数据结构快速排序代码
数据结构实验报告八-快速排序
实验8 快速排序1.需求分析(1)输入的形式和输入值的范围:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
中间用空格或者回车隔开。
不对非法输入做处理,及假设用户输入都是合法的。
(2)输出的形式:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
(3)程序所能达到的功能:在操作系统中,当有n 件任务同时来临时,每件任务需要用时ni,输出所有任务等待的时间和最小的任务处理顺序。
(4)测试数据:输入请输入任务个数:9请输入任务用时:5 3 4 2 6 1 5 7 3输出任务执行的顺序:1 2 3 3 4 5 5 6 72.概要设计(1)抽象数据类型的定义:为实现上述程序的功能,应以整数存储用户的第一个输入。
并将随后输入的一组数据储存在整数数组中。
(2)算法的基本思想:如果将任务按完成时间从小到大排序,则在完成前一项任务时后面任务等待的时间总和最小,即得到最小的任务处理顺序。
采取对输入的任务时间进行快速排序的方法可以在相对较小的时间复杂度下得到从小到大的顺序序列。
3.详细设计(1)实现概要设计中定义的所有数据类型:第一次输入的正整数要求大于零,为了能够存储,采用int型定义变量。
接下来输入的一组整数,数据范围大于零,为了排序需要,采用线性结构存储,即int类型的数组。
(2)实现程序的具体步骤:一.程序主要采取快速排序的方法处理无序数列:1.在序列中根据随机数确定轴值,根据轴值将序列划分为比轴值小和比轴值大的两个子序列。
2.对每个子序列采取从左右两边向中间搜索的方式,不断将值与轴值比较,如果左边的值大于轴值而右边的小于轴值则将二者交换,直到左右交叉。
3.分别对处理完毕的两个子序列递归地采取1,2步的操作,直到子序列中只有一个元素。
二.程序各模块的伪代码:1、主函数int main(){int n;cout<<"请输入任务个数:";cin>>n;int a[n];cout<<"请输入任务用时:";for(int i=0;i<n;i++) cin>>a[i];qsort(a,0,n-1); //调用“快排函数”cout<<"任务执行的顺序:";for(int i=0;i<n;i++) cout<<a[i]<<" "; //输出排序结果}2、快速排序算法:void qsort(int a[],int i,int j){if(j<=i)return; //只有一个元素int pivotindex=findpivot(a,i,j); //调用“轴值寻找函数”确定轴值swap(a,pivotindex,j); //调用“交换函数”将轴值置末int k=partition(a,i-1,j,a[j]); //调用“分割函数”根据轴值分割序列swap(a,k,j);qsort(a,i,k-1); //递归调用,实现子序列的调序qsort(a,k+1,j);}3、轴值寻找算法://为了保证轴值的“随机性”,采用时间初始化种子。
数据结构-第十章-内部排序
0
1
2
3
4
5
6
7
8
i=5
MAXINT 49 2 3
MAXINT 49 6 3 MAXINT 49 6 3 MAXINT 49 6 8
38 1
38 1 38 1 38 1
65 97 5 0
65 5 65 5 65 5 97 0 97 0 97 0
76 4
76 4 76 4 76 4
13
27
49
i=6
最坏情况下,待排记录按关键字非递增有序 排列(逆序)时,第 i 趟时第 i+1 个对象 必须与前面 i 个对象都做排序码比较, 并且 每做1次比较就要做1次数据移动。总比较 次 数 为 (n+2)(n-1)/2 次 , 总 移 动 次 数 为 (n+4)(n-1)/2。 在平均情况下的排序码比较次数和对象移 动次数约为 n2/4。因此,直接插入排序的 时间复杂度为 O(n2)。 直接插入排序是一种稳定的排序方法。
折半插入排序 (Binary Insertsort)
基本思想 既然每个要插入记录之前的纪录 已经按关键字有序排列,在查找插入位 臵时就没有必要逐个关键字比较,可以 使用折半查找来实现。由此进行的插入 排序称之为折半插入排序。
折半插入排序的算法
void BInsertSort (SqList &L){ for (i=2;i<=L.length;++i){ L.r[0]=L.r[i]; low=1;high=i-1; //查找范围由1到i-1 while(low<=high){ m=(low+high)/2; if LT(L.r[0].key,L.r[m].key) high=m-1; else low=m+1; }//while 折半查找 for (j=i-1;j>=high+1;--j) L.r[j+1]=L.r[j]; //折半查找结束后high+1位臵即为插入位臵 L.r[high+1]=L.r[0]; }//for }//BInsertSort
易语言 数组类型
易语言数组类型一、数组的概念和作用数组是一种常见的数据结构,它可以存储多个相同类型的数据。
在编程中,我们经常需要处理大量的数据,使用数组可以方便地组织和管理这些数据,提高程序的效率和可读性。
二、数组的声明和初始化在易语言中,声明和初始化数组非常简单。
我们需要指定数组的数据类型和长度,并为每个元素赋予初始值。
