的材料。

研究人员已经成功地制备了碳纳米管场效应晶体管,并展示了其在逻辑电路和射频电路中的潜在应用。

此外,碳纳米管还可以作为场发射材料,用于制备纳米尺度的发射器件,如碳纳米管场发射显示器和碳纳米管场发射射频放大器等。

此外,碳纳米管还在能源领域具有重要意义。

由于碳纳米管具有优异的导电性和导热性,可以作为电池、超级电容器和热管理材料的关键组成部分。

研究人员已经利用碳纳米管制备了高性能的锂离子电池和超级电容器,并展示了其在储能和能量转换方面的潜在应用。

此外,碳纳米管还可以作为高效的热导材料,用于制备热界面材料和热导管,用于提高电子器件和光电器件的散热性能。

综上所述,碳纳米管作为“最轻最硬的材料”,具有广泛的应用前景。

在材料科学、电子器件和能源领域,碳纳米管都具有重要的应用价值,将为相关领域的发展带来新的机遇和挑战。

随着人们对碳纳米管的深入研究和应用,相信碳纳米管必将在未来发挥越来越重要的作用,为人类社会的发展做出更大的贡献。

碳纳米管

碳纳米管

结构特征
结构特征
碳纳米管
碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可 形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p轨道彼此交叠在碳纳米管石墨 烯片层外形成高度离域化的大π键,碳纳米管外表面的大π键是碳纳米管与一些具有共轭性能的大分子以非共价 键复合的化学基础。
常用矢量Ch表示碳纳米管上原子排列的方向,其中Ch=na1+ma2,记为(n,m)。a1和a2分别表示两个基矢。 (n,m)与碳纳米管的导电性能密切相关。对于一个给定(n,m)的纳米管,如果有2n+m=3q(q为整数),则这 个方向上表现出金属性,是良好的导体,否则表现为半导体。对于n=m的方向,碳纳米管表现出良好的导电性, 电导率通常可达铜的1万倍。
其他
碳纳米管还具有光学等其他良好的性能。
制备
01
电弧放电法
02
激光烧蚀法
03
固相热解法
04Байду номын сангаас
离子或激光 溅射法
06
催化裂解法
05
聚合反应合 成
电弧放电法
碳纳米管制备电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产 的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在 两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯 (C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对 产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难得到纯 度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外 该方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的 能量,产物纯化也比较容易。

碳纳米管简介

碳纳米管简介

碳纳米管简介
碳纳米管(CNTs)是一种新型的石墨材料,它是由石墨片层卷曲而成的圆柱形结构,其直径范围一般为一纳米至几百纳米。

这些管状纤维的长度变化范围也很大,一般为几微米到几千微米;因此碳纳米管的长径比(长度与直径的比值)范围为一千~十万。

这么大的长径比以及独特的结构使得碳纳米管与众多其他材料有很大差别。

碳纳米管有很多独特的性质,例如,其强度是不锈钢的16倍,热导率为铜的5倍。

由于碳纳米管自身为粉末状态,它可能是构筑新型复合材料的最合适的添加剂。

将碳纳米管加入到聚合物、陶瓷或金属基体中后,可以显著提高主体材料的物理性质(如导电性、导热性和其他物理性质),其效果远远优于炭黑、碳纤维或玻璃纤维等传统添加剂。

碳纳米管可以分为单壁、双壁和多壁碳纳米管,其主要差别在于碳纳米管结构中石墨片层的数目。

为方便参考,这里列出了一些碳纳米管的常见性能参数:
1. 电阻率:10 -4 Ω-cm
2. 电流密度:107 amps/cm2
3.热导率:3,000 W/mK
4. 抗拉强度:30 GPa
1。

碳纳米管介绍

碳纳米管介绍

碳纳米管介绍碳纳米管是由碳原子构成的纳米尺度管状结构,具有很多独特的物理和化学性质。

它们在材料科学、纳米技术和电子学等领域具有广泛的应用前景。

碳纳米管的发现可以追溯到1991年,由日本科学家秋刀鱼之丞等人首次合成出来。

碳纳米管的结构可以分为单壁碳纳米管(Single-walled carbon nanotubes,SWCNTs)和多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)两种。

