材料科学基础2-第二章-固相反应

合集下载

无机材料科学基础复习重点

无机材料科学基础复习重点

第二章、晶体结构缺陷1缺陷的概念2、热缺陷(弗伦克尔缺陷、肖特基缺陷)热缺陷是一种本征缺陷、高于0K就存在,热缺陷浓度的计算影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构)弗伦克尔缺陷肖特基缺陷3、杂质缺陷、固溶体4、非化学计量化合物结构缺陷(半导体)种类、形成条件、缺陷的计算等5、连续置换型固溶体的形成条件6、影响形成间隙型固溶体的因素7、组分缺陷(补偿缺陷):不等价离子取代形成条件、特点(浓度取决于掺杂量和固溶度)缺陷浓度的计算、与热缺陷的比较幻灯片68、缺陷反应方程和固溶式9、固溶体的研究与计算写出缺陷反应方程T固溶式、算出晶胞的体积和重量T理论密度(间隙型、置换型)T和实测密度比较10、位错概念刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行混合位错:滑移方向与位错线既不平行,又不垂直。

幻灯片7第三章、非晶态固体1熔体的结构:不同聚合程度的各种聚合物的混合物硅酸盐熔体的粘度与组成的关系2、非晶态物质的特点3、玻璃的通性4、Tg、Tf ,相对应的粘度和特点5、网络形成体、网络改变(变性)体、网络中间体玻璃形成的结晶化学观点:键强,键能6、玻璃形成的动力学条件(相变),3T图7、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处)8、玻璃的结构参数Z可根据玻璃类型定,先计算R,再计算X、Y 注意网络中间体在其中的作用。

9、硅酸盐晶体与硅酸盐玻璃的区别10、硼的反常现象幻灯片8第四章、表面与界面1表面能和表面张力,表面的特征2、润湿的概念、定义、计算;槽角、二面角的计算改善润湿的方法:去除表面吸附膜(提高固体表面能)、改变表面粗糙度、降低固液界面能3、表面粗糙度对润湿的影响4、吸附膜对润湿的影响5、弯曲表面的效应(开尔文公式的应用)6、界面的分类与特点7、多晶体组织8、粘土荷电的原因,阳离子交换序9、粘土与水的作用,电动电位及对泥浆性能的影响流动性,稳定性,悬浮性,触变性,可塑性10、瘠性料的悬浮与塑化泥浆发生触变的原因,改善方法幻灯片9第五章、相平衡1、相律以及相图中的一些基本概念相、独立组分、自由度等2、水型物质相图的特点(固液界线的斜率为负)3、单元系统相图中可逆与不可逆多晶转变的特点4、S iO2相图中的多晶转变(重建型转变、位移型转变)5、一致熔化合物和不一致熔化合物的特点6、形成连续固溶体的二元相图的特点(没有二元无变量点)7、相图应用幻灯片108、界线、连线的概念,以及他们的关系9、等含量规则、等比例规则、背向规则、杠杆规则、连线规则、切线规则、重心规则。

无机材料科学基础名词解释

无机材料科学基础名词解释

名词解释肖特基缺陷:正常格点上的原子,热起伏过程中获得能量离开平衡位置迁移到晶体表面,晶体内正常格点上留下空位弗伦克尔缺陷:晶格热振动时,能量足够大的原子离开平衡位置,挤到晶格间隙中,形成间隙原子,原来位置上形成空位空间群:晶体结构中一切对称要素的集合称为空间群。

本征扩散:指空位来源于晶体结构中本征热缺陷而引起质点的迁移的扩散方式;非本征扩散是由不等价杂质离子取代造成晶格空位,由此而引起的质点迁移。

固溶体:在固态条件下,一种组分(溶剂)内“溶解”了其它组分(溶质)而形成的单一、均匀的晶态固体称为固溶体。

烧结与熔融:烧结是在远低于固态物质的熔融温度下进行的,熔融时全部组元都转变为液相,而烧结时至少有一组元是固态的。

等同点:在晶体结构中占据相同的位置和具有相同的环境的点点阵(空间点阵):空间点阵,一系列在三维空间按周期性排列的几何点结点间距:行列中两个相邻结点间的距离晶体:内部质点在三维空间按周期性重复排列的固体,具有格子构造的固体基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性对称:物体中相同部分之间的有规律的重复宏观晶体的对称要素:对称轴、对称中心、对称面、倒转轴对称变换(对称操作):使对称物体中各相同部分作有规律重复的变换动作对称型(点群):宏观晶体中对称要素的集合,包含了宏观晶体中全部对称要素的总和以及它们相互间的组合关系晶胞:晶体结构中的平行六面体单位,其形状大小与对应的空间格子中的平行六面体一致。

单位晶胞:能够充分反映整个晶体结构特征的最小结构单位,其形状大小与对应的单位平行六面体完全一致。

配位数:晶体结构中,原子或离子的周围,与它直接相邻结合的原子个数或所有异号离子的个数。

固相反应:广义:固相参与的化学反应;狭义:固体与固体发生化学反应生成新的固体。

固相反应速度较慢、需要高温烧结:一种或多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点的温度下变成致密、坚硬的烧结体的过程,包括粉末颗粒表面的粘结和粉末内部物质的传递与迁移。