以下是一个示例代码:[20]i:array; //声明一个长度为20的整数型数组[10]s:array of string; //声明一个长度为10的字符串型数组三、数组的访问和操作数组的元素可以通过索引来访问和操作。
索引从0开始,依次递增。
我们可以使用数组名和索引来获取或修改数组中的元素。
以下是一些常见的数组操作: 1. 获取数组长度:可以使用length函数来获取数组的长度。
2. 遍历数组:可以使用for循环结合索引来遍历数组中的所有元素。
3. 修改数组元素:可以通过索引来修改数组中的元素。
四、多维数组除了一维数组,易语言还支持多维数组。
多维数组是指包含多个维度的数组,每个维度可以有不同的长度。
以下是一个二维数组的示例代码:[3,5]a:array; //声明一个3行5列的二维数组for i=0 to 2for j=0 to 4a[i,j]=i*j; //为数组赋值for i=0 to 2for j=0 to 4print(a[i,j]); //打印数组元素五、数组的应用数组在编程中有广泛的应用。
以下是一些常见的应用场景:1. 存储数据数组可以用来存储大量的数据,例如学生成绩、员工信息等。
通过使用数组,我们可以方便地对这些数据进行操作和管理,提高程序的效率和可读性。
2. 快速排序快速排序是一种常见的排序算法,它通过分治法将一个数组分成两个子数组,然后递归地对子数组进行排序。
以下是一个快速排序算法的示例代码:function quickSort(arr[], low, high)if low < high theni = lowj = highpivot = arr[low]while i < jwhile i < j and arr[j] >= pivotj = j - 1arr[i] = arr[j]while i < j and arr[i] <= pivoti = i + 1arr[j] = arr[i]arr[i] = pivotquickSort(arr, low, i - 1)quickSort(arr, i + 1, high)end ifend function3. 图像处理在图像处理中,我们经常需要处理大量的像素数据。
源代码--数据结构与算法(Python版)chap10 排序
交换类
(2)快速排序 快速排序采用分而治之(Divide and Conquer)
的策略将问题分解成若干个较小的子问题,采用 相同的方法一一解决后,再将子问题的结果整合 成最终答案。快速排序的每一轮处理其实就是将 这一的基准数定位,直到所有的数都排序完成 为止。
21
快速排序的基本步骤:
1. 选定一个基准值(通常可选第一个元素); 2. 将比基准值小的数值移到基准值左边,形
14
• 交换类
交换类排序的基本思想是:通过交换无序序列 中的记录得到其中关键字最小或最大的记录,并将 其加入到有序子序列中,最终形成有序序列。交换 类排序可分为冒泡排序和快速排序等。
15
交换类
(1)冒泡排序 两两比较待排序记录的关键字,发现两
个记录的次序相反时即进行交换,直到没有 反序的记录为止。因为元素会经由交换慢慢 浮到序列顶端,故称之为冒泡排序。
3. 最后对这个组进行插入排序。步长的选法 一般为 d1 约为 n/2,d2 为 d1 /2, d3 为 d2/2 ,…, di = 1。
11
【例】给定序列(11,9,84,32,92,26,58,91,35, 27,46,28,75,29,37,12 ),步长设为d1 =5、d2 =3、 d3 =1,希尔排序过程如下:
for i in range(1,len(alist)):
#外循环n-1
for j in range(i,0,-1):
#内循环
if alist[j]<alist[j-1]:
alist[j],alist[j-1]=alist[j-1],alist[j] #交换
li=[59,12,77,64,72,69,46,89,31,9] print('before: ',li) insert_sort(li) print('after: ',li)
数据结构C语言版_快速排序
t=(*L).r[low]; // 将比枢轴记录小的记录交换到低端
(*L).r[low]=(*L).r[high];
(*L).r[high]=t;
while(low<high&&(*L).r[low].key<=pivotkey)
++low;
t=(*L).r[low]; // 将比枢轴记录大的记录交换到高端
(*L).r[low]=(*L).r[high];
(*L).r[high]=t;
}
return low; // 返回枢轴所在位置
}
#endif
#if 1
// 算法10.6(b) P274
// 交换顺序表L中子表r[low..high]的记录,枢轴记录到位,并返回其
void QSort(SqList *L,int low,int high)
{
int pivotloc;
if(low<high)
{
// 长度大于1
pivotloc=Partition(L,low,high); // 将L.r[low..high]一分为二
QSort(L,low,pivotloc-1); // 对低子表递归排序,pivotloc是枢轴位置
ret***********起泡排序****************
起泡排序前:
49 38 65 97 76 13 27 49
起泡排序后:
13 27 38 49 49 65 76 97
请按任意键继续. . .