单壁碳纳米管由一个或多个碳原子层卷曲而成,形成一个空心的圆柱体结构;而多壁碳纳米管则是由多个碳层套在一起形成的。

碳纳米管的直径通常在纳米级别,而长度可以达到数十微米。

由于其独特的形态和结构,碳纳米管具有很多优异的性质。

首先,碳纳米管具有很高的强度和刚度,可以承受很大的拉伸和压缩力。

其次,碳纳米管具有优异的导电性和热导性,是一种理想的导电材料。

此外,碳纳米管还具有很高的化学稳定性和抗腐蚀性,可以在极端环境下使用。

碳纳米管的应用领域非常广泛。

在材料科学领域,碳纳米管可以用来制备高性能的复合材料,如碳纳米管增强的聚合物复合材料,具有很高的强度和刚度。

在纳米技术领域,碳纳米管可以用来制备纳米电子器件,如碳纳米管场效应晶体管(Carbon Nanotube Field-Effect Transistor,CNTFET),具有很高的电子迁移率和开关速度。

此外,碳纳米管还可以用来制备纳米传感器、纳米催化剂等纳米器件。

碳纳米管还具有很多其他的特殊性质。

由于其纳米尺度的特点,碳纳米管表现出量子效应和量子限制效应,具有优异的量子输运性质。

此外,碳纳米管还具有光学性质、磁性质和声学性质等多种性质,可以用于制备光学器件、磁性材料和声学材料等。

虽然碳纳米管具有很多优异的性质和应用潜力,但是其在实际应用中还面临一些挑战。

首先,碳纳米管的制备方法比较复杂,需要控制碳原子的生长和组装过程。

其次,碳纳米管的制备成本较高,限制了其大规模应用。

碳纳米管 锌负极

碳纳米管 锌负极

碳纳米管锌负极
碳纳米管(Carbon Nanotubes,CNTs)是一种由碳原子构成的管状结构,具有高强度、高导电性和高导热性等优异性能。

将碳纳米管与锌负极结合,可以提高锌负极的性能和稳定性。

碳纳米管可以作为锌负极的导电添加剂,提高负极的导电性和倍率性能。

此外,碳纳米管还可以作为锌负极的骨架材料,提高负极的机械强度和稳定性。

将碳纳米管与锌负极结合,可以制备出高性能的锌负极材料,应用于锌离子电池等领域。

这种负极材料具有高容量、高倍率、长循环寿命等优点,有望成为下一代高性能电池的重要组成部分。

需要注意的是,碳纳米管的制备和应用仍然存在一些技术挑战,如制备成本高、分散性差等问题。

因此,需要进一步研究和开发更加高效、低成本的碳纳米管制备方法和应用技术。

如果你对碳纳米管和锌负极的相关研究感兴趣,我可以为你提供更多详细的信息和参考资料。

碳纳米管和石墨烯简介

碳纳米管和石墨烯简介

柔性传感器
石墨烯的高灵敏度和柔韧性可用 于制造柔性传感器,可应用于医
疗、环境监测等领域。
传感器领域
气体传感器
石墨烯对气体分子的高灵敏度可用于制造高灵敏度的气体传感器 ,可应用于环境监测、工业过程控制等领域。
生物传感器
石墨烯的生物相容性和高导电性可用于制造生物传感器,可应用于 医疗诊断、生物分子检测等领域。
碳纳米管可作为药物载体,实现药物 的定向输送和缓释。
05 石墨烯应用前景
柔性电子器件领域
柔性显示屏
石墨烯的高导电性和柔韧性使其 成为制造柔性显示屏的理想材料 ,可应用于手机、可穿戴设备等

柔性电池
石墨烯的高导电性和大面积制备 能力使其成为制造柔性电池的关 键材料,可应用于可穿戴设备、
电动汽车等领域。
制备方法
机械剥离法
化学气相沉积法(CVD)
氧化还原法
液相剥离法
利用胶带反复剥离石墨片层, 得到单层或多层石墨烯。此方 法简单易行,但产量低且尺寸 难以控制。
在高温下,利用含碳气体在金 属基底上催化裂解生成石墨烯 。此方法可制备大面积、高质 量的石墨烯,但需要高温高压 条件,成本较高。
通过化学方法将石墨氧化成氧 化石墨,再经过还原处理得到 石墨烯。此方法产量较高,但 所得石墨烯缺陷较多,性能较 差。
激光烧蚀法
使用高能激光脉冲照射石 墨靶材,使石墨蒸发并在 惰性气体中冷凝形成碳纳 米管。
02 石墨烯概述
定义与结构
石墨烯定义
石墨烯是一种由单层碳原子以sp2杂化方式形成的二维材料,具有蜂窝状晶格 结构。
原子结构
石墨烯中的每个碳原子都与周围三个碳原子通过σ键相连,形成稳定的六边形网 格。剩余的π电子在垂直于平面的方向上形成离域大π键,赋予石墨烯良好的导 电性。