材料科学基础-第二章-材料的凝固

材料科学基础-第二章-材料的凝固
材料的制备过程对其力学性能、物理和化学性能都会产生较大的影响。 了解材料制备的基本过程,掌握材料制备的基本理论、技术和工艺方法, 对于材料的选用,进一步提升其使用性能有着重要的意义。
制备材料的典型工艺过程:
金属材料:凝固 陶瓷材料:烧结 聚合物:反应合成
凝固与结晶:
凝固(Solidification) 物质从液态转变为固态的过程。
自由能大于体积自由能,即阻力大于驱动力,
那么尺寸在rK~ r0 范围的晶核能够成为稳定的 晶核吗?
当r = rK 时,G 有极大值GK
GK
4 3

GV
3 GV
4

GV
2 σ
1 3
4

GV
2
σ
1 3
4rK2σ
1 3
SKσ
结论:
晶核半径与G的关系
当形成临界晶核时,体积自由能的降低只补偿了表面自由能的2/3,还有 1/3的表面自由能需要另外供给,即需要对形核做功。称GK为形核功。
③形核率(Nucleation Rate)
单位时间、单位体积液相中形成的晶核数目,即晶核形成的速率,记


N
,单位为cm-3·s-1。
影响形核率的因素:
形核功
随过冷度的增加,即随温度的降低,形核 功减小,形核率增大。
原子扩散能力
随过冷度的增加, 即随温度的降低, 原子
扩散能力下降, 形核困难, 形核率减小。
当 r>rK时,随 r 的增加,体系自由能减 小,晶胚转变为晶核;
当 r=rK时,晶胚处于亚稳状态,即可能消 失,也可能长大成为晶核;
把半径为rK的晶胚称为临界晶核,rK称为临 界晶核半径。

材料科学基础复习

材料科学基础复习

第一章、晶体结构基础1、晶体的基本概念晶体的本质:质点在三维空间成周期性重复排列晶体的基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性2、对称的概念物体中的相同部分作有规律的重复对称要素:对称面、对称中心、对称轴(对称轴的类型和特点)(L1、L2、L3、L4、L6、C 、P )4次倒转轴不能被其他的对称要素及其组合取代对称操作:借助对称要素,使晶体的相同部分完全重复的操作对称要素的组合必须满足晶体的整体对称要求,不是无限的。

3、对称型(点群):宏观晶体中只存在32种对称型对称型的概念(所具有的宏观对称要素以一定的顺序组合起来)4、晶体的分类 、晶族分类的依据5、晶面的取向关系 、晶面指数的含义和计算(举例)6、空间点阵的概念、 14种布拉维格子( P (R) 、I 、F 、C 格子)7、晶胞的概念 、晶胞参数(计算)8、微观对称要素的特征、空间群的概念(只存在230种空间群)在微观对称操作中都包含有平移动作9、球体紧密堆积原理 (六方密堆、立方密堆)10、鲍林规则(离子晶体)11、决定晶体结构的因素:化学组成、质点相对大小、极化性质12、同质多晶、类质同晶13、典型的晶体结构(晶体结构的描述方法)CaF2结构、金刚石结构、金红石结构、刚玉结构、 CaTiO3、尖晶石结构14、硅酸盐晶体结构、硅酸盐晶体结构分类的依据15、层状硅酸盐晶体的结构特点,(晶胞参数a 和b 值相近)16、石英、鳞石英、方石英的结构特点第二章、晶体结构缺陷1、缺陷的概念(凡是造成晶体点阵的周期性势场发生畸变的一切因素)2、热缺陷 (弗伦克尔缺陷、肖特基缺陷)及计算 热缺陷是一种本征缺陷、高于0K 就存在,影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构)3、杂质缺陷、固溶体(晶态固体) 固溶体、化合物、混合物之间的比较4、非化学计量化合物结构缺陷 种类、形成条件、特点,缺陷的计算等5、连续置换型固溶体的形成条件6、影响形成间隙型固溶体的因素7、组分缺陷(补偿缺陷):不等价离子取代 形成条件、特点(浓度取决于掺杂量和固溶度) 缺陷浓度的计算、与热缺陷的比较8、缺陷反应方程和固溶式产生的各种缺陷杂质基质−−→−i Cl K K Cl 2l C Cl Ca CaCl '++−→−⨯∙⨯∙'+'+−→−ClK K KCl 2l C 2V Ca CaCl9、固溶体的研究与计算写出缺陷反应方程固溶式、算出晶胞的体积和重量理论密度(间隙型、置换型)和实测密度比较10、位错概念刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行第三章、非晶态固体1、熔体的概念:不同聚合程度的各种聚合物的混合物硅酸盐熔体的粘度与组成的关系2、非晶态物质的特点3、玻璃的通性4、Tg 、Tf 相对应的粘度和特点5、网络形成体、网络变化体、网络中间体计算(如Pb玻璃中Pb2+的作用)6、玻璃形成的热力学观点(结晶化、玻璃化、分相)7、玻璃形成的动力学条件3T图---临界冷却速率8、玻璃形成的结晶化学条件(键强、键型)9、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处)10、玻璃的结构参数(注意给出的条件)Z可根据玻璃类型确定,先计算R,再计算X、Y11、硼的反常现象12、硅酸盐晶体与硅酸盐玻璃的区别硅酸盐晶体与硅酸盐玻璃在结构上的区别:(1)在硅酸盐晶体中,[SiO4]骨架按一定的对称规律有序排列;在硅酸盐玻璃中[SiO4]骨架的排列是无序的。