***************快速排序a****************
数据结构答案 第10章 排序学习与指导
第10章排序10.1 知识点分析1.排序基本概念:(1)排序将数据元素的任意序列,重新排列成一个按关键字有序(递增或递减)的序列的过程称为排序。
(2)排序方法的稳定和不稳定若对任意的数据元素序列,使用某个排序方法,对它按关键字进行排序,若对原先具有相同键值元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;反之,则称为不稳定的。
(3)内排序整个排序过程都在内存进行的排序称为内排序,本书仅讨论内排序。
(4)外排序待排序的数据元素量大,以致内存一次不能容纳全部记录,在排序过程中需要对外存进行访问的排序称为外排序。
2.直接插入排序直接插入排序法是将一个记录插到已排序好的有序表中,从而得到一个新的,记录数增1的有序表。
3.二分插入排序二分插入排序法是用二分查找法在有序表中找到正确的插入位置,然后移动记录,空出插入位置,再进行插入的排序方法。
4.希尔排序希尔排序的基本思想是:先选取一个小于n的整数d1作为第一个增量,把待排序的数据分成d1个组,所有距离为d1的倍数的记录放在同一个组内,在各组内进行直接插入排序,每一趟排序会使数据更接近于有序。
然后,取第二个增量d2,d2< d1,重复进行上述分组和排序,直至所取的增量d i=1(其中d i< d i-1 < ……< d2< d1),即所有记录在同一组进行直接插入排序后为止。
5.冒泡排序冒泡法是指每相邻两个记录关键字比大小,大的记录往下沉(也可以小的往上浮)。
每一遍把最后一个下沉的位置记下,下一遍只需检查比较到此为止;到所有记录都不发生下沉时,整个过程结束。
6.快速排序快速排序法是通过一趟排序,将待排序的记录组分割成独立的两部分,其中前一部分记录的关键字均比枢轴记录的关键字小;后一部分记录的关键字均比枢轴记录的关键字大,枢轴记录得到了它在整个序列中的最终位置并被存放好。
第二趟再分别对分割成两部分子序列,再进行快速排序,这两部分子序列中的枢轴记录也得到了最终在序列中的位置而被存放好,并且它们又分别分割出独立的两个子序列……。
数据结构实验(6)查找和排序
计算机系数据结构实验报告(x)姓名:陈科健学号:6100113017 专业班级:电子商务131 实验名称:查找和排序实验目的:深入了解各种内部排序方法及效率分析。
问题描述:各种内部排序算法的时间复杂度分析,试通过随机数据比较算法的关键字比较次数和关键字移动次数。
实验要求:1、对起泡排序、直接插入排序、简单选择排序、快速排序、希尔排序、堆排序这六种常用排序算法进行分析。
2、用代码实现上述算法中任意两种排序算法。
3、设计待排序表的表长不超过100(其中数据最好用伪随机数产生程序产生,也可以自己设计一组待排序数据)。
4、要对实验结果做简单分析。
算法分析:实验内容和过程:#include<stdio.h>#include<stdlib.h>typedef struct{int key;}Key;typedef struct{Key r[6];}SqList;void BubbleSort(int *a,int n){int i, j,t;for (i = 0; i < n - 1; i++){for (j = 0; j <n-i-1;j++){if (a[j]>a[j+1]){t = a[j];a[j] = a[j+1];a[j+1] = t;}}}for (i = 0; i < n ; i++){printf("%5d", a[i]);}}int Partition(SqList &L, int low, int high){int pivotkey;L.r[0] = L.r[low];pivotkey = L.r[low].key;while (low < high){while (low < high && L.r[high].key >= pivotkey) --high;L.r[low] = L.r[high];while (low < high && L.r[high].key <= pivotkey) ++low;L.r[high] = L.r[low];}L.r[low] = L.r[0];return low;}void QSort(SqList &L, int low, int high){int pivotloc;if (low < high){pivotloc = Partition(L, low, high);QSort(L, low, pivotloc-1);QSort(L, pivotloc + 1, high);}}void QuickSort(SqList &L){int i;QSort(L,0,5);for (i = 0; i < 6; i++){printf("%5d", L.r[i].key);}}int main(){int i, a[6]; SqList L;printf(" ** 起泡排序**\n\n");printf("请输入6个数:\n");for (i = 0; i < 6; i++){scanf_s("%d", &a[i]);}printf("排序后:\n");BubbleSort(a, 6);printf("\n\n ** 快速排序**\n\n");printf("请输入6个数:\n");for (i = 0; i < 6; i++){scanf_s("%d", &L.r[i].key);}printf("排序后:\n");QuickSort(L);system("pause");}实验结果:总结和感想:起泡还好做。
数据结构期末考试试题(含答案)
数据结构期末考试试题(含答案)题目一请写出快速排序算法的递归实现。