碳纳米管

碳纳米管

碳纳米管材料碳纳米管(Carbon nanotube,缩写CNT)与金刚石、石墨、富勒烯一样,是碳的一种同素异形体。

碳纳米管是在1991年1月由日本筑波NEC实验室的物理学家饭岛澄男使用高分辨率分析电镜从电弧法生产的碳纤维中发现的。

它是一种管状的碳分子,管上每个碳原子采取SP2杂化,相互之间以碳-碳σ键结合起来,形成由六边形组成的蜂窝状结构作为碳纳米管的骨架。

每个碳原子上未参与杂化的一对p电子相互之间形成跨越整个碳纳米管的共轭π电子云。

按照管子的层数不同,分为单壁碳纳米管和多壁碳纳米管。

管子的半径方向非常细,只有纳米尺度,几万根碳纳米管并起来也只有一根头发丝宽,碳纳米管的名称也因此而来。

而在轴向则可长达数十到数百微米。

碳纳米管不总是笔直的,局部可能出现凹凸的现象,这是由于在六边形结构中混杂了五边形和七边形。

出现五边形的地方,由于张力的关系导致碳纳米管向外凸出。

如果五边形恰好出现在碳纳米管的顶端,就形成碳纳米管的封口。

出现七边形的地方碳纳米管则向内凹进。

碳纳米管的性质碳纳米管的分子结构决定了它具有一些独特的性质。

由于巨大的长径比(径向尺寸在纳米量级,轴向尺寸在微米量级),碳纳米管表现为典型的一维量子材料,它的电子波函数在管的圆周方向具有周期性,在轴向则具有平移不变性,大大纯化了理论工作,并做出了一些预言。

理论预言,碳纳米管具有超常的强度、热导率、磁阻,且性质会随结构的变化而变化,可由绝缘体转变为半导体、由半导体变为金属;具有金属导电性的碳纳米管通过的磁通量是量子化的,表现出阿哈罗诺夫-玻姆效应(A-B效应)。

力学性质由于碳纳米管中碳原子采取SP2杂化杂化,相比SP3杂化杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。

碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。

目前在工业上常用的增强型纤维中,决定强度的一个关键因素是长径比,即长度和直径之比。

目前材料工程师希望得到的长径比至少是20:1,而碳纳米管的长径比一般在1000:1以上,是理想的高强度纤维材料。

纳米碳管 碳纳米管

纳米碳管 碳纳米管

纳米碳管碳纳米管
纳米碳管,也称为碳纳米管,是一种由碳原子构成的纳米结构
材料。

它们通常具有纳米级直径和微米级长度,呈现出管状结构。

碳纳米管可以分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs)两种类型。

首先,让我们从结构和性质的角度来看待碳纳米管。

碳纳米管
的结构可以是单层(SWCNTs)或多层(MWCNTs)的碳原子排列而成
的管状结构。

它们通常具有优异的力学性能,如高强度、高导电性
和高导热性,这使得碳纳米管在材料科学和纳米技术领域具有重要
应用价值。

其次,从制备方法的角度来看,碳纳米管可以通过电弧放电法、化学气相沉积法、化学气相沉积法等多种方法制备。

每种方法都有
其独特的优点和局限性,因此在选择制备方法时需要综合考虑所需
的纯度、产率和成本等因素。

再者,从应用领域的角度来看,碳纳米管具有广泛的应用前景。

在材料科学领域,碳纳米管可以用于制备高性能复合材料、导电纳
米材料和传感器等;在生物医学领域,碳纳米管可以用于药物输送、
生物成像和组织工程等方面;在电子学领域,碳纳米管可以用于制备柔性电子器件和纳米电子器件等。