《材料科学基础2》课程简介和教学大纲

《材料科学基础2》课程简介和教学大纲

《材料科学基础2》课程简介课程编号:02024036课程名称:材料科学基础2 [5E] /Fundamentals of MaterialsScience 2学分:2. 5学时:40适用专业:无机非金属材料建议修读学期:第5学期先修课程:物理化学,材料科学基础1 [无]考核方式与成绩评定标准:闭卷考试教材与主要参考书目:Ll]无机材料学基础,张其土,华东理工大学出版社[2]无机材料科学基础,陆佩文,武汉理工大学出版社[3]材料科学基础,张联盟,武汉理工大学出版社内容概述:本课程是无机非金属材料工程专业本科生的重要专业基础课,是一门理论性很强、涉及面广的课程,是本专业的专业课开设前所必须学的课程。

本课程是使学生掌握材料的组成、结构与性能之间的相互关系和变化规律,掌握材料的结构、物性和化学反应的规律及其相互的联系,为今后从事夏杂的技术工作和开发新型材料打下良好的基础。

The course of fUndamentals of materials science, which is highly theoretical, and almost involves all the sides of materials science, is an important fundamental one for the students majoring in inorganic materials science and engineering. Thus it is set to be taught before other specialized courses. It aims at allowing the students to master the relations between materials compositions, structures and properties, and to establish a good theoretical base for the research and development of new materials in the future.《材料科学基础2》[无]教学大纲课程编号:02024036课程名称:材料科学基础2 /Fundamentals of Materials Science 2学分:2. 5学时:40适用专业:无机非金属材料建议修读学期:第5学期先修课程:物理化学,材料科学基础1 [无]一、课程性质、目的与任务【课程性质】本课程是无机非金属材料工程专业(建材方向、陶瓷与耐火材料方向)本科生的重要专业基础课,是一门理论性很强、涉及面广的课程,是本专业的专业课开设前所必须学的课程。

材料科学基础教学大纲

材料科学基础教学大纲

材料科学基础教学大纲课程号:课程名称:材料科学基础II 学分:4英文名称:Fundamentals of Materials Science (II)周学时: 4预修课程:《材料科学基础I》面向对象:材料科学与工程专业本科生一、课程介绍(100-150字)(一)中文简介《材料科学基础II》是《材料科学基础I》与材料科学后续专业课程的连接纽带,是材料系学生学习其它材料科学与工程相关专业课的基础,内容主要包括固态扩散、相图、固相反应、陶瓷烧结过程、熔融态与玻璃态、金属的凝固与结晶、固态相变过程等。

(二)英文简介This course provides fundamental knowleges for more specified courses related to materials science and engineering. The major contents are as follows: solid diffusion, phase diagrams, solid state reaction, sintering process of ceramics, molten and glassy states, solidification and crystallization of metals, and solid state phase transformations.二、教学目标(一)学习目标《材料科学基础II》课程教学的基本目的是在学生学完《材料科学基础I》课程之后,通过本课程的学习,进一步掌握材料研究与制备过程中所涉及的基础理论问题,如相平衡与相变过程、材料不同尺度范围内的本征结构、晶体组织、几何形态及表观性能,材料微观行为与宏观表现的有机联系,具有不同化学成分、加工过程、组织结构及宏观性能材料的物理本质、材料制备过程中的固相反应和烧结过程等。

学完本课程后,学生应掌握固态扩散基础知识;各类相图的判读以及在实际过程中的应用;理解固相反应、陶瓷烧结过程的实质和控制条件以及相关的动力学关系;掌握玻璃制备过程中的熔融态结构与性质以及玻璃形成过程与结构;掌握金属凝固和结晶基本过程以及成分分布、组织结构调控;掌握材料固态相变,特别是钢的奥氏体化、珠光体相变、马氏体相变、贝氏体相变、脱溶与时效、调幅分解等基础知识。

名词解释(材料科学基础)

名词解释(材料科学基础)

第二章原子尺度的结构1. 阿雷尼乌斯方程式2. 氢键氢键就是分子间作用力的一种,就是一种永久偶极之间的作用力,氢键发生在已经以共价键与其它原子键合的氢原子与另一个原子之间(X-H…Y),通常发生氢键作用的氢原子两边的原子(X、Y)都就是电负性较强的原子。