解答一public class QuickSort {public void sort(int[] arr, int low, int high) {if (low < high) {int partitionIndex = partition(arr, low, high);sort(arr, low, partitionIndex - 1);sort(arr, partitionIndex + 1, high);}}private int partition(int[] arr, int low, int high) {int pivot = arr[high];int i = low - 1;for (int j = low; j < high; j++) {if (arr[j] <= pivot) {i++;swap(arr, i, j);}}swap(arr, i + 1, high);return i + 1;}private void swap(int[] arr, int i, int j) {int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}题目二请解释什么是二叉搜索树,并给出一个例子。
解答二二叉搜索树是一种有序的二叉树,其中每个节点的值大于其左子树的所有节点的值,小于其右子树的所有节点的值。
下面是一个二叉搜索树的例子:6/ \3 9/ \ \1 4 12题目三请写出深度优先搜索(DFS)算法的递归实现。
解答三import java.util.*;public class DFS {private int numVertices;private List<List<Integer>> adjList;public DFS(int numVertices) {this.numVertices = numVertices;adjList = new ArrayList<>();for (int i = 0; i < numVertices; i++) {adjList.add(new ArrayList<>());}}public void addEdge(int src, int dest) { adjList.get(src).add(dest);}public void DFSUtil(int start, boolean[] visited) { visited[start] = true;System.out.print(start + " ");List<Integer> neighbors = adjList.get(start);for (int neighbor : neighbors) {if (!visited[neighbor]) {DFSUtil(neighbor, visited);}}}public void DFS(int start) {boolean[] visited = new boolean[numVertices];DFSUtil(start, visited);}}以上是数据结构期末考试试题及其答案。
数据结构实验八快速排序实验报告
数据结构实验八快速排序实验报告一、实验目的1.掌握快速排序算法的原理。
2. 掌握在不同情况下快速排序的时间复杂度。
二、实验原理快速排序是一种基于交换的排序方式。
它是由图灵奖得主 Tony Hoare 发明的。
快速排序的原理是:对一个未排序的数组,先找一个轴点,将比轴点小的数放到它的左边,比轴点大的数放到它的右边,再对左右两部分递归地进行快速排序,完成整个数组的排序。
优缺点:快速排序是一种分治思想的算法,因此,在分治思想比较适合的场景中,它具有较高的效率。
它是一个“不稳定”的排序算法,它的工作原理是在大数组中选取一个基准值,然后将数组分成两部分。
具体过程如下:首先,选择一个基准值(pivot),一般是选取数组的中间位置。
然后把数组的所有值,按照大小关系,分成两部分,小于基准值的放左边,大于等于基准值的放右边。
继续对左右两个数组递归进行上述步骤,直到数组只剩一个元素为止。
三、实验步骤1.编写快速排序代码:void quicksort(int *a,int left,int right) {int i,j,t,temp;if(left>right)return;temp=a[left];i=left;j=right;while(i!=j) {// 顺序要先从右往左移while(a[j]>=temp&&i<j)j--;while(a[i]<=temp&&i<j)i++;if(i<j) {t=a[i];a[i]=a[j];a[j]=t;}}a[left]=a[i];a[i]=temp;quicksort(a,left,i-1);quicksort(a,i+1,right);}2.使用 rand() 函数产生整型随机数并量化生成的随机数序列,运用快速排序算法对序列进行排序。
四、实验结果实验结果显示,快速排序能够有效地快速地排序整型序列。
在随机产生的数值序列中,快速排序迅速地将数值排序,明显快于冒泡排序等其他排序算法。
王道数据结构(18)快速排序
王道数据结构(18)快速排序转发:#include <stdio.h>#include <stdlib.h>#define N 6int partition(int arr[], int low, int high){int key;key = arr[low];while(low<high){while(low <high && arr[high]>= key )high--;if(low<high)arr[low++] = arr[high];while( low<high && arr[low]<=key )low++;if(low<high)arr[high--] = arr[low];}arr[low] = key;return low;}void quick_sort(int arr[], int start, int end){int pos;if (start<end){pos = partition(arr, start, end);quick_sort(arr,start,pos-1);quick_sort(arr,pos+1,end);}return;}int main(void){int i;int arr[N]={32,12,7, 78, 23,45};printf("排序前 \n");for(i=0;i<N;i++)printf("%d\t",arr[i]);quick_sort(arr,0,N-1);printf("\n 排序后 \n");for(i=0; i<N; i++)printf("%d\t", arr[i]);printf ("\n");system("pause");return0;}运⾏结果:排序前32 12 7 78 23 45排序后7 12 23 32 45 78在上⾯的代码中,根据前⾯介绍的步骤⼀步步实现了快速排序算法。