最后,从环境和安全的角度来看,碳纳米管的环境影响和安全性也备受关注。

由于其纳米级尺寸和特殊的化学性质,碳纳米管可能对环境和人体健康造成潜在风险,因此在碳纳米管的生产和应用过程中需要加强对其环境影响和安全性的评估和管理。

综上所述,碳纳米管作为一种重要的纳米结构材料,在结构和性质、制备方法、应用领域和环境安全等方面都具有重要意义和挑战。

对碳纳米管进行深入研究和全面评估,有助于推动其在各个领域的应用和发展。

碳纳米管概述

碳纳米管概述
1)力学性 能 碳纳米管的抗拉强度达到50~200GPa,是钢 的100倍,密度却只有钢的1/6,至少比常规石墨纤 维高一个数量级。它是最强的纤维,在强度与重 量之比方面,这种纤维是最理想的。
2) 电学性能
由于碳纳米管的结构与石墨的片层结构相同,所以具有 很好的电学性能。理论预测其导电性能取决于其管径和管壁 的螺旋角。当CNTs的管径大于6mm时,导电性能下降;当 管径小于6mm时,CNTs可以被看成具有良好导电性能的一 维量子导线。
理想的工艺条件:氦气为载气,气压 60—50Pa,电流60A~100A, 电压19V~25 V,电极间距1 mm~4mm,产率50%。Iijima等生产 出了半径约1 nm的单层碳管。
燃烧火焰法
利用液体(乙醇、甲醇等)、气体(乙炔、乙烯、甲烷等) 和固体(煤炭、木炭)等产生火焰分解其碳-氢化合物获得游历 碳原子,为合成碳纳米管提供碳源;然后将基板材料做适当处 理,最后将基板的一面向下,面向火焰放入火焰中,燃烧一段 时间后取出。基板上的棕褐(黑)色既是碳纳米管或碳纳米纤 维。
导电塑料(聚脂): 将碳纳米管均匀地扩散到塑料中,可获得强度更高并具有导
电性能的塑料,可用于静电喷涂和静电消除材料,目前高档 汽车的塑料零件由于采用了这种材料,可用普通塑料取代原 用的工程塑料,简化制造工艺,降低了成 本,并获得形状 更复杂、强度更高、表面更美观的塑料零部件,是静电喷涂 塑料 (聚脂 )的发展方向。
由于碳纳米管复合材料具有良好的导电性能,不会象绝缘塑 料产生静电堆积,因此是用于静电消除、晶片加工、磁盘制 造及洁净空间等领域的理想材料。碳纳米管还有静电屏蔽功 能,由于电子设备外壳可消除外部静电对设备的干扰,保证 电子设备正常工作。
4) 电磁干扰屏蔽材料及隐形材料 碳纳米管是一种有前途的理想微波吸收剂,可用于隐形材
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
) 超级电容器 碳纳米管比表面积大、结晶度高、导电 性好,微孔大小可通过合成工艺加以控 制,是一种理想的电双层电容器电极材 料。由于碳纳米管具有开放的多孔结构, 并能在与电解质的交界面形成双电层, 从而聚集大量电荷,功率密度可达 8000W/kg。碳纳米管超级电容器是已知 的最大容量的电容器。
5) 催化剂载体 纳米材料比表面积大,表面原子比率 大(约占总原子数的50%),使体系的电子 结构和晶体结构明显改变,表现出特殊 的电子效应和表面效应。如气体通过碳 纳米管的扩散速度为通过常规催化剂颗 粒 的上千倍,担载催化剂后极大提高催 化剂的活性和选择性。
谢谢!
1.碳纳米管的发现 碳纳米管是在1991年1月由日本筑波 NEC实验室的物理学家饭岛澄男使用 高分辨率分析电镜从电弧法生产的碳 纤维中发现的。
2.碳纳米管的结构
与金刚石、石墨、富勒烯一样,是碳的一种同素异形体 。它 是一种管状的碳分子,管上每个碳原子采取sp2杂化,相互之 间以碳-碳σ键结合起来,形成由六边形组成的蜂窝状结构作 为碳纳米管的骨架。
3)激光蒸发法. 这种方法是制备单壁纳米碳管的一种有效 方法。用高能CO2激光或Nd/YAG激光蒸发掺 有Fe、Co、Ni或其他合金的碳靶制备单壁纳 米碳管。用这种CO2激光蒸发法,在室温下 就可以得到单壁碳纳米管。
缺点: 单壁碳纳米管的纯度较低、易粘 结。
5.碳纳米管的独特性质