3. 电离势从孤立的中性原子中去掉一个电子所需的能量叫做原子的电离势。

4. 短程序凝聚态物质中原子的近邻排列的规律性。

5. 键能将相距无限远的两个离子或原子集合在一起时系统所作的功,或将原子完全地相互分开所需向系统提供的能量。

6. 键长两个成键原子A与B的平衡核间距离。

7. 线膨胀系数指温度每变化1℃材料长度变化的百分率。

8. 交联橡胶链之间的一次键就是通过打开未饱与的双键而生成的,这成为交联。

9. 电负性元素的原子在化合物中把电子吸引向自己的本领叫做元素的电负性。

10. 长程序材料在比键长大得多的距离呈现有序时,称这些材料具有长程序。

11. 热力学研究物质的热性质与外部的系统变量如压力温度组成等之间的关系。

12. 范德瓦尔键由瞬间偶极矩与诱导偶极矩产生的分子间引力所构成的物理键。

第三章晶体结构1. 各向异性指材料在各方向的力学与物理性能呈现差异的特性。

2. 各向同性材料的性质与测量方向无关。

3. 原子堆垛因子(APF) 在晶体结构中原子占据的体积与可利用的总体积的比率定义为原子堆垛因子。

4. 晶体点阵晶体点阵就是晶体粒子所在位置的点在空间的排列。

5. 密勒指数用以描述晶体点阵系统中指定的点方向面的惯用约定。

6. 多晶体整个物体就是由许多杂乱无章的排列着的小晶体组成的,这样的物体叫多晶体。

7. 同素异构体很多材料在特定温度下其晶体结构会发生从一种单胞到另一种单胞的转变。

而化合物出现这种该行为称为多形性。

第四章点缺陷与扩散1.扩散涉及一种原子移动到另一种原子基体中去的物质输运过程。

2. 扩散系数表示气体(或固体)扩散程度的物理量。

3. 有效渗入距离扩散物质含量具有原始含量与表面含量平均值的地方。

陆佩文材料科学基础 名词解释 -课后

陆佩文材料科学基础 名词解释 -课后

第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。

晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。

对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。

基元只有一个原子的晶格称为布拉菲格子。

范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。

2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。

2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。

材料科学基础9.1固相反应

材料科学基础9.1固相反应
(2)固态反应开始温度远低于反应物的熔点 或系统的低共熔温度,通常相当于一种反 应物开始呈现显著扩散作用的温度,此温 度称为泰曼温度或烧结温度。
(3)当反应物之一存在有多晶转变时, 则转变温度通常也是反应开始明显进行 的温度,这一规律也称为海得华定律。

泰曼的观点长期以来一直为学术界所普遍接受。但随 着生产和科学实验的进展,发现许多问题。
第一节 引言
一 固相反应分类 a. 从反应物的组成变化方面分类 b. 从固体中成分的传输距离来分类 c. 按反应性质分类 d.按参加反应的物质的状态可分为 e.按反应机理可分为 f.按生成物的位置分成
二 固相反应特征
基于研究结果,泰曼认为:
(1)固态物质间的反应是直接进行的,气相 或液相没有或不起重要作用。
因此,金斯特林格等人提出,固态反应中,反应物可 能转为气相或液相,然后通过颗粒外部扩散到另一固 相的非接触表面上进行反应。指出了气相或液相也可 能对固态反应过程起重要作用。并指出这些反应有如 下一些共同的特点:

习题和思考题

习题和思考题

《无机材料科学基础》习题和思考题第一章晶体1.球体按立方最紧密堆积方式堆积,取出立方晶胞,画出立方晶胞中的四面体空隙和八面体空隙的位置分布图。

2.用鲍林规则分析氧化镁晶体结构。

已知镁离子半径为0.65Å,氧离子半径为1.40Å。

(1)确定晶胞中质点的位置坐标;(2)计算每个晶胞中含氧化镁“分子”数,(3)已知晶胞常数a=4.20 Å,求氧化镁堆积系数和密度,(4)氧化镁晶体中最邻近的两个镁离子中心距为多少?次邻近的两个镁离子中心距为多少?最邻近和次邻近的两个氧离子中心距为多少?(5)画出氧化镁晶胞的(111)、(110)、(100)面的质点分布图并在图上标出氧离子的密排方向,求个面的面密度。

3.已知纤锌矿结构中存在两套硫离子和两套锌离子的六方底心格子,并已知锌离子填充在硫离子最紧密堆积体的四面体空隙中,现以一套硫离子的等同点为基准取六方晶胞,画出晶胞中的质点分布图,计算晶胞中所含式量分子数。

4.完成下表5. 六方最紧密堆积与四方最紧密堆积的堆积密度相同,为什么许多氧化物是以氧离子的立方最紧密堆积为基础,而较少以六方最紧密堆积为基础?6. 用鲍林规则分析镁橄榄石的结构:P48 图2-18(1)标记为50的Mg2+与哪几个氧离子配位形成[MgO6]八面体?写出O2+的标高;(2)标记为25的两个O2+与哪几个镁离子配位?写出Mg2+离子的标高;(3)标记为75的O2+离子与哪几个镁离子配位?写出Mg2+离子的标高;(4)标记为0和50的两个Mg2+的[MgO6] 八面体共用几个顶点?写出O2+的标高;(5)[SiO4] 和 [MgO6] 之间、[MgO6]和[MgO6] 八面体之间有那些连接方式?(6)镁橄榄石的晶胞是什么形状?计算晶胞中含有的式量分子数。

第二章晶体缺陷1.氧化镁为氯化钠型结构,氧化锂为反萤石型结构,在两种结构中氧离子都作立方最紧密堆积,为什么在氧化镁中主要的热缺陷是肖特基型,而在氧化锂中却是弗伦克尔型?萤石型结构的氧化物晶体中常见的热缺陷估计主要是什么类型?为什么?2.已知氯化钠晶体中肖特基缺陷形成焓为2.2ev,而氧化镁晶体中肖特基缺陷形成焓为6ev,试分别计算400℃时氯化纳晶体与氧化镁晶体中肖特基缺陷的浓度。

材料科学基础名词解释(全)

材料科学基础名词解释(全)

材料科学基础名词解释(全)晶体:即内部质点在三维空间呈周期性重复排列的固体。

非晶体:原子没有长程的排列,无固定熔点、各向同性等。

晶体结构:指晶体中原子或分子的排列情况,由空间点阵和结构基元构成。

空间点整:指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。

晶面指数:结晶学中用来表示一组平行晶面的指数。

晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。

晶胞参数:晶胞的形状和大小可用六个参数来表示,即晶胞参数。

离子晶体晶格能:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放的能量。

原子半径:从原子核中心到核外电子的几率分布趋向于零的位置间的距离。

配位数:一个原子或离子周围同种原子或异号离子的数目。

极化:离子紧密堆积时,带电荷的离子所产生的电厂必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形,这种征象称为极化。