vs studio 排序方法 -回复
vs studio 排序方法-回复Visual Studio是一个强大的集成开发环境(IDE),在软件开发过程中起到了关键的作用。
在这篇文章中,我们将探讨Visual Studio排序方法。
在软件开发过程中,排序是常见的操作。
排序可以将数据按照特定的规则重新排列,使其更加有序。
Visual Studio提供了多种排序方法,以帮助开发人员快速、准确地对数据进行排序。
首先,我们需要明确排序的对象是什么。
在Visual Studio中,我们可以对各种数据结构进行排序,包括数组、列表、集合等。
不同的数据结构可能需要不同的排序方法。
针对数组,Visual Studio提供了一个内置的排序方法Array.Sort。
这个方法接受一个数组作为参数,并根据元素的类型自动选择排序算法。
例如,对一个整型数组进行升序排序可以使用以下代码:csharpint[] arr = { 3, 1, 2, 5, 4 };Array.Sort(arr);对于列表和集合,我们可以使用LINQ查询语句结合OrderBy方法进行排序。
OrderBy方法接受一个lambda表达式作为参数,用于指定排序规则。
以下是一个对字符串列表进行升序排序的示例:csharpList<string> list = new List<string> { "c", "a", "b" };list = list.OrderBy(x => x).ToList();除了升序排序,我们还可以使用OrderByDescending方法进行降序排序。
在某些情况下,我们可能需要根据特定的规则对对象进行排序。
在这种情况下,我们可以使用IComparable接口或者自定义比较器(即实现IComparer接口的类)来指定排序规则。
以下是一个自定义比较器的示例:csharpclass Employee{public string Name { get; set; }public int Age { get; set; }}class AgeComparer : IComparer<Employee>{public int Compare(Employee x, Employee y){return pareTo(y.Age);}}List<Employee> employees = new List<Employee>{new Employee { Name = "John", Age = 25 },new Employee { Name = "Jane", Age = 30 },new Employee { Name = "Tom", Age = 35 }};employees.Sort(new AgeComparer());在这个示例中,我们定义了一个Employee类,并通过实现IComparer 接口来指定根据年龄排序的规则。
数据结构实验报告(C语言)顺序表__排序
int i,j,n,x,change; n=L->length; change=1; for(i=1;i<=n-1 && change;++i){
change=0; for(j=1;j<=n-i-1;++j)
if(L->r[j] > L->r[j+1]){ x=L->r[j]; L->r[j]=L->r[j+1]; L->r[j+1]=x; change=1;
void QuickSort(SqeList *L,int low,int high){ int mid; if(low<high){ mid=Partition(L,low,high); QuickSort(L,low,mid-1); QuickSort(L,mid+1,high); }
}
//直接选择排序
printf("\n7-直接选择排序结果为:\n"); SelectSort(&l); PrintList(&l); printf("\n"); printf("\n8-二路归并结果为:\n"); MergeSort(&l);
PrintList(&l); printf("\n"); } else printf("请输入大于 0 的值: "); return 0; }
} else{
MR->r[k]=R->r[j]; ++j; } ++k; } while(i<=mid) MR->r[k++]=R->r[i++]; while(j<=high) MR->r[k++]=R->r[j++]; }
数据结构排序算法之快速排序
数据结构排序算法之
快速排序
●算法介绍
快速排序也是交换类排序的一种。
快速排序是选择一个数据作为枢纽,将啊序列分为两部分,枢纽的一边比它小(至少不大于),另一边比它大(至少不小于)。
●执行流程
原始序列:23 45 12 90 78 56
I J
进行第一趟排序,选择23作为枢纽,整个过程是一次交替扫描的过程
1)使用最后一个元素J=56开始从右向左扫描
23 45 12 90 78 56 56>23不交换,J--
I J
23 45 12 90 78 56 78>23 J--
I J
23 45 12 90 78 56 12<23 交换I++