1)力学性能 碳纳米管的抗拉强度达到50~200GPa,是钢的100倍 ,密度却只有钢的1/6,至少比常规石墨纤维高一 个数量级。它是最强的纤维,在强度与重量之比 方面,这种纤维是最理想的。
2) 电学性能 由于碳纳米管的结构与石墨的片层结构相 同,所以具有很好的电学性能。理论预测 其导电性能取决于其管径和管壁的螺旋角。 当CNTs(碳纳米管 )的管径大于6mm时, 导电性能下降;当管径小于6mm时,CNTs 可以被看成具有良好导电性能的一维量子 导线。
3) 热学性能 一维管具有非常大的长径比,因而大量热是 沿着长度方向传递的,通过合适的取向, 这种管子可以合成高各向异性材料。虽然 在管轴平行方向的热交换性能很高,但在 其垂直方向的热交换性能较低。适当排列 碳纳米管可得到非常高的各向异性热传导 材料。
4) 储氢性能 1997年,A. C. Dillon对单壁碳纳米管 (SWNT)的储氢性能做了研究,SWNT在0℃时 ,储氢量达到了5%。 DeLuchi指出:一辆燃料机车行驶500km,消耗 约31kg的氢气,以现有的油箱来推算,需 要氢气储存的重量和体积能量密度达到65% 和62kg/m3。 这两个结果大大增加了人们对碳纳米管储氢 应用前景的希望。
2) 锂离子电池 碳纳米管的层间距为0.34nm,略大于石墨的 层间距0.335nm,这有利于Li+的嵌入与迁出,它 特殊的圆筒状构型不仅可使Li+从外壁和内壁两 方面嵌入,又可防止因溶剂化Li+嵌入引起的石 墨层剥离而造成负极材料的损坏。碳纳米管掺 杂石墨时可提高石墨负极的导电性,消除极化。 在锂离子电池中加入碳纳米管,也可有 效提高电池的储氢能力,从而大大提高锂离子电 池的性能。
3.碳纳米管的分类
1)按形态分
普通封口型
变径型
洋葱型
海胆型
竹节型
2)按手性分
扶手椅型
锯齿型
3) 按照石墨烯片的层数分
单壁碳纳米管:由一层石墨烯片组成。单壁管 典型的直径和长度分别为 0.75~3nm和1~ 50μm。又称富勒管(Fullerenes tubes)。 多壁碳纳米管: 含有多层石墨烯片。形状象个 同轴电缆
3) 碳纳米管复合材料
基于纳米碳管的优良力学性能可将其作 为结构复合材料的增强剂。研究表明, 环氧树脂和纳米碳管之间可形成数百 MPa的界面强度。 除做结构复合材料的增强剂外,纳米碳 管还可做为功能增强剂填充到聚合物中, 提高其导电性、散热能力等
4) 电磁干扰屏蔽材料及隐形材料
碳纳米管是一种有前途的理想微波吸收剂,可用于隐形 材料、电磁屏蔽材料或暗室吸波材料。 碳纳米管对红外和电磁波有隐身作用的主要原因有两点: 一方面由于纳米微粒尺寸远小于红外及雷达波波长,因 此纳米微粒材料对这种波的透过率比常规材料要强得多, 这就大大减少波的反射率,使得红外探测器和雷达接收到 的反射信号变得很微弱,从而达到隐身的作用; 另一方面,纳米微粒材料的比表面积比常规粗粉大3~4 个数量级,对红外光和电磁波的吸收率也比常规材料大得 多,这就使得红外探测器及雷达得到的反射信号强度大大 降低,因此很难发现被探测目标,起到了隐身作用。由于发 射到该材料表面的电磁波被吸收,不产生反射,因此而达到 隐形效果。
4.碳纳米管的生产方法
石墨电弧法 燃烧火焰法 激光蒸发法
1)石墨电弧法 基本原理:电弧室充惰性 气体保护,两石墨棒电 极靠近,拉起电弧,再 拉开,以保持电弧稳定。 放电过程中阳极温度相 对阴极较高,所以阳极 石墨棒不断被消耗,同 时在石墨阴极上沉积出 含有碳纳米管的产物。
2)燃烧火焰法 利用液体(如乙醇)、气体(如乙炔)和固体 (如木炭)等产生火焰分解其碳-氢化合物获 得游历碳原子,为合成碳纳米管提供碳源;然 后将基板材料做适当处理,基板上的棕褐色物 质就是碳纳米管。 优点有:合成过程无需真空、保护气氛;无需 催化剂;可以在大的表面上合成,特别适合于 在一个平面上形成一层均匀的碳纳米管或碳纳 米纤维薄膜;成本较低,对环境的污染也非常 小。可以实现大批量合成。
相关文档
最新文档