同质多晶:化学组成相同的物质在不同的热力学条件下形成结构不同的晶体的现象。

类质同晶:化学组成相似或相近的物质在相同的热力学条件下形成具有相同结构晶体的现象。

铁电体:指具有自发极化且在外电场作用下具有电滞回线的晶体。

正、反尖晶石:在尖晶石结构中,如果A离子占据四面体空隙,B离子占据八面体空隙,称为正尖晶石。

如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙则称为反尖晶石。

反萤石结构:正负离子位置刚好与萤石结构中的相反。

压电效应:由于晶体在外力作用下变形,正负电荷中心产生相对位移使晶体总电矩发生变化。

结构缺陷:通常把晶体点阵结构中周期性势场的畸变称为结构缺陷。

空位:指正常结点没有被质点占据,成为空结点。

间隙质点:质点进入正常晶格的间隙位置。

点缺陷:缺陷尺寸处于原子大小的数量级上,三维方向上的尺寸都很小。

线缺陷:指在一维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

面缺陷:是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷。

材料科学基础名词解释(2)

材料科学基础名词解释(2)

材料科学基础名词解释(2)材料科学基础名词解释32、铝合金的时效:经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称为铝合金的时效。

33、热弹性马氏体:马氏体相变造成弹性应变,而当外加弹性变形后可以使马氏体相变产生逆转变,这种马氏体称为热弹性马氏体。

或马氏体相变由弹性变形来协调。

这种马氏体称为热弹性马氏体。

34、柯肯达尔效应:反映了置换原子的扩散机制,两个纯组元构成扩散偶,界面将向扩散速率快的组元一侧移动。

35、热弹性马氏体相变:当马氏体相变形状的变化是通过弹性变形来协调时,称为热弹性马氏体相变。

36、非晶体:原子没有长程的周期排列,无固定的熔点,各向异性等。

37、致密度:晶体结构中原子体积占总体积的百分数。

38、多滑移:当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时产生同时滑移的现象。

39、过冷度:相变过程中冷却到相变温度以下某个温度后发生转变,平衡相变温度与该实际转变温度只差称为过冷度。

40、间隙相:当非金属(X)和金属(M)原子半径的比值rX0.59,时形成的具rM有简单晶体结构的相,称为间隙相。

41、全位错:把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。

42、滑移系:晶体中的一个滑移面及该面上一个滑移方向的组合称为一个滑移系。

43、离异共晶:共晶体中的α相依附于初生α相生长,将共晶体中另一相β相推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶。

44、均匀形核:新相晶核是在母相中均匀生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。

45、刃型位错:晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。

46、细晶强化:晶粒越细小,晶界总长度愈长,对位错滑移的阻碍愈大,材料的屈服强度愈高,晶粒细化导致晶界增加,位错的滑移受阻,因此提高了材料的强度。

固相反应PPT课件

固相反应PPT课件
A第O15页+/B共723O页 3 → A B 2 O 4
2. 造膜反应
这类反应实际上也属于加成反应,但A、B常是单质元素。 若生成物C不溶于A、B中任一相,或能以任意比例固溶,则 产物中排列方式分别为:
A│C│B,A(B)│B及A│B(A)。 例如: Zn+O2→ZnO 伴随上述反应进行,系统自由焓减少,即气相中O2的化学位 μa与Zn-ZnO界面上平衡氧的化学位μi的差值是此反应的推动 力。当氧化膜增厚速度由扩散控制时,上述氧的化学位降低 将在氧化膜中完成,相关离子的浓度分布如图4所示。
产物层排列主要取决于反应物的扩散组元、产 物与反应物的固溶性等。对于三组分以上的多元系 统,则产物层的排列就更复杂。
第18页/共73页
4. 转变反应
特点: (1)反应仅在一个固相内进行,反应物或生成物 不必参与迁移; (2)反应通常是吸热的,在转变点附近会出现比 热值异常增大。对于一级相变,熵变是不连续的; 对于二级相变则是连续的。 由此可见,传热对转变反应速度有着决定性影响。 石英的多晶转变反应是硅酸盐工业种最常见的实 例。
— d(cdtX)Kn(cX)n
积分并考虑到初始条件:t=0,x=0 得:
x dX
0 (cX)n
t
0 Knd
t
cn1(cX)n1 (n1)c(X)n1cn1 Knt
第29页/共73页
或 n1 1 (c1 X)n 1c1 n 1 K nt 这里,n是反应级数。故给出除一级以外的任意级 数的这类反应的动力学积分式。
第30页/共73页
讨论:
零级反应:n=0, X = K0t