I J
12 45 90 78 56 45>23 交换J--
I J
12 45 90 78 56 此时I=J 所以这个位置为枢纽的位置
IJ
12 23 45 90 78 56 一趟排序结束
2) 然后从枢纽的位置开始分为两部分,按照同样的方法进行排序即可,也就递归。
●示例代码
●执行结果
ky@ky-S910-X31E:~/libz/628$ gcc quicksort.c -oquick
./quick
●性能分析
本算法的时间复杂度是n的平方,空间复杂度是O(1)。
更多内容请关注个人文库/p/helpylee。
考研数据结构真题2022
考研数据结构真题2022随着计算机科学的不断发展,数据结构作为计算机科学的基础概念之一,在考研中扮演着重要的角色。
为了帮助考研学子更好地备考数据结构,本文将为您提供2022年考研数据结构真题,并提供解析和解答。
第一题:1. 给出以下四个数据结构的定义和初始化操作:(1) 顺序表(2) 链表(3) 栈(4) 队列要求:给出上述四个数据结构的定义,并写出初始化操作的伪代码。
解析和解答:顺序表的定义:```ctypedef struct{int *data; // 用于存储数据元素的数组int length; // 当前顺序表的长度int capacity; // 顺序表的容量} SeqList;```链表的定义:```ctypedef struct Node{int data; // 数据域struct Node *next; // 指针域,指向下一个节点} LinkedList;```栈的定义:```ctypedef struct{int *data; // 用于存储数据元素的数组int top; // 栈顶指针,指向栈顶元素} Stack;```队列的定义:typedef struct{int *data; // 用于存储数据元素的数组int rear; // 队尾指针,指向队尾元素int front; // 队头指针,指向队头元素} Queue;```顺序表初始化操作伪代码:```cvoid InitSeqList(SeqList *L, int capacity){L->data = (int *)malloc(capacity * sizeof(int)); L->length = 0;L->capacity = capacity;}```链表初始化操作伪代码:```cvoid InitLinkedList(LinkedList **head){*head = NULL;```栈初始化操作伪代码:```cvoid InitStack(Stack *S, int capacity){S->data = (int *)malloc(capacity * sizeof(int)); S->top = -1;}```队列初始化操作伪代码:```cvoid InitQueue(Queue *Q, int capacity){Q->data = (int *)malloc(capacity * sizeof(int)); Q->rear = -1;Q->front = 0;}```第二题:2. 在数据结构中,常用的排序算法有冒泡排序、插入排序和快速排序。
数据结构c++顺序表、单链表的基本操作,查找、排序代码
} return 0; }
实验三 查找
实验名称: 实验3 查找 实验目的:掌握顺序表和有序表的查找方法及算法实现;掌握二叉排序 树和哈希表的构造和查找方法。通过上机操作,理解如何科学地组织信 息存储,并选择高效的查找算法。 实验内容:(2选1)内容1: 基本查找算法;内容2: 哈希表设计。 实验要求:1)在C++系统中编程实现;2)选择合适的数据结构实现查 找算法;3)写出算法设计的基本原理或画出流程图;4)算法实现代码 简洁明了;关键语句要有注释;5)给出调试和测试结果;6)完成实验 报告。 实验步骤: (1)算法设计 a.构造哈希函数的方法很多,常用的有(1)直接定址法(2)数字分析法;(3) 平方取中法;(4)折叠法;( 5)除留余数法;(6)随机数法;本实验采用的是除 留余数法:取关键字被某个不大于哈希表表长m的数p除后所得余数为哈 希地址 (2)算法实现 hash hashlist[n]; void listname(){ char *f; int s0,r,i; NameList[0].py="baojie"; NameList[1].py="chengቤተ መጻሕፍቲ ባይዱoyang"; ……………………………… NameList[29].py="wurenke"; for(i=0;i<q;i++){s0=0;f=NameList[i].py; for(r=0;*(f+r)!='\0';r++) s0+=*(f+r);NameList[i].k=s0; }} void creathash(){int i;
v[k-1]=v[k]; nn=nn-1; return ; } int main() {sq_LList<double>s1(100); cout<<"第一次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.ins_sq_LList(0,1.5); s1.ins_sq_LList(1,2.5); s1.ins_sq_LList(4,3.5); cout<<"第二次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); s1.del_sq_LList(0); s1.del_sq_LList(2); cout<<"第三次输出顺序表对象s1:"<<endl; s1.prt_sq_LList(); return 0; } 运行及结果:
数据结构实验报告
实验报告4 排序一、实验目的1、掌握常用的排序方法,并掌握用高级语言实现排序算法的方法。
2、深刻理解排序的定义和各种排序方法的特点,并能加以灵活应用。
3、了解各种方法的排序过程及其依据的原则,并掌握各种排序方法的时间复杂度的分析方法。
二、实验要求及内容要求编写的程序所能实现的功能包括:1、从键盘输入要排序的一组元素的总个数2、从键盘依次输入要排序的元素值3、对输入的元素进行快速排序4、对输入的元素进行折半插入排序三、实验代码及相关注释#include <iostream>using namespace std;#include "malloc.h"typedef struct{int key;}RedType;typedef struct{RedType r[100];int length;}SqList; //1 快速排序的结构体typedef struct{int data[100];int last;}Sequenlist; //2 折半插入排序的结构体int Partition ( SqList &L, int low, int high ) //1 寻找基准{L.r[0]=L.r[low];//子表的第一个记录作基准对象int pivotkey = L.r[low].key; //基准对象关键字while(low<high){while(low<high && L.r[high].key>= pivotkey) --high;L.r[low] = L.r[high]; //小于基准对象的移到区间的左侧while(low<high&& L.r[low].key<= pivotkey) ++low;L.r[high] = L.r[low] ; //大于基准对象的移到区间的右侧}L.r[low] = L.r[0];return low;}void QuickSort ( SqList &L, int low, int high ) //1 快速排序{//在序列low-high中递归地进行快速排序if ( low < high){int pivotloc= Partition (L, low, high); //寻找基准QuickSort ( L, low, pivotloc-1); //对左序列同样递归处理QuickSort ( L, pivotloc+1, high); //对右序列同样递归处理}}Sequenlist *Sqlset() //2 输入要折半插入排序的一组元素{Sequenlist *L;int i;L=(Sequenlist *)malloc(sizeof(Sequenlist));L->last=0;cout<<"请输入要排序的所有元素的总个数:";cin>>i;cout<<endl;cout<<"请依次输入所有元素的值:";if(i>0){for(L->last=1;L->last<=i;L->last++)cin>>L->data[L->last];L->last--;}return (L);}middlesort(Sequenlist *L) //2 折半插入排序{int i,j,low,high,mid;for(i=1;i<=L->last;i++){L->data[0]=L->data[i];low=1;high=i-1;while(low<=high){mid=(low+high)/2;if(L->data[0]<L->data[mid])high=mid-1; //插入点在前半区elselow=mid+1; //插入点在后半区}for(j=i;j>high+1;j--){L->data[j]=L->data[j-1];} //后移L->data[high+1]=L->data[0]; //插入}return 0;}int main(){gg: cout<<"请选择功能(1.快速排序2.折半插入排序3.退出程序):";int m;cin>>m;cout<<endl;if(m==1){SqList L;int n;cout<<"请输入要排序的所有元素的总个数:";cin>>n;cout<<endl;L.length=n;cout<<"请依次输入所有元素的值:";for(int i=1;i<=L.length;i++){cin>>L.r[i].key;}cout<<endl;cout<<"快速排序后为:";QuickSort(L,1,L.length);for(int j=1;j<=L.length;j++){cout<<L.r[j].key<<" ";}cout<<endl;cout<<endl;goto gg;}if(m==2){Sequenlist *L;int i;L=Sqlset();cout<<endl;middlesort(L);cout<<"折半插入排序后为:";for(i=1;i<=L->last;i++){cout<<L->data[i]<<" ";}cout<<endl;cout<<endl;goto gg;}if(m==3){exit(0);cout<<endl;}return 0;}四、重要函数功能说明1、Sequenlist *Sqlset() 输入要折半插入排序的一组元素2、int Partition ( SqList &L, int low, int high ) 寻找快速排序的基准3、void QuickSort ( SqList &L, int low, int high ) 快速排序4、middlesort(Sequenlist *L) 折半插入排序五、程序运行结果下图仅为分别排序一次,可多次排序,后面有相关截图:六、实验中遇到的问题、解决及体会1、起初编写快速排序的程序时,我是完全按照老师PPT上的算法敲上去的,然后建立了一个SqList的结构体,调试运行时出现错误,仔细查看才意识到Partition函数中L中应该包含元素key,而我建立结构体时没有注意,然后我将key这个元素补充进去,继续调试,又出现错误,提示我Partition没有定义,我就觉得很奇怪,我明明已经写了函数定义,为什么会这样,当我又回过头来阅读程序时,我发现QuickSort函数中调用了Partition函数,但是我的Partition函数的定义在QuickSort函数的后面,于是我将Partition函数放到了QuickSort函数的前面,再次调试运行,就可以正常运行,得出结果了。