级反

:n=
2
,1
cX
1 c

材料科学基础智慧树知到答案章节测试2023年青岛理工大学

材料科学基础智慧树知到答案章节测试2023年青岛理工大学

第一章测试1.原始混凝土是罗马人发明的。

A:错B:对答案:B第二章测试1.等同点确实不是同一个点,但是我们把它可以当做同一个点来看待。

A:错B:对答案:B2.只要是晶体都有一个完整的对称性。

A:对B:错答案:A3.轴单位的比值叫做轴率。

A:错B:对答案:B4.氮、氧符合8-M规则。

A:错B:对答案:A5.等径球的最紧密堆积的空间堆积率都是75.04%。

A:错B:对答案:A第三章测试1.Frankel缺陷一旦产生就是产生成对的空位和间隙,密度发生变化。

A:对B:错答案:B2.Schttky缺陷实际上不增加晶体位置的数量。

A:对B:错答案:B3.塑性形变的起始点是弹性变时的终点。

A:错B:对答案:B4.单质晶体的Schttky是最简单的一种缺陷。

A:对B:错答案:A5.Schttky缺陷的某一个缺陷是与周围相类似的缺陷之间是没有关联关系的。

A:错B:对答案:B6.没有外力作用下缺陷的运动是布朗运动。

A:错B:对答案:B第四章测试1.分相现象是硅酸盐熔体中不存在的。

A:对B:错答案:B2.熔体的结构特征是进程有序、远程无序。

A:对B:错答案:A3.硅酸盐熔体的表面张力比一般的液体要低很多。

A:对B:错答案:B4.碱金属氧化物在整个溶体中的含量小于25%的摩尔百分比的话,继续加入氧化钠、氧化锂还有氧化钾时,加入氧化钠的粘度最低。

A:对B:错答案:B5.液体在真空中的表面张力比在大气层内大。

A:错B:对答案:B第五章测试1.冰水混合物是一相。

A:错B:对答案:A2.用几种物质生产出新化合物,新化合物的结构不变,并没有新相产生。

A:对B:错答案:B3.相律不是根据热力学平衡条件所推导而出来的因此它不能处理真实的热力学平衡的体系。

A:错B:对答案:A4.如果自由度是负的就表示系统处于非平衡状态。

A:错B:对答案:B5.瞬时析晶组成与系统总的析晶组成是一样的。

A:错B:对答案:A第六章测试1.非稳态扩散是指在系统中任一点的()随着时间变化。

材料科学基础-名词解释

材料科学基础-名词解释

材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。

化学键是指晶体内相邻原子(或离子)间强烈的相互作用。

金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。

离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。

范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。

氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。

近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。

它是构成高分子聚合物最底层、最基本的结构。

又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。

晶体熔化时具固定的熔点,具有各向异性。

2、非晶体:原子是无规则排列的固体物质。

熔化时没有固定熔点,存在一个软化温度范围,为各向同性。

3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。

4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。

6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。

7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。

13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

属于此晶带的晶面称为共带面。

14、晶面间距:晶面间的距离。

材料科学基础第二章材料的凝固

材料科学基础第二章材料的凝固
结晶完成后,由一个晶核(Nucleus)长成的晶体,就是一个晶粒。
液体
晶核 新的晶核 晶核长大 晶粒相互接触 液体消失,结晶完成
液体
形核
长大
晶粒, 构成多晶体
长大
晶体
结晶的一般过程——形核和长大
第二章 材料的凝固-§2.3 金属结晶的原理
第三节 金属结晶的原理
一、结晶的热力学条件
金属结晶为什么需要过冷?
第三章 材料制备的基本过程-§3.1 金属的结晶
σ LB σ αB σ αL cosθ
L
式中:
-晶核与基底的接触角(润湿角);
L-晶核与液相之间的表面能; B -晶核与基底之间的表面能;
LB
LB - 液相与基底之间的表面能。
液相L
S1
晶核
B
r
基底B S2
非均匀形核示意图
在基底B上形成晶核时总的自由能
变化G :
G VGV GS
GS σ L S1 σ BS2 σ LBS2 σ L S1 (σ B σ LB )S2
第二章 材料的凝固-§2.3 金属结晶的原理
讨论:
当T >Tm 时,G=Gs-GL>0, 结晶不能进行。
当T =Tm 时,G=Gs-GL=0, 液、固两相处于动态平衡,
既能结晶,也会熔化。
当T <Tm 时,G=Gs-GL<0, 结晶能够进行。
G
T
Gs
GL
T T1 Tm T2
液、固两相自由能随温度 变化的关系曲线
第二章 材料的凝固-§2.3 金属结晶的原理
二、结晶的结构条件
有序原子团-晶到Tm以下时,一些尺寸较大的有序原子 团就会稳定下来,成为晶核的胚芽,即晶胚 (Embyro),晶胚在一定的条件下能够转变为晶 核。因此,结构起伏是结晶不可缺少的条件。

材料科学基础课后习题答案第二章

材料科学基础课后习题答案第二章

第2章 习题2-1 a) 试证明均匀形核时,形成临界晶粒的△G K 与其临界晶核体积V K 之间的关系式为2K K V V G G ∆=-∆; b) 当非均匀形核形成球冠形晶核时,其△G K 与V K 之间的关系如何?a) 证明 因为临界晶核半径 2K Vr G σ=-∆ 临界晶核形成功 32163()K V G G πσ∆=∆ 故临界晶核的体积 3423K K K Vr G V G π∆==∆ 所以 2K K V V G G ∆=-∆ b) 当非均匀形核形成球冠形晶核时,SL 2K Vr G σ=-∆非 临界晶核形成功 3324(23cos cos )3()K SL V G G πσθθ∆=-+∆非故临界晶核的体积 331(23cos cos )3K K V r πθθ=-+非() 3333SL 3281(23cos cos )(23cos cos )33()SL K V V V V V G G G G σπσπθθθθ∆=--+∆=-+∆∆() 所以 2K K V V G G ∆=-∆非 2-2 如果临界晶核是边长为a 的正方体,试求出其△G K 与a 的关系。

为什么形成立方体晶核的△G K 比球形晶核要大?解:形核时的吉布斯自由能变化为326V V G V G A a G a σσ∆=∆+=∆+ 令()0d G da∆= 得临界晶核边长4K V a G σ=-∆ 临界形核功3333222244649632()6()()()()K tK V K V V V V V V G V G A G G G G G G σσσσσσσ∆=∆+=-∆+-=-+=∆∆∆∆∆ 2K Vr G σ=-∆,球形核胚的临界形核功 332242216()4()33()K bV V V V G G G G G σσπσππσ∆=-∆+=∆∆∆ 将两式相比较3232163()13262()K K b V t V G G G G πσπσ∆∆==≈∆∆ 可见形成球形晶核得临界形核功仅为形成立方形晶核的1/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 相界面上的化学反应机理
ZnO加Fe2O3反应生成尖晶石 的反应,大致可将整个反应过 程分为六个阶段: (1)隐蔽期:约低于300℃,反 应物在混合时已相互接触,随 温度升高,反应物活性增加, 此时在界面上质点间形成了某 些弱的键,试样的吸附能力和 催化能力都有所降低,但晶格 和物相基本上无变化。
② 按照固相反应涉及的化学反应类型不同,可将固相反应分 成合成反应、分解反应、置换反应、氧化还原反应等类型;
③ 按照固相反应的产物空间分布尺度,可将固相反应分为 (界面)成层反应、(体相)非成层反应等两大类型;
④ 按照固相反应的反应控制速度步骤,可以将固相反应分成 化学反应控制的固相反应、扩散控制的固相反应、过渡范 围控制的固相反应等类型
2.反应物通过产物层的扩散
当反应物之间形成一层产物后,则需要有 一种或几种反应物通过产物层的扩散,反应 才能继续进行
固相反应中的扩散规律与一般的扩散规律 相同。
四、固相反应中间产物
固相反应的另一个特点是固相反应产物的阶段性
➢最初反应产物和系统在高温下生成的化合物可能 不同,最初反应产物可以与原始反应物反应生成中 间产物,中间产物可以与最初产物反应,也可能是 一系列反应,最后才形成最终产物
以上六个阶段并不是截然分开的,而是连续地相互交错进 行,同时,并不是所有的固相反应都具有以上的六个阶段
对于不同反应系统,条件不同会各有差别,但一般都包括 以下三个过程: (1) 反应物之间的混合接触并产生表面效应; (2) 化学反应和新相生成; (3) 晶体生长和结构缺陷校正;
如果有液相或气相参与,则反应不局限于物料直接接触的 界面,而可沿整个反应物颗粒自由表面同时进行,此时, 固相与气体、液体间的吸附和润湿作用的影响就很重要。
1. 固-液反应
至少一种固相物质和液相物质组成的体系发生化学反应 的固相反应。液相物质从广义上可分为以下两个大类: (i) 液相为溶液或溶剂物质。固体物质在其中进行转化、溶 解、析出(析晶)等反应。液相包括水、无机和有机溶剂 等 (ii) 液相为高温加热条件下的熔融液相。固相物质在其中发 生转化、溶解、析出(析晶)等反应。一般,熔融液相包 括熔融的金属、非金属以及化合物等
第一节 固 相 反 应 概 述
一、 固相反应特点
在很低温度下,固体质点也可能扩散迁移,并随温度升高, 扩散速度以指数规律增长。泰曼总结结论:
(1) 固态物质间反应直接进行,气相或液相没有或不起重要 作用;
(2) 固体反应开始温度比反应物的熔融温度或系统的低共熔 温度要低的多,通常与一种反应物开始呈现显著扩散作用的 温度相接近,且其与熔点Tm之间存在一定的关系,如硅酸盐 中约0.8~0.9Tm; (3) 反应物之一存在多晶转变时,多晶转变温度常是反应开 始变为显著的温度
实际的材料制备过程中,常用的液相物质包括(a)水溶 液,(b)部分非水溶剂,(c)熔融液相等。固体-水溶液 体系的反应是工业上最常用的反应。
采用高温与加压条件下的水热(溶液)反应则是目前新材 料研究中较有特色的一种反应途径:
➢常温下受固相溶解度,反应速度等限制,有些反应不易进 行。采用高温水溶液,并施加一定压力条件的高温水热反 应,具有特殊的物理化学性质和反应活性
(5)二次脱活期或晶体生成期:620℃~750℃。试样催化活 性再次下降,X射线谱线开始出现ZnOFe2O3谱线并由弱变 强,密度逐渐增大。晶核正逐渐成长为晶体,但此时生成 的反应产物结构还不够完整,存在一定晶体缺陷
(6)反应物晶格校正:约>750℃。温度升高,X射线谱线上 ZnOFe2O3谱线增强并接近于正常晶格图谱,试样的催化活 性和吸附能力迅速下降。由于形成的晶体还存在结构上的 缺陷,故具有使缺陷校正而达到热力学上稳定状态的趋势, 继续升高温度将导致缺陷的消除,晶体逐渐长大,形成正 常的尖晶石晶格结构。
(2)第一活化期:约在300℃~400℃之间。试样吸湿性增大, 催化活性增强,X射线衍射强度没有明显变化,无新相形成, 此时的活化仅是表面效应,反应产物估计是分子表面膜, 且有严重缺陷,不具有化学计量产物的晶格结构,存在很 大活性 (3)第一脱活期:400℃~500℃之间。试样催化活性和吸附 能力下降,估计是先前形成的分子表面膜得到了发展和加 强,在一定程度上对质点扩散起阻碍作用 (4)二次活化期:约500℃~620℃。试样催化活性再次增强, 密度减少,X射线衍射强度开始有明显变化,ZnO谱线呈弥 散Zn现O 晶象格,,但反X 射应 在线颗谱粒线内仍部未进显行示,新常相伴谱随线颗。粒F表e2O面3 已层渗的蔬入 松和活化,此时虽未出现新化合物,但可认为新相的晶核 已经生成。