python数组排序代码
Python数组排序代码在Python中,数组是一种常用的数据结构,用于存储一系列元素。
排序是对数组中的元素进行重新排列,使其按照一定的顺序排列。
本文将介绍如何使用Python 进行数组排序的代码实现。
冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的数组,比较相邻的两个元素,并交换它们的位置,直到整个数组都已经按照顺序排列。
以下是冒泡排序的Python代码实现:def bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]选择排序选择排序是一种简单但低效的排序算法,它通过重复选择未排序部分的最小元素,并将其放置在已排序部分的末尾,直到整个数组都已经按照顺序排列。
以下是选择排序的Python代码实现:def selection_sort(arr):n = len(arr)for i in range(n):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]插入排序插入排序是一种简单且高效的排序算法,它通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,并在遇到比其大的元素时将其后移,直到找到合适的位置插入。
以下是插入排序的Python代码实现:def insertion_sort(arr):n = len(arr)for i in range(1, n):key = arr[i]j = i-1while j >= 0 and arr[j] > key:arr[j+1] = arr[j]j -= 1arr[j+1] = key快速排序快速排序是一种常用且高效的排序算法,它通过选择一个基准元素,将数组分成两部分,一部分小于基准元素,一部分大于基准元素,然后递归地对这两部分进行排序。
数据结构与算法-排序
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序
目
CONTENTS
录
01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入
数据结构代码汇总
数据结构代码汇总数据结构代码汇总一、线性结构1.数组(Array):●定义和初始化数组●插入、删除元素●查找元素●数组的遍历●数组排序算法(如冒泡排序、快速排序)2.链表(Linked List):●单链表的定义和初始化●插入、删除节点●链表的遍历●双向链表的定义和初始化●插入、删除节点●双向链表的遍历●栈的定义和初始化●入栈、出栈操作●获取栈顶元素、判断栈是否为空●栈的应用(如括号匹配、逆波兰表达式求值)4.队列(Queue):●队列的定义和初始化●入队、出队操作●获取队头元素、判断队列是否为空●队列的应用(如循环队列、优先级队列)二、非线性结构1.树(Tree):●二叉树的定义和初始化●二叉树的遍历(前序、中序、后序)●二叉搜索树的实现和应用●平衡二叉树(AVL树)的实现和应用●哈夫曼树的实现和应用●图的存储结构(邻接矩阵、邻接表)●深度优先搜索(DFS)●广度优先搜索(BFS)●最小树算法(如Prim算法、Kruskal算法)●最短路径算法(如Dijkstra算法、Floyd算法)附件:本文档中所涉及的代码示例可以在附件中找到,包括各种数据结构的实现和相关算法。
法律名词及注释:1.数组:计算机科学中的一种数据结构,用于存储一系列相同类型的元素。
2.链表:一种动态数据结构,由一系列节点组成,每个节点包含一个数据元素和指向下一个节点的指针。
3.栈:一种特殊的线性数据结构,遵循先进后出(Last In First Out,LIFO)的原则。
4.队列:一种特殊的线性数据结构,遵循先进先出(First In First Out,FIFO)的原则。
5.二叉树:一种特殊的树形结构,每个节点最多有两个子节点。
6.图:由节点(顶点)和连接节点的边构成的数据结构,用于描述事物之间的关系。
数据结构第十章 排序
10.2 插入排序 插入排序
直接插入排序 折半插入排序 2-路插入排序 表插入排序 希尔排序
10.2.1 直接插入排序
基本操作:将一个记录插入到已排好序的有序表中, 从而得到一个新的、记录数增1的有序表。
例:有一组待排序的记录的关键字初始序列如下:
(49,38,65,97,76,13,27,49`)
(4)归并排序 (5)基数排序
按内排过程中所需的工作量分类:
(1)简单的排序方法,其时间复杂度为O(n×n)
(2)先进的排序方法,其时间复杂度为O(nlogn);
(3)基数排序,其时间复杂度为O(d(n+rd))
排序算法的两种基本操作:
(1)比较两个关键字的大小; (2)将记录从一个位置移至另一个位置;
算法实现的关键设计:
将d看成是一个循环数组,并设两个指针first和final分别指示排序过 程中得到的有序序列中的第一个记录和最后一个记录在d中的位置.
例:有一组待排序的记录的关键字初始排列如下:
(49,38,65,97,76,13,27,49`) 16
[初始关键字] 49 38 65 97 76 13 27 49`
18
10.2.3 希尔排序 从直接插入排序
待排序序列基本有序可提高效率 回顾 待排序序列的记录数n很小时可提高效率
希尔排序的基本思想:
先将整个待排记录序列分割成为若干子序列分别进行
直接插入排序,待整个序列中的记录“基本有序”时,再对 全
体记例录:有进一行组一待次排直序接的插记入录排的序关. 键字初始排列如下: (49,38,65,97,76,13,27,49`)
} 12
直接插入排序的性能分析: 10. 3
(1)空间:只需一个记录的辅助空间r[0].