3. 固-固反应
固相-固相反应只涉及两个或以上的固相物质之间的化 学反应以及物质的扩散等过程。按照反应进行的形式, 固相反应又包括相变反应、固溶反应、离溶反应、析晶 反应、化合与分解反应等。其中,相变反应是最基本的 反应类型
固体材料在一定的温度、压力范围内具有一种热力学稳 定的晶体结构,随着温度、压力条件变化,其晶体结构 会发生变化,并伴随着材料的力学、电学、磁学性能等 的变化
(1)蒸发反应
蒸发反应的起因是固相物质的饱和蒸汽压,当饱和蒸汽 压大于固相表面处平衡蒸汽压时,固相物质就不断离开固 相表面。相反过程就是表面处的蒸汽原子落回到表面处, 产生凝聚过程。利用这种蒸发-凝聚过程,控制其热力学、 动力学条件,可制备出各种新型薄膜类材料。
(2)气相生长反应
气相生长反应可制备具有高纯、高分散性和高均匀性要 求的材料,如制备特种薄膜、单晶材料、高纯物质等
第二章
固相反应
固相反应:固体与固体反应生成固体产物的过程
也指固相与气相、固相与液相之间的反应
固相反应特点:先在界面上(固-固界面、固-液界 面、固-气界面等)进行化学反应,形成反应产物层, 然后反应物再通过产物层进行扩散迁移,使反应继 续进行
在化学反应过程中还常常伴随一些物理变化,有些 固相反应的速度也不完全由反应物本身在界面上的 化学反应速度所控制,而是由某一物理过程所决定
➢以不同比例CaO与SiO2(如CaO/SiO2=3:1或3:1 等)进行实验,结果基本相同,最初产物仍是 2CaO SiO2。在生产水泥熟料时,为获得最大量 具有较高活性的2CaO SiO2,高温煅烧时间不宜 太长
➢固相反应最初产物大多数是结构比较简单的化 合物,如碱土金属氧化物与SiO2反应,无论原始 配料比如何,反应首先生成的是摩尔比为2:1的孤 岛状结构的正硅酸盐。而碱土金属氧化物与Al2O3 的反应,首先生成的是摩尔比为1:1的化合物。
➢固相反应的产物不是一次生成的,而是经过最初 产物、中间产物、最终产物等几个阶段,而这几个 阶段又是相互连续的
CaO与SiO2的固相反应,原始配 料比为CaO/SiO2=1:1(摩尔比) ➢在1200℃加热的条件下,最初形 成的反应产物是2CaO SiO2 (2:1), 中间产物是3CaO 2SiO2 (3:2),最 终产物是CaO SiO2 (1:1) ➢1200℃时各反应产物的形成量与 时间的关系,开始2CaO SiO2很快 形成,3CaO 2SiO2量很少,继续 反应2CaO SiO2量急剧下降, 3CaO 2SiO2量达到一定量后基本 上保持不变,在高温较长时间反应 后,2CaO SiO2量进一步下降,而 CaO SiO2量却迅速上升。
金属氧化反应:
M
1 2
O2
MO
先在M-O界面上进行反应形 成一层MO氧化膜,然后O2 通过MO层扩散到M-MO界
面并继续进行氧化
化学反应速度:
VpdQp dtKC扩散速度:VD
dQD dt
D dC dx
D (C0 C)
dQp---dt时间内消耗于反应的氧气量; dQD---dt时间内扩散到M-MO界面的氧气量; C0,C ---介质和M-MO界面上的O2浓度。
➢水热反应进行的温度可在较宽范围内调节,相应地,化学 反应速度变化较大,对整个反应过程的影响也不同。
➢按反应速度的控制因素可将水热反应分为两种情况:
(a)化学反应支配反应速度的反应。固-液相之间的化学 反应速度较慢,是整个反应进行的控制步骤,反应速度可 通过调节反应体系的温度,压力和气氛等进行控制;
动力学的任务之一是把反应量和时间的关 系用数学式表示出来,以便知道在某个温度, 时间条件下,反应进行到什么程度,反应要 经过多少时间完成。
由于不同的反应机理,动力学公式是不一 样的,测定不同的反应速度,可用具体的动 力学方程。
反应速度以单位时间内,单位体积中反应 物的减少(或产物的增加)表示,对于最简 单反应AB,反应速度表示为
固相反应具有如下共同的特征:
1) 低温时,固体化学上不活泼,固相反应需在高温下进 行。由于反应发生在非均一系统,则传热传质过程都 对反应速度有重要影响。当反应进行时,反应物和产 物的物理化学性质将会发生变化,并导致固体内温度 和反应物浓度分布及物性的变化。
2) 由于固体质点(原子、离子、分子)间具有很大作用 键力,固态物质的反应活性通常较低,速度较慢,多 数情况下,固相反应总是为发生在两种组分界面上的 非均相反应,对于颗粒状物料,反应先是通过颗粒间 的接触点或面进行,然后,反应物通过产物层进行扩 散迁移,使反应继续,故固相反应至少应包括界面上 的化学反应和物质的扩散迁移两个过程。
第三节 固 相 反 应 动 力 学
固相反应动力学是化学反应动力学的一个组成部分,任 务是研究固相之间反应速度,机理和影响反应速度因素
固相反应本身很复杂,一个固相反应过程,除了界面上 化学反应,反应物通过产物层扩散等方面,还可能包括 升华、蒸发、熔融、结晶、吸附等
固相反应的速度由构成它的各方面的反应速度组成。在 不同固相反应中(或同一固相反应的不同阶段),往往 只是某个反应速度最慢的过程起控制作用。
不同固体结构之间的关联规律可以通过相图进行分析和 判读。这种化学组成不变、晶型发生转变的固相-固相转 变反应称为固态相变反应
相关文档
最新文档